Tabular Datasets#
See also
Warning
The arrow::dataset
namespace is experimental, and a stable API
is not yet guaranteed.
The Arrow Datasets library provides functionality to efficiently work with tabular, potentially larger than memory, and multi-file datasets. This includes:
A unified interface that supports different sources and file formats (currently, Parquet, ORC, Feather / Arrow IPC, and CSV files) and different file systems (local, cloud).
Discovery of sources (crawling directories, handling partitioned datasets with various partitioning schemes, basic schema normalization, …)
Optimized reading with predicate pushdown (filtering rows), projection (selecting and deriving columns), and optionally parallel reading.
The goal is to expand support to other file formats and data sources (e.g. database connections) in the future.
Reading Datasets#
For the examples below, let’s create a small dataset consisting of a directory with two parquet files:
52// Generate some data for the rest of this example.
53std::shared_ptr<arrow::Table> CreateTable() {
54 auto schema =
55 arrow::schema({arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
56 arrow::field("c", arrow::int64())});
57 std::shared_ptr<arrow::Array> array_a;
58 std::shared_ptr<arrow::Array> array_b;
59 std::shared_ptr<arrow::Array> array_c;
60 arrow::NumericBuilder<arrow::Int64Type> builder;
61 ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
62 ABORT_ON_FAILURE(builder.Finish(&array_a));
63 builder.Reset();
64 ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
65 ABORT_ON_FAILURE(builder.Finish(&array_b));
66 builder.Reset();
67 ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
68 ABORT_ON_FAILURE(builder.Finish(&array_c));
69 return arrow::Table::Make(schema, {array_a, array_b, array_c});
70}
71
72// Set up a dataset by writing two Parquet files.
73std::string CreateExampleParquetDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
74 const std::string& root_path) {
75 auto base_path = root_path + "/parquet_dataset";
76 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
77 // Create an Arrow Table
78 auto table = CreateTable();
79 // Write it into two Parquet files
80 auto output = filesystem->OpenOutputStream(base_path + "/data1.parquet").ValueOrDie();
81 ABORT_ON_FAILURE(parquet::arrow::WriteTable(
82 *table->Slice(0, 5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
83 output = filesystem->OpenOutputStream(base_path + "/data2.parquet").ValueOrDie();
84 ABORT_ON_FAILURE(parquet::arrow::WriteTable(
85 *table->Slice(5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
86 return base_path;
87}
(See the full example at bottom: A note on transactions & ACID guarantees.)
Dataset discovery#
A arrow::dataset::Dataset
object can be created using the various
arrow::dataset::DatasetFactory
objects. Here, we’ll use the
arrow::dataset::FileSystemDatasetFactory
, which can create a dataset
given a base directory path:
159// Read the whole dataset with the given format, without partitioning.
160std::shared_ptr<arrow::Table> ScanWholeDataset(
161 const std::shared_ptr<fs::FileSystem>& filesystem,
162 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
163 // Create a dataset by scanning the filesystem for files
164 fs::FileSelector selector;
165 selector.base_dir = base_dir;
166 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
167 ds::FileSystemFactoryOptions())
168 .ValueOrDie();
169 auto dataset = factory->Finish().ValueOrDie();
170 // Print out the fragments
171 for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
172 std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
173 }
174 // Read the entire dataset as a Table
175 auto scan_builder = dataset->NewScan().ValueOrDie();
176 auto scanner = scan_builder->Finish().ValueOrDie();
177 return scanner->ToTable().ValueOrDie();
178}
We’re also passing the filesystem to use and the file format to use for reading. This lets us choose between (for example) reading local files or files in Amazon S3, or between Parquet and CSV.
In addition to searching a base directory, we can list file paths manually.
Creating a arrow::dataset::Dataset
does not begin reading the data
itself. It only crawls the directory to find all the files (if needed), which can
be retrieved with arrow::dataset::FileSystemDataset::files()
:
// Print out the files crawled (only for FileSystemDataset)
for (const auto& filename : dataset->files()) {
std::cout << filename << std::endl;
}
…and infers the dataset’s schema (by default from the first file):
std::cout << dataset->schema()->ToString() << std::endl;
Using the arrow::dataset::Dataset::NewScan()
method, we can build a
arrow::dataset::Scanner
and read the dataset (or a portion of it) into
a arrow::Table
with the arrow::dataset::Scanner::ToTable()
method:
159// Read the whole dataset with the given format, without partitioning.
160std::shared_ptr<arrow::Table> ScanWholeDataset(
161 const std::shared_ptr<fs::FileSystem>& filesystem,
162 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
163 // Create a dataset by scanning the filesystem for files
164 fs::FileSelector selector;
165 selector.base_dir = base_dir;
166 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
167 ds::FileSystemFactoryOptions())
168 .ValueOrDie();
169 auto dataset = factory->Finish().ValueOrDie();
170 // Print out the fragments
171 for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
172 std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
173 }
174 // Read the entire dataset as a Table
175 auto scan_builder = dataset->NewScan().ValueOrDie();
176 auto scanner = scan_builder->Finish().ValueOrDie();
177 return scanner->ToTable().ValueOrDie();
178}
Note
Depending on the size of your dataset, this can require a lot of memory; see Filtering data below on filtering/projecting.
