Tabular Datasets#

Warning

The arrow::dataset namespace is experimental, and a stable API is not yet guaranteed.

The Arrow Datasets library provides functionality to efficiently work with tabular, potentially larger than memory, and multi-file datasets. This includes:

  • A unified interface that supports different sources and file formats (currently, Parquet, ORC, Feather / Arrow IPC, and CSV files) and different file systems (local, cloud).

  • Discovery of sources (crawling directories, handling partitioned datasets with various partitioning schemes, basic schema normalization, …)

  • Optimized reading with predicate pushdown (filtering rows), projection (selecting and deriving columns), and optionally parallel reading.

The goal is to expand support to other file formats and data sources (e.g. database connections) in the future.

Reading Datasets#

For the examples below, let’s create a small dataset consisting of a directory with two parquet files:

52// Generate some data for the rest of this example.
53std::shared_ptr<arrow::Table> CreateTable() {
54  auto schema =
55      arrow::schema({arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
56                     arrow::field("c", arrow::int64())});
57  std::shared_ptr<arrow::Array> array_a;
58  std::shared_ptr<arrow::Array> array_b;
59  std::shared_ptr<arrow::Array> array_c;
60  arrow::NumericBuilder<arrow::Int64Type> builder;
61  ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
62  ABORT_ON_FAILURE(builder.Finish(&array_a));
63  builder.Reset();
64  ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
65  ABORT_ON_FAILURE(builder.Finish(&array_b));
66  builder.Reset();
67  ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
68  ABORT_ON_FAILURE(builder.Finish(&array_c));
69  return arrow::Table::Make(schema, {array_a, array_b, array_c});
70}
71
72// Set up a dataset by writing two Parquet files.
73std::string CreateExampleParquetDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
74                                        const std::string& root_path) {
75  auto base_path = root_path + "/parquet_dataset";
76  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
77  // Create an Arrow Table
78  auto table = CreateTable();
79  // Write it into two Parquet files
80  auto output = filesystem->OpenOutputStream(base_path + "/data1.parquet").ValueOrDie();
81  ABORT_ON_FAILURE(parquet::arrow::WriteTable(
82      *table->Slice(0, 5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
83  output = filesystem->OpenOutputStream(base_path + "/data2.parquet").ValueOrDie();
84  ABORT_ON_FAILURE(parquet::arrow::WriteTable(
85      *table->Slice(5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
86  return base_path;
87}

(See the full example at bottom: A note on transactions & ACID guarantees.)

Dataset discovery#

A arrow::dataset::Dataset object can be created using the various arrow::dataset::DatasetFactory objects. Here, we’ll use the arrow::dataset::FileSystemDatasetFactory, which can create a dataset given a base directory path:

159// Read the whole dataset with the given format, without partitioning.
160std::shared_ptr<arrow::Table> ScanWholeDataset(
161    const std::shared_ptr<fs::FileSystem>& filesystem,
162    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
163  // Create a dataset by scanning the filesystem for files
164  fs::FileSelector selector;
165  selector.base_dir = base_dir;
166  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
167                                                    ds::FileSystemFactoryOptions())
168                     .ValueOrDie();
169  auto dataset = factory->Finish().ValueOrDie();
170  // Print out the fragments
171  for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
172    std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
173  }
174  // Read the entire dataset as a Table
175  auto scan_builder = dataset->NewScan().ValueOrDie();
176  auto scanner = scan_builder->Finish().ValueOrDie();
177  return scanner->ToTable().ValueOrDie();
178}

We’re also passing the filesystem to use and the file format to use for reading. This lets us choose between (for example) reading local files or files in Amazon S3, or between Parquet and CSV.

In addition to searching a base directory, we can list file paths manually.

Creating a arrow::dataset::Dataset does not begin reading the data itself. It only crawls the directory to find all the files (if needed), which can be retrieved with arrow::dataset::FileSystemDataset::files():

// Print out the files crawled (only for FileSystemDataset)
for (const auto& filename : dataset->files()) {
  std::cout << filename << std::endl;
}

…and infers the dataset’s schema (by default from the first file):

std::cout << dataset->schema()->ToString() << std::endl;

Using the arrow::dataset::Dataset::NewScan() method, we can build a arrow::dataset::Scanner and read the dataset (or a portion of it) into a arrow::Table with the arrow::dataset::Scanner::ToTable() method:

159// Read the whole dataset with the given format, without partitioning.
160std::shared_ptr<arrow::Table> ScanWholeDataset(
161    const std::shared_ptr<fs::FileSystem>& filesystem,
162    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
163  // Create a dataset by scanning the filesystem for files
164  fs::FileSelector selector;
165  selector.base_dir = base_dir;
166  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
167                                                    ds::FileSystemFactoryOptions())
168                     .ValueOrDie();
169  auto dataset = factory->Finish().ValueOrDie();
170  // Print out the fragments
171  for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
172    std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
173  }
174  // Read the entire dataset as a Table
175  auto scan_builder = dataset->NewScan().ValueOrDie();
176  auto scanner = scan_builder->Finish().ValueOrDie();
177  return scanner->ToTable().ValueOrDie();
178}

Note

Depending on the size of your dataset, this can require a lot of memory; see Filtering data below on filtering/projecting.

