Tensors#

Dense Tensors#

class Tensor#

Subclassed by arrow::NumericTensor< TYPE >

Public Functions

Tensor(const std::shared_ptr<DataType> &type, const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape)#

Constructor with no dimension names or strides, data assumed to be row-major.

Tensor(const std::shared_ptr<DataType> &type, const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<int64_t> &strides)#

Constructor with non-negative strides.

Tensor(const std::shared_ptr<DataType> &type, const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<int64_t> &strides, const std::vector<std::string> &dim_names)#

Constructor with non-negative strides and dimension names.

int64_t size() const#

Total number of value cells in the tensor.

inline bool is_mutable() const#

Return true if the underlying data buffer is mutable.

bool is_contiguous() const#

Either row major or column major.

bool is_row_major() const#

AKA “C order”.

bool is_column_major() const#

AKA “Fortran order”.

Result<int64_t> CountNonZero() const#

Compute the number of non-zero values in the tensor.

template<typename ValueType>
inline const ValueType::c_type &Value(const std::vector<int64_t> &index) const#

Returns the value at the given index without data-type and bounds checks.

Public Static Functions

static inline Result<std::shared_ptr<Tensor>> Make(const std::shared_ptr<DataType> &type, const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<int64_t> &strides = {}, const std::vector<std::string> &dim_names = {})#

Create a Tensor with full parameters.

This factory function will return Status::Invalid when the parameters are inconsistent

Parameters:
  • type[in] The data type of the tensor values

  • data[in] The buffer of the tensor content

  • shape[in] The shape of the tensor

  • strides[in] The strides of the tensor (if this is empty, the data assumed to be row-major)

  • dim_names[in] The names of the tensor dimensions

static inline int64_t CalculateValueOffset(const std::vector<int64_t> &strides, const std::vector<int64_t> &index)#

Return the offset of the given index on the given strides.

template<typename TYPE>
class NumericTensor : public arrow::Tensor#

Public Functions

inline NumericTensor(const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<int64_t> &strides, const std::vector<std::string> &dim_names)#

Constructor with non-negative strides and dimension names.

inline NumericTensor(const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape)#

Constructor with no dimension names or strides, data assumed to be row-major.

inline NumericTensor(const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<int64_t> &strides)#

Constructor with non-negative strides.

Public Static Functions

static inline Result<std::shared_ptr<NumericTensor<TYPE>>> Make(const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<int64_t> &strides = {}, const std::vector<std::string> &dim_names = {})#

Create a NumericTensor with full parameters.

This factory function will return Status::Invalid when the parameters are inconsistent

Parameters:
  • data[in] The buffer of the tensor content

  • shape[in] The shape of the tensor

  • strides[in] The strides of the tensor (if this is empty, the data assumed to be row-major)

  • dim_names[in] The names of the tensor dimensions

Sparse Tensors#

enum arrow::SparseTensorFormat::type#

EXPERIMENTAL: The index format type of SparseTensor.

Values:

enumerator COO#

Coordinate list (COO) format.

enumerator CSR#

Compressed sparse row (CSR) format.

enumerator CSC#

Compressed sparse column (CSC) format.

enumerator CSF#

Compressed sparse fiber (CSF) format.

class SparseIndex#

EXPERIMENTAL: The base class for the index of a sparse tensor.

SparseIndex describes where the non-zero elements are within a SparseTensor.

There are several ways to represent this. The format_id is used to distinguish what kind of representation is used. Each possible value of format_id must have only one corresponding concrete subclass of SparseIndex.

Subclassed by arrow::internal::SparseIndexBase< SparseCOOIndex >, arrow::internal::SparseIndexBase< SparseCSCIndex >, arrow::internal::SparseIndexBase< SparseCSFIndex >, arrow::internal::SparseIndexBase< SparseCSRIndex >, arrow::internal::SparseIndexBase< SparseIndexType >

Public Functions

inline SparseTensorFormat::type format_id() const#

Return the identifier of the format type.

virtual int64_t non_zero_length() const = 0#

Return the number of non zero values in the sparse tensor related to this sparse index.

virtual std::string ToString() const = 0#

Return the string representation of the sparse index.

class SparseCOOIndex : public arrow::internal::SparseIndexBase<SparseCOOIndex>#

EXPERIMENTAL: The index data for a COO sparse tensor.

A COO sparse index manages the location of its non-zero values by their coordinates.

Public Functions

explicit SparseCOOIndex(const std::shared_ptr<Tensor> &coords, bool is_canonical)#

Construct SparseCOOIndex from column-major NumericTensor.

inline const std::shared_ptr<Tensor> &indices() const#

Return a tensor that has the coordinates of the non-zero values.

The returned tensor is a N x D tensor where N is the number of non-zero values and D is the number of dimensions in the logical data. The column at index i is a D-tuple of coordinates indicating that the logical value at those coordinates should be found at physical index i.

inline virtual int64_t non_zero_length() const override#

Return the number of non zero values in the sparse tensor related to this sparse index.

inline bool is_canonical() const#

Return whether a sparse tensor index is canonical, or not.

If a sparse tensor index is canonical, it is sorted in the lexicographical order, and the corresponding sparse tensor doesn’t have duplicated entries.

virtual std::string ToString() const override#

Return a string representation of the sparse index.

inline bool Equals(const SparseCOOIndex &other) const#

Return whether the COO indices are equal.