Reading different file formats#
The above examples use Parquet files on local disk, but the Dataset API provides a consistent interface across multiple file formats and filesystems. (See Reading from cloud storage for more information on the latter.) Currently, Parquet, ORC, Feather / Arrow IPC, and CSV file formats are supported; more formats are planned in the future.
If we save the table as Feather files instead of Parquet files:
91// Set up a dataset by writing two Feather files.
92std::string CreateExampleFeatherDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
93 const std::string& root_path) {
94 auto base_path = root_path + "/feather_dataset";
95 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
96 // Create an Arrow Table
97 auto table = CreateTable();
98 // Write it into two Feather files
99 auto output = filesystem->OpenOutputStream(base_path + "/data1.feather").ValueOrDie();
100 auto writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
101 ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(0, 5)));
102 ABORT_ON_FAILURE(writer->Close());
103 output = filesystem->OpenOutputStream(base_path + "/data2.feather").ValueOrDie();
104 writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
105 ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(5)));
106 ABORT_ON_FAILURE(writer->Close());
107 return base_path;
108}
…then we can read the Feather file by passing an arrow::dataset::IpcFileFormat
:
auto format = std::make_shared<ds::ParquetFileFormat>();
// ...
auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
.ValueOrDie();
Customizing file formats#
arrow::dataset::FileFormat
objects have properties that control how
files are read. For example:
auto format = std::make_shared<ds::ParquetFileFormat>();
format->reader_options.dict_columns.insert("a");
Will configure column "a"
to be dictionary-encoded when read. Similarly,
setting arrow::dataset::CsvFileFormat::parse_options
lets us change
things like reading comma-separated or tab-separated data.
Additionally, passing an arrow::dataset::FragmentScanOptions
to
arrow::dataset::ScannerBuilder::FragmentScanOptions()
offers fine-grained
control over data scanning. For example, for CSV files, we can change what values
are converted into Boolean true and false at scan time.
Filtering data#
So far, we’ve been reading the entire dataset, but if we need only a subset of the
data, this can waste time or memory reading data we don’t need. The
arrow::dataset::Scanner
offers control over what data to read.
In this snippet, we use arrow::dataset::ScannerBuilder::Project()
to select
which columns to read:
182// Read a dataset, but select only column "b" and only rows where b < 4.
183//
184// This is useful when you only want a few columns from a dataset. Where possible,
185// Datasets will push down the column selection such that less work is done.
186std::shared_ptr<arrow::Table> FilterAndSelectDataset(
187 const std::shared_ptr<fs::FileSystem>& filesystem,
188 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
189 fs::FileSelector selector;
190 selector.base_dir = base_dir;
191 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
192 ds::FileSystemFactoryOptions())
193 .ValueOrDie();
194 auto dataset = factory->Finish().ValueOrDie();
195 // Read specified columns with a row filter
196 auto scan_builder = dataset->NewScan().ValueOrDie();
197 ABORT_ON_FAILURE(scan_builder->Project({"b"}));
198 ABORT_ON_FAILURE(scan_builder->Filter(cp::less(cp::field_ref("b"), cp::literal(4))));
199 auto scanner = scan_builder->Finish().ValueOrDie();
200 return scanner->ToTable().ValueOrDie();
201}
Some formats, such as Parquet, can reduce I/O costs here by reading only the specified columns from the filesystem.
A filter can be provided with arrow::dataset::ScannerBuilder::Filter()
, so
that rows which do not match the filter predicate will not be included in the
returned table. Again, some formats, such as Parquet, can use this filter to
reduce the amount of I/O needed.
182// Read a dataset, but select only column "b" and only rows where b < 4.
183//
184// This is useful when you only want a few columns from a dataset. Where possible,
185// Datasets will push down the column selection such that less work is done.
186std::shared_ptr<arrow::Table> FilterAndSelectDataset(
187 const std::shared_ptr<fs::FileSystem>& filesystem,
188 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
189 fs::FileSelector selector;
190 selector.base_dir = base_dir;
191 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
192 ds::FileSystemFactoryOptions())
193 .ValueOrDie();
194 auto dataset = factory->Finish().ValueOrDie();
195 // Read specified columns with a row filter
196 auto scan_builder = dataset->NewScan().ValueOrDie();
197 ABORT_ON_FAILURE(scan_builder->Project({"b"}));
198 ABORT_ON_FAILURE(scan_builder->Filter(cp::less(cp::field_ref("b"), cp::literal(4))));
199 auto scanner = scan_builder->Finish().ValueOrDie();
200 return scanner->ToTable().ValueOrDie();
201}
Projecting columns#
In addition to selecting columns, arrow::dataset::ScannerBuilder::Project()
can also be used for more complex projections, such as renaming columns, casting
them to other types, and even deriving new columns based on evaluating
expressions.
In this case, we pass a vector of expressions used to construct column values and a vector of names for the columns:
205// Read a dataset, but with column projection.
206//
207// This is useful to derive new columns from existing data. For example, here we
208// demonstrate casting a column to a different type, and turning a numeric column into a
209// boolean column based on a predicate. You could also rename columns or perform
210// computations involving multiple columns.
211std::shared_ptr<arrow::Table> ProjectDataset(
212 const std::shared_ptr<fs::FileSystem>& filesystem,
213 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
214 fs::FileSelector selector;
215 selector.base_dir = base_dir;
216 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
217 ds::FileSystemFactoryOptions())
218 .ValueOrDie();
219 auto dataset = factory->Finish().ValueOrDie();
220 // Read specified columns with a row filter
221 auto scan_builder = dataset->NewScan().ValueOrDie();
222 ABORT_ON_FAILURE(scan_builder->Project(
223 {
224 // Leave column "a" as-is.