Reading different file formats#

The above examples use Parquet files on local disk, but the Dataset API provides a consistent interface across multiple file formats and filesystems. (See Reading from cloud storage for more information on the latter.) Currently, Parquet, ORC, Feather / Arrow IPC, and CSV file formats are supported; more formats are planned in the future.

If we save the table as Feather files instead of Parquet files:

 91// Set up a dataset by writing two Feather files.
 92std::string CreateExampleFeatherDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
 93                                        const std::string& root_path) {
 94  auto base_path = root_path + "/feather_dataset";
 95  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
 96  // Create an Arrow Table
 97  auto table = CreateTable();
 98  // Write it into two Feather files
 99  auto output = filesystem->OpenOutputStream(base_path + "/data1.feather").ValueOrDie();
100  auto writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
101  ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(0, 5)));
102  ABORT_ON_FAILURE(writer->Close());
103  output = filesystem->OpenOutputStream(base_path + "/data2.feather").ValueOrDie();
104  writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
105  ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(5)));
106  ABORT_ON_FAILURE(writer->Close());
107  return base_path;
108}

…then we can read the Feather file by passing an arrow::dataset::IpcFileFormat:

auto format = std::make_shared<ds::ParquetFileFormat>();
// ...
auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
                   .ValueOrDie();

Customizing file formats#

arrow::dataset::FileFormat objects have properties that control how files are read. For example:

auto format = std::make_shared<ds::ParquetFileFormat>();
format->reader_options.dict_columns.insert("a");

Will configure column "a" to be dictionary-encoded when read. Similarly, setting arrow::dataset::CsvFileFormat::parse_options lets us change things like reading comma-separated or tab-separated data.

Additionally, passing an arrow::dataset::FragmentScanOptions to arrow::dataset::ScannerBuilder::FragmentScanOptions() offers fine-grained control over data scanning. For example, for CSV files, we can change what values are converted into Boolean true and false at scan time.

Filtering data#

So far, we’ve been reading the entire dataset, but if we need only a subset of the data, this can waste time or memory reading data we don’t need. The arrow::dataset::Scanner offers control over what data to read.

In this snippet, we use arrow::dataset::ScannerBuilder::Project() to select which columns to read:

182// Read a dataset, but select only column "b" and only rows where b < 4.
183//
184// This is useful when you only want a few columns from a dataset. Where possible,
185// Datasets will push down the column selection such that less work is done.
186std::shared_ptr<arrow::Table> FilterAndSelectDataset(
187    const std::shared_ptr<fs::FileSystem>& filesystem,
188    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
189  fs::FileSelector selector;
190  selector.base_dir = base_dir;
191  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
192                                                    ds::FileSystemFactoryOptions())
193                     .ValueOrDie();
194  auto dataset = factory->Finish().ValueOrDie();
195  // Read specified columns with a row filter
196  auto scan_builder = dataset->NewScan().ValueOrDie();
197  ABORT_ON_FAILURE(scan_builder->Project({"b"}));
198  ABORT_ON_FAILURE(scan_builder->Filter(cp::less(cp::field_ref("b"), cp::literal(4))));
199  auto scanner = scan_builder->Finish().ValueOrDie();
200  return scanner->ToTable().ValueOrDie();
201}

Some formats, such as Parquet, can reduce I/O costs here by reading only the specified columns from the filesystem.

A filter can be provided with arrow::dataset::ScannerBuilder::Filter(), so that rows which do not match the filter predicate will not be included in the returned table. Again, some formats, such as Parquet, can use this filter to reduce the amount of I/O needed.

182// Read a dataset, but select only column "b" and only rows where b < 4.
183//
184// This is useful when you only want a few columns from a dataset. Where possible,
185// Datasets will push down the column selection such that less work is done.
186std::shared_ptr<arrow::Table> FilterAndSelectDataset(
187    const std::shared_ptr<fs::FileSystem>& filesystem,
188    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
189  fs::FileSelector selector;
190  selector.base_dir = base_dir;
191  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
192                                                    ds::FileSystemFactoryOptions())
193                     .ValueOrDie();
194  auto dataset = factory->Finish().ValueOrDie();
195  // Read specified columns with a row filter
196  auto scan_builder = dataset->NewScan().ValueOrDie();
197  ABORT_ON_FAILURE(scan_builder->Project({"b"}));
198  ABORT_ON_FAILURE(scan_builder->Filter(cp::less(cp::field_ref("b"), cp::literal(4))));
199  auto scanner = scan_builder->Finish().ValueOrDie();
200  return scanner->ToTable().ValueOrDie();
201}

Projecting columns#

In addition to selecting columns, arrow::dataset::ScannerBuilder::Project() can also be used for more complex projections, such as renaming columns, casting them to other types, and even deriving new columns based on evaluating expressions.

