pyarrow.JsonType#
- class pyarrow.JsonType#
Bases:
BaseExtensionType
Concrete class for JSON extension type.
Examples
Define the extension type for JSON array
>>> import pyarrow as pa >>> json_type = pa.json_(pa.large_utf8())
Create an extension array
>>> arr = [None, '{ "id":30, "values":["a", "b"] }'] >>> storage = pa.array(arr, pa.large_utf8()) >>> pa.ExtensionArray.from_storage(json_type, storage) <pyarrow.lib.JsonArray object at ...> [ null, "{ "id":30, "values":["a", "b"] }" ]
- __init__(*args, **kwargs)#
Methods
__init__
(*args, **kwargs)equals
(self, other, *[, check_metadata])Return true if type is equivalent to passed value.
field
(self, i)- Parameters:
to_pandas_dtype
(self)Return the equivalent NumPy / Pandas dtype.
wrap_array
(self, storage)Wrap the given storage array as an extension array.
Attributes
The bit width of the extension type.
The byte width of the extension type.
The extension type name.
If True, the number of expected buffers is only lower-bounded by num_buffers.
Number of data buffers required to construct Array type excluding children.
The number of child fields.
The underlying storage type.
- bit_width#
The bit width of the extension type.
- byte_width#
The byte width of the extension type.
- equals(self, other, *, check_metadata=False)#
Return true if type is equivalent to passed value.
- Parameters:
- Returns:
- is_equalbool
Examples
>>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) True
- extension_name#
The extension type name.
- has_variadic_buffers#
If True, the number of expected buffers is only lower-bounded by num_buffers.
Examples
>>> import pyarrow as pa >>> pa.int64().has_variadic_buffers False >>> pa.string_view().has_variadic_buffers True
- id#
- num_buffers#
Number of data buffers required to construct Array type excluding children.
Examples
>>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3
- num_fields#
The number of child fields.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list<item: string>) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2
- storage_type#
The underlying storage type.
- to_pandas_dtype(self)#
Return the equivalent NumPy / Pandas dtype.
Examples
>>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() <class 'numpy.int64'>
- wrap_array(self, storage)#
Wrap the given storage array as an extension array.
- Parameters:
- storage
Array
orChunkedArray
- storage
- Returns:
- array
Array
orChunkedArray
Extension array wrapping the storage array
- array