225 cp::field_ref("a"),
226 // Cast column "b" to float32.
227 cp::call("cast", {cp::field_ref("b")},
228 arrow::compute::CastOptions::Safe(arrow::float32())),
229 // Derive a boolean column from "c".
230 cp::equal(cp::field_ref("c"), cp::literal(1)),
231 },
232 {"a_renamed", "b_as_float32", "c_1"}));
233 auto scanner = scan_builder->Finish().ValueOrDie();
234 return scanner->ToTable().ValueOrDie();
235}
This also determines the column selection; only the given columns will be present in the resulting table. If you want to include a derived column in addition to the existing columns, you can build up the expressions from the dataset schema:
239// Read a dataset, but with column projection.
240//
241// This time, we read all original columns plus one derived column. This simply combines
242// the previous two examples: selecting a subset of columns by name, and deriving new
243// columns with an expression.
244std::shared_ptr<arrow::Table> SelectAndProjectDataset(
245 const std::shared_ptr<fs::FileSystem>& filesystem,
246 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
247 fs::FileSelector selector;
248 selector.base_dir = base_dir;
249 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
250 ds::FileSystemFactoryOptions())
251 .ValueOrDie();
252 auto dataset = factory->Finish().ValueOrDie();
253 // Read specified columns with a row filter
254 auto scan_builder = dataset->NewScan().ValueOrDie();
255 std::vector<std::string> names;
256 std::vector<cp::Expression> exprs;
257 // Read all the original columns.
258 for (const auto& field : dataset->schema()->fields()) {
259 names.push_back(field->name());
260 exprs.push_back(cp::field_ref(field->name()));
261 }
262 // Also derive a new column.
263 names.emplace_back("b_large");
264 exprs.push_back(cp::greater(cp::field_ref("b"), cp::literal(1)));
265 ABORT_ON_FAILURE(scan_builder->Project(exprs, names));
266 auto scanner = scan_builder->Finish().ValueOrDie();
267 return scanner->ToTable().ValueOrDie();
268}
Note
When combining filters and projections, Arrow will determine all necessary columns to read. For instance, if you filter on a column that isn’t ultimately selected, Arrow will still read the column to evaluate the filter.
Reading and writing partitioned data#
So far, we’ve been working with datasets consisting of flat directories with files. Oftentimes, a dataset will have one or more columns that are frequently filtered on. Instead of having to read and then filter the data, by organizing the files into a nested directory structure, we can define a partitioned dataset, where sub-directory names hold information about which subset of the data is stored in that directory. Then, we can more efficiently filter data by using that information to avoid loading files that don’t match the filter.
For example, a dataset partitioned by year and month may have the following layout:
dataset_name/
year=2007/
month=01/
data0.parquet
data1.parquet
...
month=02/
data0.parquet
data1.parquet
...
month=03/
...
year=2008/
month=01/
...
...
The above partitioning scheme is using “/key=value/” directory names, as found in
Apache Hive. Under this convention, the file at
dataset_name/year=2007/month=01/data0.parquet
contains only data for which
year == 2007
and month == 01
.
Let’s create a small partitioned dataset. For this, we’ll use Arrow’s dataset writing functionality.
112// Set up a dataset by writing files with partitioning
113std::string CreateExampleParquetHivePartitionedDataset(
114 const std::shared_ptr<fs::FileSystem>& filesystem, const std::string& root_path) {
115 auto base_path = root_path + "/parquet_dataset";
116 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
117 // Create an Arrow Table
118 auto schema = arrow::schema(
119 {arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
120 arrow::field("c", arrow::int64()), arrow::field("part", arrow::utf8())});
121 std::vector<std::shared_ptr<arrow::Array>> arrays(4);
122 arrow::NumericBuilder<arrow::Int64Type> builder;
123 ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
124 ABORT_ON_FAILURE(builder.Finish(&arrays[0]));
125 builder.Reset();
126 ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
127 ABORT_ON_FAILURE(builder.Finish(&arrays[1]));
128 builder.Reset();
129 ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
130 ABORT_ON_FAILURE(builder.Finish(&arrays[2]));
131 arrow::StringBuilder string_builder;
132 ABORT_ON_FAILURE(
133 string_builder.AppendValues({"a", "a", "a", "a", "a", "b", "b", "b", "b", "b"}));
134 ABORT_ON_FAILURE(string_builder.Finish(&arrays[3]));
135 auto table = arrow::Table::Make(schema, arrays);
136 // Write it using Datasets
137 auto dataset = std::make_shared<ds::InMemoryDataset>(table);
138 auto scanner_builder = dataset->NewScan().ValueOrDie();
139 auto scanner = scanner_builder->Finish().ValueOrDie();
140
141 // The partition schema determines which fields are part of the partitioning.
142 auto partition_schema = arrow::schema({arrow::field("part", arrow::utf8())});
143 // We'll use Hive-style partitioning, which creates directories with "key=value" pairs.
144 auto partitioning = std::make_shared<ds::HivePartitioning>(partition_schema);
145 // We'll write Parquet files.