In this case, we pass a vector of expressions used to construct column values and a vector of names for the columns:

205// Read a dataset, but with column projection.
206//
207// This is useful to derive new columns from existing data. For example, here we
208// demonstrate casting a column to a different type, and turning a numeric column into a
209// boolean column based on a predicate. You could also rename columns or perform
210// computations involving multiple columns.
211std::shared_ptr<arrow::Table> ProjectDataset(
212    const std::shared_ptr<fs::FileSystem>& filesystem,
213    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
214  fs::FileSelector selector;
215  selector.base_dir = base_dir;
216  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
217                                                    ds::FileSystemFactoryOptions())
218                     .ValueOrDie();
219  auto dataset = factory->Finish().ValueOrDie();
220  // Read specified columns with a row filter
221  auto scan_builder = dataset->NewScan().ValueOrDie();
222  ABORT_ON_FAILURE(scan_builder->Project(
223      {
224          // Leave column "a" as-is.
225          cp::field_ref("a"),
226          // Cast column "b" to float32.
227          cp::call("cast", {cp::field_ref("b")},
228                   arrow::compute::CastOptions::Safe(arrow::float32())),
229          // Derive a boolean column from "c".
230          cp::equal(cp::field_ref("c"), cp::literal(1)),
231      },
232      {"a_renamed", "b_as_float32", "c_1"}));
233  auto scanner = scan_builder->Finish().ValueOrDie();
234  return scanner->ToTable().ValueOrDie();
235}

This also determines the column selection; only the given columns will be present in the resulting table. If you want to include a derived column in addition to the existing columns, you can build up the expressions from the dataset schema:

239// Read a dataset, but with column projection.
240//
241// This time, we read all original columns plus one derived column. This simply combines
242// the previous two examples: selecting a subset of columns by name, and deriving new
243// columns with an expression.
244std::shared_ptr<arrow::Table> SelectAndProjectDataset(
245    const std::shared_ptr<fs::FileSystem>& filesystem,
246    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
247  fs::FileSelector selector;
248  selector.base_dir = base_dir;
249  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
250                                                    ds::FileSystemFactoryOptions())
251                     .ValueOrDie();
252  auto dataset = factory->Finish().ValueOrDie();
253  // Read specified columns with a row filter
254  auto scan_builder = dataset->NewScan().ValueOrDie();
255  std::vector<std::string> names;
256  std::vector<cp::Expression> exprs;
257  // Read all the original columns.
258  for (const auto& field : dataset->schema()->fields()) {
259    names.push_back(field->name());
260    exprs.push_back(cp::field_ref(field->name()));
261  }
262  // Also derive a new column.
263  names.emplace_back("b_large");
264  exprs.push_back(cp::greater(cp::field_ref("b"), cp::literal(1)));
265  ABORT_ON_FAILURE(scan_builder->Project(exprs, names));
266  auto scanner = scan_builder->Finish().ValueOrDie();
267  return scanner->ToTable().ValueOrDie();
268}

Note

When combining filters and projections, Arrow will determine all necessary columns to read. For instance, if you filter on a column that isn’t ultimately selected, Arrow will still read the column to evaluate the filter.

Reading and writing partitioned data#

So far, we’ve been working with datasets consisting of flat directories with files. Oftentimes, a dataset will have one or more columns that are frequently filtered on. Instead of having to read and then filter the data, by organizing the files into a nested directory structure, we can define a partitioned dataset, where sub-directory names hold information about which subset of the data is stored in that directory. Then, we can more efficiently filter data by using that information to avoid loading files that don’t match the filter.

For example, a dataset partitioned by year and month may have the following layout:

dataset_name/
  year=2007/
    month=01/
       data0.parquet
       data1.parquet
       ...
    month=02/
       data0.parquet
       data1.parquet
       ...
    month=03/
    ...
  year=2008/
    month=01/
    ...
  ...

The above partitioning scheme is using “/key=value/” directory names, as found in Apache Hive. Under this convention, the file at dataset_name/year=2007/month=01/data0.parquet contains only data for which year == 2007 and month == 01.

Let’s create a small partitioned dataset. For this, we’ll use Arrow’s dataset writing functionality.

112// Set up a dataset by writing files with partitioning
113std::string CreateExampleParquetHivePartitionedDataset(
114    const std::shared_ptr<fs::FileSystem>& filesystem, const std::string& root_path) {
115  auto base_path = root_path + "/parquet_dataset";
116  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
117  // Create an Arrow Table
118  auto schema = arrow::schema(
119      {arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
120       arrow::field("c", arrow::int64()), arrow::field("part", arrow::utf8())});
121  std::vector<std::shared_ptr<arrow::Array>> arrays(4);
122  arrow::NumericBuilder<arrow::Int64Type> builder;
123  ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
124  ABORT_ON_FAILURE(builder.Finish(&arrays[0]));
125  builder.Reset();
126  ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
127  ABORT_ON_FAILURE(builder.Finish(&arrays[1]));
128  builder.Reset();
129  ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
130  ABORT_ON_FAILURE(builder.Finish(&arrays[2]));
131  arrow::StringBuilder string_builder;
132  ABORT_ON_FAILURE(
133      string_builder.AppendValues({"a", "a", "a", "a", "a", "b", "b", "b", "b", "b"}));
134  ABORT_ON_FAILURE(string_builder.Finish(&arrays[3]));
135  auto table = arrow::Table::Make(schema, arrays);
136  // Write it using Datasets
137  auto dataset = std::make_shared<ds::InMemoryDataset>(table);
138  auto scanner_builder = dataset->NewScan().ValueOrDie();
139  auto scanner = scanner_builder->Finish().ValueOrDie();
140
141  // The partition schema determines which fields are part of the partitioning.
142  auto partition_schema = arrow::schema({arrow::field("part", arrow::utf8())});
143  // We'll use Hive-style partitioning, which creates directories with "key=value" pairs.
144  auto partitioning = std::make_shared<ds::HivePartitioning>(partition_schema);
145  // We'll write Parquet files.
146  auto format = std::make_shared<ds::ParquetFileFormat>();
147  ds::FileSystemDatasetWriteOptions write_options;
148  write_options.file_write_options = format->DefaultWriteOptions();
149  write_options.filesystem = filesystem;
150  write_options.base_dir = base_path;
151  write_options.partitioning = partitioning;
152  write_options.basename_template = "part{i}.parquet";
153  ABORT_ON_FAILURE(ds::FileSystemDataset::Write(write_options, scanner));
154  return base_path;
155}

The above created a directory with two subdirectories (“part=a” and “part=b”), and the Parquet files written in those directories no longer include the “part” column.

