pyarrow.PyExtensionType#
- class pyarrow.PyExtensionType(DataType storage_type)#
Bases:
ExtensionType
Concrete base class for Python-defined extension types based on pickle for (de)serialization.
Warning
This class is deprecated and its deserialization is disabled by default.
ExtensionType
is recommended instead.- Parameters:
- storage_type
DataType
The storage type for which the extension is built.
- storage_type
- __init__(*args, **kwargs)#
Methods
__init__
(*args, **kwargs)equals
(self, other, *[, check_metadata])Return true if type is equivalent to passed value.
field
(self, i)- Parameters:
set_auto_load
(cls, value)Enable or disable auto-loading of serialized PyExtensionType instances.
to_pandas_dtype
(self)Return the equivalent NumPy / Pandas dtype.
wrap_array
(self, storage)Wrap the given storage array as an extension array.
Attributes
The bit width of the extension type.
The byte width of the extension type.
The extension type name.
If True, the number of expected buffers is only lower-bounded by num_buffers.
Number of data buffers required to construct Array type excluding children.
The number of child fields.
The underlying storage type.
- bit_width#
The bit width of the extension type.
- byte_width#
The byte width of the extension type.
- equals(self, other, *, check_metadata=False)#
Return true if type is equivalent to passed value.
- Parameters:
- Returns:
- is_equalbool
Examples
>>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) True
- extension_name#
The extension type name.
- has_variadic_buffers#
If True, the number of expected buffers is only lower-bounded by num_buffers.
Examples
>>> import pyarrow as pa >>> pa.int64().has_variadic_buffers False >>> pa.string_view().has_variadic_buffers True
- id#
- num_buffers#
Number of data buffers required to construct Array type excluding children.
Examples
>>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3
- num_fields#
The number of child fields.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list<item: string>) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2
- classmethod set_auto_load(cls, value)#
Enable or disable auto-loading of serialized PyExtensionType instances.
- Parameters:
- valuebool
Whether to enable auto-loading.
- storage_type#
The underlying storage type.
- to_pandas_dtype(self)#
Return the equivalent NumPy / Pandas dtype.
Examples
>>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() <class 'numpy.int64'>
- wrap_array(self, storage)#
Wrap the given storage array as an extension array.
- Parameters:
- storage
Array
orChunkedArray
- storage
- Returns:
- array
Array
orChunkedArray
Extension array wrapping the storage array
- array