146 auto format = std::make_shared<ds::ParquetFileFormat>();
147 ds::FileSystemDatasetWriteOptions write_options;
148 write_options.file_write_options = format->DefaultWriteOptions();
149 write_options.filesystem = filesystem;
150 write_options.base_dir = base_path;
151 write_options.partitioning = partitioning;
152 write_options.basename_template = "part{i}.parquet";
153 ABORT_ON_FAILURE(ds::FileSystemDataset::Write(write_options, scanner));
154 return base_path;
155}
The above created a directory with two subdirectories (“part=a” and “part=b”), and the Parquet files written in those directories no longer include the “part” column.
Reading this dataset, we now specify that the dataset should use a Hive-like partitioning scheme:
272// Read an entire dataset, but with partitioning information.
273std::shared_ptr<arrow::Table> ScanPartitionedDataset(
274 const std::shared_ptr<fs::FileSystem>& filesystem,
275 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
276 fs::FileSelector selector;
277 selector.base_dir = base_dir;
278 selector.recursive = true; // Make sure to search subdirectories
279 ds::FileSystemFactoryOptions options;
280 // We'll use Hive-style partitioning. We'll let Arrow Datasets infer the partition
281 // schema.
282 options.partitioning = ds::HivePartitioning::MakeFactory();
283 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
284 .ValueOrDie();
285 auto dataset = factory->Finish().ValueOrDie();
286 // Print out the fragments
287 for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
288 std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
289 std::cout << "Partition expression: "
290 << (*fragment)->partition_expression().ToString() << std::endl;
291 }
292 auto scan_builder = dataset->NewScan().ValueOrDie();
293 auto scanner = scan_builder->Finish().ValueOrDie();
294 return scanner->ToTable().ValueOrDie();
295}
Although the partition fields are not included in the actual Parquet files, they will be added back to the resulting table when scanning this dataset:
$ ./debug/dataset_documentation_example file:///tmp parquet_hive partitioned
Found fragment: /tmp/parquet_dataset/part=a/part0.parquet
Partition expression: (part == "a")
Found fragment: /tmp/parquet_dataset/part=b/part1.parquet
Partition expression: (part == "b")
Read 20 rows
a: int64
-- field metadata --
PARQUET:field_id: '1'
b: double
-- field metadata --
PARQUET:field_id: '2'
c: int64
-- field metadata --
PARQUET:field_id: '3'
part: string
----
# snip...
We can now filter on the partition keys, which avoids loading files altogether if they do not match the filter:
299// Read an entire dataset, but with partitioning information. Also, filter the dataset on
300// the partition values.
301std::shared_ptr<arrow::Table> FilterPartitionedDataset(
302 const std::shared_ptr<fs::FileSystem>& filesystem,
303 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
304 fs::FileSelector selector;
305 selector.base_dir = base_dir;
306 selector.recursive = true;
307 ds::FileSystemFactoryOptions options;
308 options.partitioning = ds::HivePartitioning::MakeFactory();
309 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
310 .ValueOrDie();
311 auto dataset = factory->Finish().ValueOrDie();
312 auto scan_builder = dataset->NewScan().ValueOrDie();
313 // Filter based on the partition values. This will mean that we won't even read the
314 // files whose partition expressions don't match the filter.
315 ABORT_ON_FAILURE(
316 scan_builder->Filter(cp::equal(cp::field_ref("part"), cp::literal("b"))));
317 auto scanner = scan_builder->Finish().ValueOrDie();
318 return scanner->ToTable().ValueOrDie();
319}
Different partitioning schemes#
The above example uses a Hive-like directory scheme, such as “/year=2009/month=11/day=15”. We specified this by passing the Hive partitioning factory. In this case, the types of the partition keys are inferred from the file paths.
It is also possible to directly construct the partitioning and explicitly define the schema of the partition keys. For example:
auto part = std::make_shared<ds::HivePartitioning>(arrow::schema({
arrow::field("year", arrow::int16()),
arrow::field("month", arrow::int8()),
arrow::field("day", arrow::int32())
}));
Arrow supports another partitioning scheme, “directory partitioning”, where the segments in the file path represent the values of the partition keys without including the name (the field names are implicit in the segment’s index). For example, given field names “year”, “month”, and “day”, one path might be “/2019/11/15”.
Since the names are not included in the file paths, these must be specified when constructing a directory partitioning:
auto part = ds::DirectoryPartitioning::MakeFactory({"year", "month", "day"});
Directory partitioning also supports providing a full schema rather than inferring types from file paths.
Partitioning performance considerations#
Partitioning datasets has two aspects that affect performance: it increases the number of files and it creates a directory structure around the files. Both of these have benefits as well as costs. Depending on the configuration and the size of your dataset, the costs can outweigh the benefits.
Because partitions split up the dataset into multiple files, partitioned datasets can be read and written with parallelism. However, each additional file adds a little overhead in processing for filesystem interaction. It also increases the overall dataset size since each file has some shared metadata. For example, each parquet file contains the schema and group-level statistics. The number of partitions is a floor for the number of files. If you partition a dataset by date with a year of data, you will have at least 365 files. If you further partition by another dimension with 1,000 unique values, you will have up to 365,000 files. This fine of partitioning often leads to small files that mostly consist of metadata.