Reading this dataset, we now specify that the dataset should use a Hive-like partitioning scheme:

272// Read an entire dataset, but with partitioning information.
273std::shared_ptr<arrow::Table> ScanPartitionedDataset(
274    const std::shared_ptr<fs::FileSystem>& filesystem,
275    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
276  fs::FileSelector selector;
277  selector.base_dir = base_dir;
278  selector.recursive = true;  // Make sure to search subdirectories
279  ds::FileSystemFactoryOptions options;
280  // We'll use Hive-style partitioning. We'll let Arrow Datasets infer the partition
281  // schema.
282  options.partitioning = ds::HivePartitioning::MakeFactory();
283  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
284                     .ValueOrDie();
285  auto dataset = factory->Finish().ValueOrDie();
286  // Print out the fragments
287  for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
288    std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
289    std::cout << "Partition expression: "
290              << (*fragment)->partition_expression().ToString() << std::endl;
291  }
292  auto scan_builder = dataset->NewScan().ValueOrDie();
293  auto scanner = scan_builder->Finish().ValueOrDie();
294  return scanner->ToTable().ValueOrDie();
295}

Although the partition fields are not included in the actual Parquet files, they will be added back to the resulting table when scanning this dataset:

$ ./debug/dataset_documentation_example file:///tmp parquet_hive partitioned
Found fragment: /tmp/parquet_dataset/part=a/part0.parquet
Partition expression: (part == "a")
Found fragment: /tmp/parquet_dataset/part=b/part1.parquet
Partition expression: (part == "b")
Read 20 rows
a: int64
  -- field metadata --
  PARQUET:field_id: '1'
b: double
  -- field metadata --
  PARQUET:field_id: '2'
c: int64
  -- field metadata --
  PARQUET:field_id: '3'
part: string
----
# snip...

We can now filter on the partition keys, which avoids loading files altogether if they do not match the filter:

299// Read an entire dataset, but with partitioning information. Also, filter the dataset on
300// the partition values.
301std::shared_ptr<arrow::Table> FilterPartitionedDataset(
302    const std::shared_ptr<fs::FileSystem>& filesystem,
303    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
304  fs::FileSelector selector;
305  selector.base_dir = base_dir;
306  selector.recursive = true;
307  ds::FileSystemFactoryOptions options;
308  options.partitioning = ds::HivePartitioning::MakeFactory();
309  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
310                     .ValueOrDie();
311  auto dataset = factory->Finish().ValueOrDie();
312  auto scan_builder = dataset->NewScan().ValueOrDie();
313  // Filter based on the partition values. This will mean that we won't even read the
314  // files whose partition expressions don't match the filter.
315  ABORT_ON_FAILURE(
316      scan_builder->Filter(cp::equal(cp::field_ref("part"), cp::literal("b"))));
317  auto scanner = scan_builder->Finish().ValueOrDie();
318  return scanner->ToTable().ValueOrDie();
319}

Different partitioning schemes#

The above example uses a Hive-like directory scheme, such as “/year=2009/month=11/day=15”. We specified this by passing the Hive partitioning factory. In this case, the types of the partition keys are inferred from the file paths.

It is also possible to directly construct the partitioning and explicitly define the schema of the partition keys. For example:

auto part = std::make_shared<ds::HivePartitioning>(arrow::schema({
    arrow::field("year", arrow::int16()),
    arrow::field("month", arrow::int8()),
    arrow::field("day", arrow::int32())
}));

Arrow supports another partitioning scheme, “directory partitioning”, where the segments in the file path represent the values of the partition keys without including the name (the field names are implicit in the segment’s index). For example, given field names “year”, “month”, and “day”, one path might be “/2019/11/15”.

Since the names are not included in the file paths, these must be specified when constructing a directory partitioning:

auto part = ds::DirectoryPartitioning::MakeFactory({"year", "month", "day"});

Directory partitioning also supports providing a full schema rather than inferring types from file paths.

Partitioning performance considerations#

Partitioning datasets has two aspects that affect performance: it increases the number of files and it creates a directory structure around the files. Both of these have benefits as well as costs. Depending on the configuration and the size of your dataset, the costs can outweigh the benefits.

Because partitions split up the dataset into multiple files, partitioned datasets can be read and written with parallelism. However, each additional file adds a little overhead in processing for filesystem interaction. It also increases the overall dataset size since each file has some shared metadata. For example, each parquet file contains the schema and group-level statistics. The number of partitions is a floor for the number of files. If you partition a dataset by date with a year of data, you will have at least 365 files. If you further partition by another dimension with 1,000 unique values, you will have up to 365,000 files. This fine of partitioning often leads to small files that mostly consist of metadata.