Public Static Functions

static Result<std::shared_ptr<SparseCOOIndex>> Make(const std::shared_ptr<Tensor> &coords, bool is_canonical)#

Make SparseCOOIndex from a coords tensor and canonicality.

static Result<std::shared_ptr<SparseCOOIndex>> Make(const std::shared_ptr<Tensor> &coords)#

Make SparseCOOIndex from a coords tensor with canonicality auto-detection.

static Result<std::shared_ptr<SparseCOOIndex>> Make(const std::shared_ptr<DataType> &indices_type, const std::vector<int64_t> &indices_shape, const std::vector<int64_t> &indices_strides, std::shared_ptr<Buffer> indices_data)#

Make SparseCOOIndex from raw properties with canonicality auto-detection.

static Result<std::shared_ptr<SparseCOOIndex>> Make(const std::shared_ptr<DataType> &indices_type, const std::vector<int64_t> &indices_shape, const std::vector<int64_t> &indices_strides, std::shared_ptr<Buffer> indices_data, bool is_canonical)#

Make SparseCOOIndex from raw properties.

static Result<std::shared_ptr<SparseCOOIndex>> Make(const std::shared_ptr<DataType> &indices_type, const std::vector<int64_t> &shape, int64_t non_zero_length, std::shared_ptr<Buffer> indices_data)#

Make SparseCOOIndex from sparse tensor’s shape properties and data with canonicality auto-detection.

The indices_data should be in row-major (C-like) order. If not, use the raw properties constructor.

static Result<std::shared_ptr<SparseCOOIndex>> Make(const std::shared_ptr<DataType> &indices_type, const std::vector<int64_t> &shape, int64_t non_zero_length, std::shared_ptr<Buffer> indices_data, bool is_canonical)#

Make SparseCOOIndex from sparse tensor’s shape properties and data.

The indices_data should be in row-major (C-like) order. If not, use the raw properties constructor.

class SparseCSRIndex : public arrow::internal::SparseCSXIndex<SparseCSRIndex, internal::SparseMatrixCompressedAxis::ROW>#

EXPERIMENTAL: The index data for a CSR sparse matrix.

A CSR sparse index manages the location of its non-zero values by two vectors.

The first vector, called indptr, represents the range of the rows; the i-th row spans from indptr[i] to indptr[i+1] in the corresponding value vector. So the length of an indptr vector is the number of rows + 1.

The other vector, called indices, represents the column indices of the corresponding non-zero values. So the length of an indices vector is same as the number of non-zero-values.

class SparseTensor#

EXPERIMENTAL: The base class of sparse tensor container.

Subclassed by arrow::SparseTensorImpl< SparseIndexType >

Public Functions

inline std::shared_ptr<DataType> type() const#

Return a value type of the sparse tensor.

inline std::shared_ptr<Buffer> data() const#

Return a buffer that contains the value vector of the sparse tensor.

inline const uint8_t *raw_data() const#

Return an immutable raw data pointer.

inline uint8_t *raw_mutable_data() const#

Return a mutable raw data pointer.

inline const std::vector<int64_t> &shape() const#

Return a shape vector of the sparse tensor.

inline const std::shared_ptr<SparseIndex> &sparse_index() const#

Return a sparse index of the sparse tensor.

inline int ndim() const#

Return a number of dimensions of the sparse tensor.

inline const std::vector<std::string> &dim_names() const#

Return a vector of dimension names.

const std::string &dim_name(int i) const#

Return the name of the i-th dimension.

int64_t size() const#

Total number of value cells in the sparse tensor.

inline bool is_mutable() const#

Return true if the underlying data buffer is mutable.

inline int64_t non_zero_length() const#

Total number of non-zero cells in the sparse tensor.

bool Equals(const SparseTensor &other, const EqualOptions& = EqualOptions::Defaults()) const#

Return whether sparse tensors are equal.

Result<std::shared_ptr<Tensor>> ToTensor(MemoryPool *pool) const#

Return dense representation of sparse tensor as tensor.

The returned Tensor has row-major order (C-like).

template<typename SparseIndexType>
class SparseTensorImpl : public arrow::SparseTensor#

EXPERIMENTAL: Concrete sparse tensor implementation classes with sparse index type.

Public Functions

inline SparseTensorImpl(const std::shared_ptr<SparseIndexType> &sparse_index, const std::shared_ptr<DataType> &type, const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<std::string> &dim_names)#

Construct a sparse tensor from physical data buffer and logical index.

inline SparseTensorImpl(const std::shared_ptr<DataType> &type, const std::vector<int64_t> &shape, const std::vector<std::string> &dim_names = {})#

Construct an empty sparse tensor.

Public Static Functions

static inline Result<std::shared_ptr<SparseTensorImpl<SparseIndexType>>> Make(const std::shared_ptr<SparseIndexType> &sparse_index, const std::shared_ptr<DataType> &type, const std::shared_ptr<Buffer> &data, const std::vector<int64_t> &shape, const std::vector<std::string> &dim_names)#

Create a SparseTensor with full parameters.

static inline Result<std::shared_ptr<SparseTensorImpl<SparseIndexType>>> Make(const Tensor &tensor, const std::shared_ptr<DataType> &index_value_type, MemoryPool *pool = default_memory_pool())#

Create a sparse tensor from a dense tensor.

The dense tensor is re-encoded as a sparse index and a physical data buffer for the non-zero value.

using arrow::SparseCOOTensor = SparseTensorImpl<SparseCOOIndex>#

EXPERIMENTAL: Type alias for COO sparse tensor.

using arrow::SparseCSCMatrix = SparseTensorImpl<SparseCSCIndex>#

EXPERIMENTAL: Type alias for CSC sparse matrix.

using arrow::SparseCSFTensor = SparseTensorImpl<SparseCSFIndex>#

EXPERIMENTAL: Type alias for CSF sparse matrix.

using arrow::SparseCSRMatrix = SparseTensorImpl<SparseCSRIndex>#

EXPERIMENTAL: Type alias for CSR sparse matrix.