Partitioned datasets create nested folder structures, and those allow us to prune which files are loaded in a scan. However, this adds overhead to discovering files in the dataset, as we’ll need to recursively “list directory” to find the data files. Too fine partitions can cause problems here: Partitioning a dataset by date for a years worth of data will require 365 list calls to find all the files; adding another column with cardinality 1,000 will make that 365,365 calls.
The most optimal partitioning layout will depend on your data, access patterns, and which systems will be reading the data. Most systems, including Arrow, should work across a range of file sizes and partitioning layouts, but there are extremes you should avoid. These guidelines can help avoid some known worst cases:
Avoid files smaller than 20MB and larger than 2GB.
Avoid partitioning layouts with more than 10,000 distinct partitions.
For file formats that have a notion of groups within a file, such as Parquet, similar guidelines apply. Row groups can provide parallelism when reading and allow data skipping based on statistics, but very small groups can cause metadata to be a significant portion of file size. Arrow’s file writer provides sensible defaults for group sizing in most cases.
Reading from other data sources#
Reading in-memory data#
If you already have data in memory that you’d like to use with the Datasets API
(e.g. to filter/project data, or to write it out to a filesystem), you can wrap it
in an arrow::dataset::InMemoryDataset
:
auto table = arrow::Table::FromRecordBatches(...);
auto dataset = std::make_shared<arrow::dataset::InMemoryDataset>(std::move(table));
// Scan the dataset, filter, it, etc.
auto scanner_builder = dataset->NewScan();
In the example, we used the InMemoryDataset to write our example data to local disk which was used in the rest of the example:
112// Set up a dataset by writing files with partitioning
113std::string CreateExampleParquetHivePartitionedDataset(
114 const std::shared_ptr<fs::FileSystem>& filesystem, const std::string& root_path) {
115 auto base_path = root_path + "/parquet_dataset";
116 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
117 // Create an Arrow Table
118 auto schema = arrow::schema(
119 {arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
120 arrow::field("c", arrow::int64()), arrow::field("part", arrow::utf8())});
121 std::vector<std::shared_ptr<arrow::Array>> arrays(4);
122 arrow::NumericBuilder<arrow::Int64Type> builder;
123 ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
124 ABORT_ON_FAILURE(builder.Finish(&arrays[0]));
125 builder.Reset();
126 ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
127 ABORT_ON_FAILURE(builder.Finish(&arrays[1]));
128 builder.Reset();
129 ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
130 ABORT_ON_FAILURE(builder.Finish(&arrays[2]));
131 arrow::StringBuilder string_builder;
132 ABORT_ON_FAILURE(
133 string_builder.AppendValues({"a", "a", "a", "a", "a", "b", "b", "b", "b", "b"}));
134 ABORT_ON_FAILURE(string_builder.Finish(&arrays[3]));
135 auto table = arrow::Table::Make(schema, arrays);
136 // Write it using Datasets
137 auto dataset = std::make_shared<ds::InMemoryDataset>(table);
138 auto scanner_builder = dataset->NewScan().ValueOrDie();
139 auto scanner = scanner_builder->Finish().ValueOrDie();
140
141 // The partition schema determines which fields are part of the partitioning.
142 auto partition_schema = arrow::schema({arrow::field("part", arrow::utf8())});
143 // We'll use Hive-style partitioning, which creates directories with "key=value" pairs.
144 auto partitioning = std::make_shared<ds::HivePartitioning>(partition_schema);
145 // We'll write Parquet files.
146 auto format = std::make_shared<ds::ParquetFileFormat>();
147 ds::FileSystemDatasetWriteOptions write_options;
148 write_options.file_write_options = format->DefaultWriteOptions();
149 write_options.filesystem = filesystem;
150 write_options.base_dir = base_path;
151 write_options.partitioning = partitioning;
152 write_options.basename_template = "part{i}.parquet";
153 ABORT_ON_FAILURE(ds::FileSystemDataset::Write(write_options, scanner));
154 return base_path;
155}
Reading from cloud storage#
In addition to local files, Arrow Datasets also support reading from cloud storage systems, such as Amazon S3, by passing a different filesystem.
See the filesystem docs for more details on the available filesystems.
A note on transactions & ACID guarantees#
The dataset API offers no transaction support or any ACID guarantees. This affects both reading and writing. Concurrent reads are fine. Concurrent writes or writes concurring with reads may have unexpected behavior. Various approaches can be used to avoid operating on the same files such as using a unique basename template for each writer, a temporary directory for new files, or separate storage of the file list instead of relying on directory discovery.
Unexpectedly killing the process while a write is in progress can leave the system in an inconsistent state. Write calls generally return as soon as the bytes to be written have been completely delivered to the OS page cache. Even though a write operation has been completed it is possible for part of the file to be lost if there is a sudden power loss immediately after the write call.
Most file formats have magic numbers which are written at the end. This means a partial file write can safely be detected and discarded. The CSV file format does not have any such concept and a partially written CSV file may be detected as valid.
Full Example#
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18// This example showcases various ways to work with Datasets. It's
19// intended to be paired with the documentation.