Partitioned datasets create nested folder structures, and those allow us to prune which files are loaded in a scan. However, this adds overhead to discovering files in the dataset, as we’ll need to recursively “list directory” to find the data files. Too fine partitions can cause problems here: Partitioning a dataset by date for a years worth of data will require 365 list calls to find all the files; adding another column with cardinality 1,000 will make that 365,365 calls.

The most optimal partitioning layout will depend on your data, access patterns, and which systems will be reading the data. Most systems, including Arrow, should work across a range of file sizes and partitioning layouts, but there are extremes you should avoid. These guidelines can help avoid some known worst cases:

  • Avoid files smaller than 20MB and larger than 2GB.

  • Avoid partitioning layouts with more than 10,000 distinct partitions.

For file formats that have a notion of groups within a file, such as Parquet, similar guidelines apply. Row groups can provide parallelism when reading and allow data skipping based on statistics, but very small groups can cause metadata to be a significant portion of file size. Arrow’s file writer provides sensible defaults for group sizing in most cases.

Reading from other data sources#

Reading in-memory data#

If you already have data in memory that you’d like to use with the Datasets API (e.g. to filter/project data, or to write it out to a filesystem), you can wrap it in an arrow::dataset::InMemoryDataset:

auto table = arrow::Table::FromRecordBatches(...);
auto dataset = std::make_shared<arrow::dataset::InMemoryDataset>(std::move(table));
// Scan the dataset, filter, it, etc.
auto scanner_builder = dataset->NewScan();

In the example, we used the InMemoryDataset to write our example data to local disk which was used in the rest of the example:

112// Set up a dataset by writing files with partitioning
113std::string CreateExampleParquetHivePartitionedDataset(
114    const std::shared_ptr<fs::FileSystem>& filesystem, const std::string& root_path) {
115  auto base_path = root_path + "/parquet_dataset";
116  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
117  // Create an Arrow Table
118  auto schema = arrow::schema(
119      {arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
120       arrow::field("c", arrow::int64()), arrow::field("part", arrow::utf8())});
121  std::vector<std::shared_ptr<arrow::Array>> arrays(4);
122  arrow::NumericBuilder<arrow::Int64Type> builder;
123  ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
124  ABORT_ON_FAILURE(builder.Finish(&arrays[0]));
125  builder.Reset();
126  ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
127  ABORT_ON_FAILURE(builder.Finish(&arrays[1]));
128  builder.Reset();
129  ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
130  ABORT_ON_FAILURE(builder.Finish(&arrays[2]));
131  arrow::StringBuilder string_builder;
132  ABORT_ON_FAILURE(
133      string_builder.AppendValues({"a", "a", "a", "a", "a", "b", "b", "b", "b", "b"}));
134  ABORT_ON_FAILURE(string_builder.Finish(&arrays[3]));
135  auto table = arrow::Table::Make(schema, arrays);
136  // Write it using Datasets
137  auto dataset = std::make_shared<ds::InMemoryDataset>(table);
138  auto scanner_builder = dataset->NewScan().ValueOrDie();
139  auto scanner = scanner_builder->Finish().ValueOrDie();
140
141  // The partition schema determines which fields are part of the partitioning.
142  auto partition_schema = arrow::schema({arrow::field("part", arrow::utf8())});
143  // We'll use Hive-style partitioning, which creates directories with "key=value" pairs.
144  auto partitioning = std::make_shared<ds::HivePartitioning>(partition_schema);
145  // We'll write Parquet files.
146  auto format = std::make_shared<ds::ParquetFileFormat>();
147  ds::FileSystemDatasetWriteOptions write_options;
148  write_options.file_write_options = format->DefaultWriteOptions();
149  write_options.filesystem = filesystem;
150  write_options.base_dir = base_path;
151  write_options.partitioning = partitioning;
152  write_options.basename_template = "part{i}.parquet";
153  ABORT_ON_FAILURE(ds::FileSystemDataset::Write(write_options, scanner));
154  return base_path;
155}

Reading from cloud storage#

In addition to local files, Arrow Datasets also support reading from cloud storage systems, such as Amazon S3, by passing a different filesystem.

See the filesystem docs for more details on the available filesystems.

A note on transactions & ACID guarantees#

The dataset API offers no transaction support or any ACID guarantees. This affects both reading and writing. Concurrent reads are fine. Concurrent writes or writes concurring with reads may have unexpected behavior. Various approaches can be used to avoid operating on the same files such as using a unique basename template for each writer, a temporary directory for new files, or separate storage of the file list instead of relying on directory discovery.

Unexpectedly killing the process while a write is in progress can leave the system in an inconsistent state. Write calls generally return as soon as the bytes to be written have been completely delivered to the OS page cache. Even though a write operation has been completed it is possible for part of the file to be lost if there is a sudden power loss immediately after the write call.

Most file formats have magic numbers which are written at the end. This means a partial file write can safely be detected and discarded. The CSV file format does not have any such concept and a partially written CSV file may be detected as valid.