20
21#include <arrow/api.h>
22#include <arrow/compute/cast.h>
23#include <arrow/compute/exec/expression.h>
24#include <arrow/dataset/dataset.h>
25#include <arrow/dataset/discovery.h>
26#include <arrow/dataset/file_base.h>
27#include <arrow/dataset/file_ipc.h>
28#include <arrow/dataset/file_parquet.h>
29#include <arrow/dataset/scanner.h>
30#include <arrow/filesystem/filesystem.h>
31#include <arrow/ipc/writer.h>
32#include <arrow/util/iterator.h>
33#include <parquet/arrow/writer.h>
34
35#include <iostream>
36#include <vector>
37
38namespace ds = arrow::dataset;
39namespace fs = arrow::fs;
40namespace cp = arrow::compute;
41
42#define ABORT_ON_FAILURE(expr) \
43 do { \
44 arrow::Status status_ = (expr); \
45 if (!status_.ok()) { \
46 std::cerr << status_.message() << std::endl; \
47 abort(); \
48 } \
49 } while (0);
50
51// (Doc section: Reading Datasets)
52// Generate some data for the rest of this example.
53std::shared_ptr<arrow::Table> CreateTable() {
54 auto schema =
55 arrow::schema({arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
56 arrow::field("c", arrow::int64())});
57 std::shared_ptr<arrow::Array> array_a;
58 std::shared_ptr<arrow::Array> array_b;
59 std::shared_ptr<arrow::Array> array_c;
60 arrow::NumericBuilder<arrow::Int64Type> builder;
61 ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
62 ABORT_ON_FAILURE(builder.Finish(&array_a));
63 builder.Reset();
64 ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
65 ABORT_ON_FAILURE(builder.Finish(&array_b));
66 builder.Reset();
67 ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
68 ABORT_ON_FAILURE(builder.Finish(&array_c));
69 return arrow::Table::Make(schema, {array_a, array_b, array_c});
70}
71
72// Set up a dataset by writing two Parquet files.
73std::string CreateExampleParquetDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
74 const std::string& root_path) {
75 auto base_path = root_path + "/parquet_dataset";
76 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
77 // Create an Arrow Table
78 auto table = CreateTable();
79 // Write it into two Parquet files
80 auto output = filesystem->OpenOutputStream(base_path + "/data1.parquet").ValueOrDie();
81 ABORT_ON_FAILURE(parquet::arrow::WriteTable(
82 *table->Slice(0, 5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
83 output = filesystem->OpenOutputStream(base_path + "/data2.parquet").ValueOrDie();
84 ABORT_ON_FAILURE(parquet::arrow::WriteTable(
85 *table->Slice(5), arrow::default_memory_pool(), output, /*chunk_size=*/2048));
86 return base_path;
87}
88// (Doc section: Reading Datasets)
89
90// (Doc section: Reading different file formats)
91// Set up a dataset by writing two Feather files.
92std::string CreateExampleFeatherDataset(const std::shared_ptr<fs::FileSystem>& filesystem,
93 const std::string& root_path) {
94 auto base_path = root_path + "/feather_dataset";
95 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
96 // Create an Arrow Table
97 auto table = CreateTable();
98 // Write it into two Feather files
99 auto output = filesystem->OpenOutputStream(base_path + "/data1.feather").ValueOrDie();
100 auto writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
101 ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(0, 5)));
102 ABORT_ON_FAILURE(writer->Close());
103 output = filesystem->OpenOutputStream(base_path + "/data2.feather").ValueOrDie();
104 writer = arrow::ipc::MakeFileWriter(output.get(), table->schema()).ValueOrDie();
105 ABORT_ON_FAILURE(writer->WriteTable(*table->Slice(5)));
106 ABORT_ON_FAILURE(writer->Close());
107 return base_path;
108}
109// (Doc section: Reading different file formats)
110
111// (Doc section: Reading and writing partitioned data)
112// Set up a dataset by writing files with partitioning
113std::string CreateExampleParquetHivePartitionedDataset(
114 const std::shared_ptr<fs::FileSystem>& filesystem, const std::string& root_path) {
115 auto base_path = root_path + "/parquet_dataset";
116 ABORT_ON_FAILURE(filesystem->CreateDir(base_path));
117 // Create an Arrow Table
118 auto schema = arrow::schema(
119 {arrow::field("a", arrow::int64()), arrow::field("b", arrow::int64()),
120 arrow::field("c", arrow::int64()), arrow::field("part", arrow::utf8())});
121 std::vector<std::shared_ptr<arrow::Array>> arrays(4);
122 arrow::NumericBuilder<arrow::Int64Type> builder;
123 ABORT_ON_FAILURE(builder.AppendValues({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
124 ABORT_ON_FAILURE(builder.Finish(&arrays[0]));
125 builder.Reset();
126 ABORT_ON_FAILURE(builder.AppendValues({9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
127 ABORT_ON_FAILURE(builder.Finish(&arrays[1]));
128 builder.Reset();
129 ABORT_ON_FAILURE(builder.AppendValues({1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
130 ABORT_ON_FAILURE(builder.Finish(&arrays[2]));
131 arrow::StringBuilder string_builder;
132 ABORT_ON_FAILURE(
133 string_builder.AppendValues({"a", "a", "a", "a", "a", "b", "b", "b", "b", "b"}));
134 ABORT_ON_FAILURE(string_builder.Finish(&arrays[3]));
135 auto table = arrow::Table::Make(schema, arrays);
136 // Write it using Datasets
137 auto dataset = std::make_shared<ds::InMemoryDataset>(table);
138 auto scanner_builder = dataset->NewScan().ValueOrDie();
139 auto scanner = scanner_builder->Finish().ValueOrDie();
140
141 // The partition schema determines which fields are part of the partitioning.
142 auto partition_schema = arrow::schema({arrow::field("part", arrow::utf8())});
143 // We'll use Hive-style partitioning, which creates directories with "key=value" pairs.
144 auto partitioning = std::make_shared<ds::HivePartitioning>(partition_schema);
145 // We'll write Parquet files.
146 auto format = std::make_shared<ds::ParquetFileFormat>();
147 ds::FileSystemDatasetWriteOptions write_options;
148 write_options.file_write_options = format->DefaultWriteOptions();
149 write_options.filesystem = filesystem;
150 write_options.base_dir = base_path;
151 write_options.partitioning = partitioning;
152 write_options.basename_template = "part{i}.parquet";
153 ABORT_ON_FAILURE(ds::FileSystemDataset::Write(write_options, scanner));
154 return base_path;
155}
156// (Doc section: Reading and writing partitioned data)
157
158// (Doc section: Dataset discovery)
159// Read the whole dataset with the given format, without partitioning.
160std::shared_ptr<arrow::Table> ScanWholeDataset(
161 const std::shared_ptr<fs::FileSystem>& filesystem,
162 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
163 // Create a dataset by scanning the filesystem for files
164 fs::FileSelector selector;
165 selector.base_dir = base_dir;
166 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
167 ds::FileSystemFactoryOptions())
168 .ValueOrDie();
169 auto dataset = factory->Finish().ValueOrDie();
170 // Print out the fragments
171 for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
172 std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
173 }
174 // Read the entire dataset as a Table
175 auto scan_builder = dataset->NewScan().ValueOrDie();
176 auto scanner = scan_builder->Finish().ValueOrDie();
177 return scanner->ToTable().ValueOrDie();
178}
179// (Doc section: Dataset discovery)
180
181// (Doc section: Filtering data)
182// Read a dataset, but select only column "b" and only rows where b < 4.
183//
184// This is useful when you only want a few columns from a dataset. Where possible,
185// Datasets will push down the column selection such that less work is done.
186std::shared_ptr<arrow::Table> FilterAndSelectDataset(
187 const std::shared_ptr<fs::FileSystem>& filesystem,
188 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
189 fs::FileSelector selector;
190 selector.base_dir = base_dir;
191 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
192 ds::FileSystemFactoryOptions())
193 .ValueOrDie();
194 auto dataset = factory->Finish().ValueOrDie();
195 // Read specified columns with a row filter
196 auto scan_builder = dataset->NewScan().ValueOrDie();
197 ABORT_ON_FAILURE(scan_builder->Project({"b"}));
198 ABORT_ON_FAILURE(scan_builder->Filter(cp::less(cp::field_ref("b"), cp::literal(4))));
199 auto scanner = scan_builder->Finish().ValueOrDie();
200 return scanner->ToTable().ValueOrDie();
201}
202// (Doc section: Filtering data)
203
204// (Doc section: Projecting columns)
205// Read a dataset, but with column projection.
206//
207// This is useful to derive new columns from existing data. For example, here we
208// demonstrate casting a column to a different type, and turning a numeric column into a
209// boolean column based on a predicate. You could also rename columns or perform
210// computations involving multiple columns.
211std::shared_ptr<arrow::Table> ProjectDataset(
212 const std::shared_ptr<fs::FileSystem>& filesystem,
213 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
214 fs::FileSelector selector;
215 selector.base_dir = base_dir;
216 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
217 ds::FileSystemFactoryOptions())
218 .ValueOrDie();
219 auto dataset = factory->Finish().ValueOrDie();
220 // Read specified columns with a row filter
221 auto scan_builder = dataset->NewScan().ValueOrDie();
222 ABORT_ON_FAILURE(scan_builder->Project(
223 {
224 // Leave column "a" as-is.
225 cp::field_ref("a"),
226 // Cast column "b" to float32.
227 cp::call("cast", {cp::field_ref("b")},
228 arrow::compute::CastOptions::Safe(arrow::float32())),
229 // Derive a boolean column from "c".
230 cp::equal(cp::field_ref("c"), cp::literal(1)),
231 },
232 {"a_renamed", "b_as_float32", "c_1"}));
233 auto scanner = scan_builder->Finish().ValueOrDie();
234 return scanner->ToTable().ValueOrDie();
235}
236// (Doc section: Projecting columns)
237
238// (Doc section: Projecting columns #2)
239// Read a dataset, but with column projection.
240//
241// This time, we read all original columns plus one derived column. This simply combines
242// the previous two examples: selecting a subset of columns by name, and deriving new
243// columns with an expression.
244std::shared_ptr<arrow::Table> SelectAndProjectDataset(
245 const std::shared_ptr<fs::FileSystem>& filesystem,
246 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
247 fs::FileSelector selector;
248 selector.base_dir = base_dir;
249 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format,
250 ds::FileSystemFactoryOptions())
251 .ValueOrDie();
252 auto dataset = factory->Finish().ValueOrDie();
253 // Read specified columns with a row filter
254 auto scan_builder = dataset->NewScan().ValueOrDie();
255 std::vector<std::string> names;
256 std::vector<cp::Expression> exprs;
257 // Read all the original columns.
258 for (const auto& field : dataset->schema()->fields()) {
259 names.push_back(field->name());
260 exprs.push_back(cp::field_ref(field->name()));
261 }
262 // Also derive a new column.