Full Example#

  1// Licensed to the Apache Software Foundation (ASF) under one
  2// or more contributor license agreements. See the NOTICE file
  3// distributed with this work for additional information
  4// regarding copyright ownership. The ASF licenses this file
  5// to you under the Apache License, Version 2.0 (the
  6// "License"); you may not use this file except in compliance
  7// with the License. You may obtain a copy of the License at
  8//
  9// http://www.apache.org/licenses/LICENSE-2.0
 10//
 11// Unless required by applicable law or agreed to in writing,
 12// software distributed under the License is distributed on an
 13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 14// KIND, either express or implied. See the License for the
 15// specific language governing permissions and limitations
 16// under the License.
 17
 18// This example showcases various ways to work with Datasets. It's
 19// intended to be paired with the documentation.
 20
 21#include <arrow/api.h>
 22#include <arrow/compute/cast.h>
 23#include <arrow/compute/exec/expression.h>
 24#include <arrow/dataset/dataset.h>
 25#include <arrow/dataset/discovery.h>
 26#include <arrow/dataset/file_base.h>
 27#include <arrow/dataset/file_ipc.h>
 28#include <arrow/dataset/file_parquet.h>
 29#include <arrow/dataset/scanner.h>
 30#include <arrow/filesystem/filesystem.h>
 31#include <arrow/ipc/writer.h>
 32#include <arrow/util/iterator.h>
 33#include <parquet/arrow/writer.h>
 34
 35#include <iostream>
 36#include <vector>
 37
 38namespace ds = arrow::dataset;
 39namespace fs = arrow::fs;
 40namespace cp = arrow::compute;
 41
 42#define ABORT_ON_FAILURE(expr)                     \
 43  do {                                             \
 44    arrow::Status status_ = (expr);                \
 45    if (!status_.ok()) {                           \
 46      std::cerr << status_.message() << std::endl; \
 47      abort();                                     \
 48    }                                              \
 49  } while (0);
 50
 51// (Doc section: Reading Datasets)
 52// Generate some data for the rest of this example.
 53std::shared_ptr<arrow::Table> CreateTable() {
 54  auto schema =
 55      arrow::schema({arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
 56                     arrow::field("c", arrow::int64())});
 57  std::shared_ptr<arrow::Array> array_a;
 58  std::shared_ptr<arrow::Array> array_b;
 59  std::shared_ptr<arrow::Array> array_c;
 60  arrow::NumericBuilder<arrow::Int64Type> builder;
 61  ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
 62  ABORT_ON_FAILURE(builder.Finish(&array_a));
 63  builder.Reset();
 64  ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
 65  ABORT_ON_FAILURE(builder.Finish(&array_b));
 66  builder.Reset();
 67  ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
 68  ABORT_ON_FAILURE(builder.Finish(&array_c));
 69  return arrow::Table::Make(schema, {array_a, array_b, array_c});
 70}
 71
 72// Set up a dataset by writing two Parquet files.
 73std::string CreateExampleParquetDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
 74                                        const std::string& root_path) {
 75  auto base_path = root_path + "/parquet_dataset";
 76  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
 77  // Create an Arrow Table
 78  auto table = CreateTable();
 79  // Write it into two Parquet files
 80  auto output = filesystem->OpenOutputStream(base_path + "/data1.parquet").ValueOrDie();
 81  ABORT_ON_FAILURE(parquet::arrow::WriteTable(
 82      *table->Slice(0, 5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
 83  output = filesystem->OpenOutputStream(base_path + "/data2.parquet").ValueOrDie();
 84  ABORT_ON_FAILURE(parquet::arrow::WriteTable(
 85      *table->Slice(5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
 86  return base_path;
 87}
 88// (Doc section: Reading Datasets)
 89
 90// (Doc section: Reading different file formats)
 91// Set up a dataset by writing two Feather files.
 92std::string CreateExampleFeatherDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
 93                                        const std::string& root_path) {
 94  auto base_path = root_path + "/feather_dataset";
 95  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
 96  // Create an Arrow Table
 97  auto table = CreateTable();
 98  // Write it into two Feather files
 99  auto output = filesystem->OpenOutputStream(base_path + "/data1.feather").ValueOrDie();
100  auto writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
101  ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(0, 5)));
102  ABORT_ON_FAILURE(writer->Close());
103  output = filesystem->OpenOutputStream(base_path + "/data2.feather").ValueOrDie();
104  writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
105  ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(5)));
106  ABORT_ON_FAILURE(writer->Close());
107  return base_path;
108}
109// (Doc section: Reading different file formats)
110
111// (Doc section: Reading and writing partitioned data)
112// Set up a dataset by writing files with partitioning
113std::string CreateExampleParquetHivePartitionedDataset(
114    const std::shared_ptr<fs::FileSystem>& filesystem, const std::string& root_path) {
115  auto base_path = root_path + "/parquet_dataset";
116  ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
117  // Create an Arrow Table
118  auto schema = arrow::schema(
119      {arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
120       arrow::field("c", arrow::int64()), arrow::field("part", arrow::utf8())});
121  std::vector<std::shared_ptr<arrow::Array>> arrays(4);
122  arrow::NumericBuilder<arrow::Int64Type> builder;
123  ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
124  ABORT_ON_FAILURE(builder.Finish(&arrays[0]));
125  builder.Reset();
126  ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
127  ABORT_ON_FAILURE(builder.Finish(&arrays[1]));
128  builder.Reset();
129  ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
130  ABORT_ON_FAILURE(builder.Finish(&arrays[2]));
131  arrow::StringBuilder string_builder;
132  ABORT_ON_FAILURE(
133      string_builder.AppendValues({"a", "a", "a", "a", "a", "b", "b", "b", "b", "b"}));
134  ABORT_ON_FAILURE(string_builder.Finish(&arrays[3]));
135  auto table = arrow::Table::Make(schema, arrays);
136  // Write it using Datasets
137  auto dataset = std::make_shared<ds::InMemoryDataset>(table);
138  auto scanner_builder = dataset->NewScan().ValueOrDie();
139  auto scanner = scanner_builder->Finish().ValueOrDie();
140
141  // The partition schema determines which fields are part of the partitioning.
142  auto partition_schema = arrow::schema({arrow::field("part", arrow::utf8())});
143  // We'll use Hive-style partitioning, which creates directories with "key=value" pairs.
144  auto partitioning = std::make_shared<ds::HivePartitioning>(partition_schema);
145  // We'll write Parquet files.
146  auto format = std::make_shared<ds::ParquetFileFormat>();
147  ds::FileSystemDatasetWriteOptions write_options;
148  write_options.file_write_options = format->DefaultWriteOptions();
149  write_options.filesystem = filesystem;
150  write_options.base_dir = base_path;
151  write_options.partitioning = partitioning;
152  write_options.basename_template = "part{i}.parquet";
153  ABORT_ON_FAILURE(ds::FileSystemDataset::Write(write_options, scanner));
154  return base_path;
155}
156// (Doc section: Reading and writing partitioned data)
157
158// (Doc section: Dataset discovery)
159// Read the whole dataset with the given format, without partitioning.
160std::shared_ptr<arrow::Table> ScanWholeDataset(
161    const std::shared_ptr<fs::FileSystem>& filesystem,
162    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
163  // Create a dataset by scanning the filesystem for files
164  fs::FileSelector selector;
165  selector.base_dir = base_dir;
166  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
167                                                    ds::FileSystemFactoryOptions())
168                     .ValueOrDie();
169  auto dataset = factory->Finish().ValueOrDie();
170  // Print out the fragments
171  for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
172    std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
173  }
174  // Read the entire dataset as a Table
175  auto scan_builder = dataset->NewScan().ValueOrDie();
176  auto scanner = scan_builder->Finish().ValueOrDie();
177  return scanner->ToTable().ValueOrDie();
178}
179// (Doc section: Dataset discovery)
180
181// (Doc section: Filtering data)
182// Read a dataset, but select only column "b" and only rows where b < 4.
183//
184// This is useful when you only want a few columns from a dataset. Where possible,
185// Datasets will push down the column selection such that less work is done.
186std::shared_ptr<arrow::Table> FilterAndSelectDataset(
187    const std::shared_ptr<fs::FileSystem>& filesystem,
188    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
189  fs::FileSelector selector;
190  selector.base_dir = base_dir;
191  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
192                                                    ds::FileSystemFactoryOptions())
193                     .ValueOrDie();
194  auto dataset = factory->Finish().ValueOrDie();
195  // Read specified columns with a row filter
196  auto scan_builder = dataset->NewScan().ValueOrDie();
197  ABORT_ON_FAILURE(scan_builder->Project({"b"}));
198  ABORT_ON_FAILURE(scan_builder->Filter(cp::less(cp::field_ref("b"), cp::literal(4))));
199  auto scanner = scan_builder->Finish().ValueOrDie();
200  return scanner->ToTable().ValueOrDie();
201}
202// (Doc section: Filtering data)
203
204// (Doc section: Projecting columns)
205// Read a dataset, but with column projection.
206//
207// This is useful to derive new columns from existing data. For example, here we
208// demonstrate casting a column to a different type, and turning a numeric column into a
209// boolean column based on a predicate. You could also rename columns or perform
210// computations involving multiple columns.
211std::shared_ptr<arrow::Table> ProjectDataset(
212    const std::shared_ptr<fs::FileSystem>& filesystem,
213    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
214  fs::FileSelector selector;
215  selector.base_dir = base_dir;
216  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
217                                                    ds::FileSystemFactoryOptions())
218                     .ValueOrDie();
219  auto dataset = factory->Finish().ValueOrDie();
220  // Read specified columns with a row filter
221  auto scan_builder = dataset->NewScan().ValueOrDie();
222  ABORT_ON_FAILURE(scan_builder->Project(
223      {
224          // Leave column "a" as-is.
225          cp::field_ref("a"),
226          // Cast column "b" to float32.
227          cp::call("cast", {cp::field_ref("b")},
228                   arrow::compute::CastOptions::Safe(arrow::float32())),
229          // Derive a boolean column from "c".
230          cp::equal(cp::field_ref("c"), cp::literal(1)),
231      },
232      {"a_renamed", "b_as_float32", "c_1"}));
233  auto scanner = scan_builder->Finish().ValueOrDie();
234  return scanner->ToTable().ValueOrDie();
235}
236// (Doc section: Projecting columns)
237
238// (Doc section: Projecting columns #2)
239// Read a dataset, but with column projection.
240//
241// This time, we read all original columns plus one derived column. This simply combines
242// the previous two examples: selecting a subset of columns by name, and deriving new
243// columns with an expression.
244std::shared_ptr<arrow::Table> SelectAndProjectDataset(