263 names.emplace_back("b_large");
264 exprs.push_back(cp::greater(cp::field_ref("b"), cp::literal(1)));
265 ABORT_ON_FAILURE(scan_builder->Project(exprs, names));
266 auto scanner = scan_builder->Finish().ValueOrDie();
267 return scanner->ToTable().ValueOrDie();
268}
269// (Doc section: Projecting columns #2)
270
271// (Doc section: Reading and writing partitioned data #2)
272// Read an entire dataset, but with partitioning information.
273std::shared_ptr<arrow::Table> ScanPartitionedDataset(
274 const std::shared_ptr<fs::FileSystem>& filesystem,
275 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
276 fs::FileSelector selector;
277 selector.base_dir = base_dir;
278 selector.recursive = true; // Make sure to search subdirectories
279 ds::FileSystemFactoryOptions options;
280 // We'll use Hive-style partitioning. We'll let Arrow Datasets infer the partition
281 // schema.
282 options.partitioning = ds::HivePartitioning::MakeFactory();
283 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
284 .ValueOrDie();
285 auto dataset = factory->Finish().ValueOrDie();
286 // Print out the fragments
287 for (const auto& fragment : dataset->GetFragments().ValueOrDie()) {
288 std::cout << "Found fragment: " << (*fragment)->ToString() << std::endl;
289 std::cout << "Partition expression: "
290 << (*fragment)->partition_expression().ToString() << std::endl;
291 }
292 auto scan_builder = dataset->NewScan().ValueOrDie();
293 auto scanner = scan_builder->Finish().ValueOrDie();
294 return scanner->ToTable().ValueOrDie();
295}
296// (Doc section: Reading and writing partitioned data #2)
297
298// (Doc section: Reading and writing partitioned data #3)
299// Read an entire dataset, but with partitioning information. Also, filter the dataset on
300// the partition values.
301std::shared_ptr<arrow::Table> FilterPartitionedDataset(
302 const std::shared_ptr<fs::FileSystem>& filesystem,
303 const std::shared_ptr<ds::FileFormat>& format, const std::string& base_dir) {
304 fs::FileSelector selector;
305 selector.base_dir = base_dir;
306 selector.recursive = true;
307 ds::FileSystemFactoryOptions options;
308 options.partitioning = ds::HivePartitioning::MakeFactory();
309 auto factory = ds::FileSystemDatasetFactory::Make(filesystem, selector, format, options)
310 .ValueOrDie();
311 auto dataset = factory->Finish().ValueOrDie();
312 auto scan_builder = dataset->NewScan().ValueOrDie();
313 // Filter based on the partition values. This will mean that we won't even read the
314 // files whose partition expressions don't match the filter.
315 ABORT_ON_FAILURE(
316 scan_builder->Filter(cp::equal(cp::field_ref("part"), cp::literal("b"))));
317 auto scanner = scan_builder->Finish().ValueOrDie();
318 return scanner->ToTable().ValueOrDie();
319}
320// (Doc section: Reading and writing partitioned data #3)
321
322int main(int argc, char** argv) {
323 if (argc < 3) {
324 // Fake success for CI purposes.
325 return EXIT_SUCCESS;
326 }
327
328 std::string uri = argv[1];
329 std::string format_name = argv[2];
330 std::string mode = argc > 3 ? argv[3] : "no_filter";
331 std::string root_path;
332 auto fs = fs::FileSystemFromUri(uri, &root_path).ValueOrDie();
333
334 std::string base_path;
335 std::shared_ptr<ds::FileFormat> format;
336 if (format_name == "feather") {
337 format = std::make_shared<ds::IpcFileFormat>();
338 base_path = CreateExampleFeatherDataset(fs, root_path);
339 } else if (format_name == "parquet") {
340 format = std::make_shared<ds::ParquetFileFormat>();
341 base_path = CreateExampleParquetDataset(fs, root_path);
342 } else if (format_name == "parquet_hive") {
343 format = std::make_shared<ds::ParquetFileFormat>();
344 base_path = CreateExampleParquetHivePartitionedDataset(fs, root_path);
345 } else {
346 std::cerr << "Unknown format: " << format_name << std::endl;
347 std::cerr << "Supported formats: feather, parquet, parquet_hive" << std::endl;
348 return EXIT_FAILURE;
349 }
350
351 std::shared_ptr<arrow::Table> table;
352 if (mode == "no_filter") {
353 table = ScanWholeDataset(fs, format, base_path);
354 } else if (mode == "filter") {
355 table = FilterAndSelectDataset(fs, format, base_path);
356 } else if (mode == "project") {
357 table = ProjectDataset(fs, format, base_path);
358 } else if (mode == "select_project") {
359 table = SelectAndProjectDataset(fs, format, base_path);
360 } else if (mode == "partitioned") {
361 table = ScanPartitionedDataset(fs, format, base_path);
362 } else if (mode == "filter_partitioned") {
363 table = FilterPartitionedDataset(fs, format, base_path);
364 } else {
365 std::cerr << "Unknown mode: " << mode << std::endl;
366 std::cerr
367 << "Supported modes: no_filter, filter, project, select_project, partitioned"
368 << std::endl;
369 return EXIT_FAILURE;
370 }
371 std::cout << "Read " << table->num_rows() << " rows" << std::endl;
372 std::cout << table->ToString() << std::endl;
373 return EXIT_SUCCESS;
374}