245    const std::shared_ptr<fs::FileSystem>& filesystem,
246    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
247  fs::FileSelector selector;
248  selector.base_dir = base_dir;
249  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
250                                                    ds::FileSystemFactoryOptions())
251                     .ValueOrDie();
252  auto dataset = factory->Finish().ValueOrDie();
253  // Read specified columns with a row filter
254  auto scan_builder = dataset->NewScan().ValueOrDie();
255  std::vector<std::string> names;
256  std::vector<cp::Expression> exprs;
257  // Read all the original columns.
258  for (const auto& field : dataset->schema()->fields()) {
259    names.push_back(field->name());
260    exprs.push_back(cp::field_ref(field->name()));
261  }
262  // Also derive a new column.
263  names.emplace_back("b_large");
264  exprs.push_back(cp::greater(cp::field_ref("b"), cp::literal(1)));
265  ABORT_ON_FAILURE(scan_builder->Project(exprs, names));
266  auto scanner = scan_builder->Finish().ValueOrDie();
267  return scanner->ToTable().ValueOrDie();
268}
269// (Doc section: Projecting columns #2)
270
271// (Doc section: Reading and writing partitioned data #2)
272// Read an entire dataset, but with partitioning information.
273std::shared_ptr<arrow::Table> ScanPartitionedDataset(
274    const std::shared_ptr<fs::FileSystem>& filesystem,
275    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
276  fs::FileSelector selector;
277  selector.base_dir = base_dir;
278  selector.recursive = true;  // Make sure to search subdirectories
279  ds::FileSystemFactoryOptions options;
280  // We'll use Hive-style partitioning. We'll let Arrow Datasets infer the partition
281  // schema.
282  options.partitioning = ds::HivePartitioning::MakeFactory();
283  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
284                     .ValueOrDie();
285  auto dataset = factory->Finish().ValueOrDie();
286  // Print out the fragments
287  for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
288    std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
289    std::cout << "Partition expression: "
290              << (*fragment)->partition_expression().ToString() << std::endl;
291  }
292  auto scan_builder = dataset->NewScan().ValueOrDie();
293  auto scanner = scan_builder->Finish().ValueOrDie();
294  return scanner->ToTable().ValueOrDie();
295}
296// (Doc section: Reading and writing partitioned data #2)
297
298// (Doc section: Reading and writing partitioned data #3)
299// Read an entire dataset, but with partitioning information. Also, filter the dataset on
300// the partition values.
301std::shared_ptr<arrow::Table> FilterPartitionedDataset(
302    const std::shared_ptr<fs::FileSystem>& filesystem,
303    const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
304  fs::FileSelector selector;
305  selector.base_dir = base_dir;
306  selector.recursive = true;
307  ds::FileSystemFactoryOptions options;
308  options.partitioning = ds::HivePartitioning::MakeFactory();
309  auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
310                     .ValueOrDie();
311  auto dataset = factory->Finish().ValueOrDie();
312  auto scan_builder = dataset->NewScan().ValueOrDie();
313  // Filter based on the partition values. This will mean that we won't even read the
314  // files whose partition expressions don't match the filter.
315  ABORT_ON_FAILURE(
316      scan_builder->Filter(cp::equal(cp::field_ref("part"), cp::literal("b"))));
317  auto scanner = scan_builder->Finish().ValueOrDie();
318  return scanner->ToTable().ValueOrDie();
319}
320// (Doc section: Reading and writing partitioned data #3)
321
322int main(int argc, char** argv) {
323  if (argc < 3) {
324    // Fake success for CI purposes.
325    return EXIT_SUCCESS;
326  }
327
328  std::string uri = argv[1];
329  std::string format_name = argv[2];
330  std::string mode = argc > 3 ? argv[3] : "no_filter";
331  std::string root_path;
332  auto fs = fs::FileSystemFromUri(uri, &root_path).ValueOrDie();
333
334  std::string base_path;
335  std::shared_ptr<ds::FileFormat> format;
336  if (format_name == "feather") {
337    format = std::make_shared<ds::IpcFileFormat>();
338    base_path = CreateExampleFeatherDataset(fs, root_path);
339  } else if (format_name == "parquet") {
340    format = std::make_shared<ds::ParquetFileFormat>();
341    base_path = CreateExampleParquetDataset(fs, root_path);
342  } else if (format_name == "parquet_hive") {
343    format = std::make_shared<ds::ParquetFileFormat>();
344    base_path = CreateExampleParquetHivePartitionedDataset(fs, root_path);
345  } else {
346    std::cerr << "Unknown format: " << format_name << std::endl;
347    std::cerr << "Supported formats: feather, parquet, parquet_hive" << std::endl;
348    return EXIT_FAILURE;
349  }
350
351  std::shared_ptr<arrow::Table> table;
352  if (mode == "no_filter") {
353    table = ScanWholeDataset(fs, format, base_path);
354  } else if (mode == "filter") {
355    table = FilterAndSelectDataset(fs, format, base_path);
356  } else if (mode == "project") {
357    table = ProjectDataset(fs, format, base_path);
358  } else if (mode == "select_project") {
359    table = SelectAndProjectDataset(fs, format, base_path);
360  } else if (mode == "partitioned") {
361    table = ScanPartitionedDataset(fs, format, base_path);
362  } else if (mode == "filter_partitioned") {
363    table = FilterPartitionedDataset(fs, format, base_path);
364  } else {
365    std::cerr << "Unknown mode: " << mode << std::endl;
366    std::cerr
367        << "Supported modes: no_filter, filter, project, select_project, partitioned"
368        << std::endl;
369    return EXIT_FAILURE;
370  }
371  std::cout << "Read " << table->num_rows() << " rows" << std::endl;
372  std::cout << table->ToString() << std::endl;
373  return EXIT_SUCCESS;
374}