Dataset#
Interface#
-
class arrow::dataset::Fragment : public std::enable_shared_from_this<Fragment>#
A granular piece of a Dataset, such as an individual file.
A Fragment can be read/scanned separately from other fragments. It yields a collection of RecordBatches when scanned, encapsulated in one or more ScanTasks.
Note that Fragments have well defined physical schemas which are reconciled by the Datasets which contain them; these physical schemas may differ from a parent Dataset’s schema and the physical schemas of sibling Fragments.
Subclassed by arrow::dataset::FileFragment, arrow::dataset::InMemoryFragment
Public Functions
-
Result<std::shared_ptr<Schema>> ReadPhysicalSchema()#
Return the physical schema of the Fragment.
The physical schema is also called the writer schema. This method is blocking and may suffer from high latency filesystem. The schema is cached after being read once, or may be specified at construction.
An asynchronous version of Scan.
Count the number of rows in this fragment matching the filter using metadata only.
That is, this method may perform I/O, but will not load data.
If this is not possible, resolve with an empty optional. The fragment can perform I/O (e.g. to read metadata) before it deciding whether it can satisfy the request.
-
inline const compute::Expression &partition_expression() const#
An expression which evaluates to true for all data viewed by this Fragment.
-
Result<std::shared_ptr<Schema>> ReadPhysicalSchema()#
-
class arrow::dataset::Dataset : public std::enable_shared_from_this<Dataset>#
A container of zero or more Fragments.
A Dataset acts as a union of Fragments, e.g. files deeply nested in a directory. A Dataset has a schema to which Fragments must align during a scan operation. This is analogous to Avro’s reader and writer schema.
Subclassed by arrow::dataset::FileSystemDataset, arrow::dataset::InMemoryDataset, arrow::dataset::UnionDataset
Public Functions
-
Result<std::shared_ptr<ScannerBuilder>> NewScan()#
Begin to build a new Scan operation against this Dataset.
-
Result<FragmentIterator> GetFragments(compute::Expression predicate)#
GetFragments returns an iterator of Fragments given a predicate.
-
inline const compute::Expression &partition_expression() const#
An expression which evaluates to true for all data viewed by this Dataset.
May be null, which indicates no information is available.
Return a copy of this Dataset with a different schema.
The copy will view the same Fragments. If the new schema is not compatible with the original dataset’s schema then an error will be raised.
-
Result<std::shared_ptr<ScannerBuilder>> NewScan()#
Partitioning#
-
enum class SegmentEncoding : int8_t#
The encoding of partition segments.
Values:
-
enumerator None#
No encoding.
-
enumerator Uri#
Segment values are URL-encoded.
-
enumerator None#
-
static constexpr char kDefaultHiveNullFallback[] = "__HIVE_DEFAULT_PARTITION__"#
The default fallback used for null values in a Hive-style partitioning.
-
std::ostream &operator<<(std::ostream &os, SegmentEncoding segment_encoding)#
-
std::string StripPrefixAndFilename(const std::string &path, const std::string &prefix)#
Remove a prefix and the filename of a path.
e.g.,
StripPrefixAndFilename("/data/year=2019/c.txt", "/data") -> "year=2019"
-
std::vector<std::string> StripPrefixAndFilename(const std::vector<std::string> &paths, const std::string &prefix)#
Vector version of StripPrefixAndFilename.
-
std::vector<std::string> StripPrefixAndFilename(const std::vector<fs::FileInfo> &files, const std::string &prefix)#
Vector version of StripPrefixAndFilename.
-
class arrow::dataset::Partitioning#
- #include <arrow/dataset/partition.h>
Interface for parsing partition expressions from string partition identifiers.
For example, the identifier “foo=5” might be parsed to an equality expression between the “foo” field and the value 5.
Some partitionings may store the field names in a metadata store instead of in file paths, for example dataset_root/2009/11/… could be used when the partition fields are “year” and “month”
Paths are consumed from left to right. Paths must be relative to the root of a partition; path prefixes must be removed before passing the path to a partitioning for parsing.
Subclassed by arrow::dataset::FunctionPartitioning, arrow::dataset::KeyValuePartitioning
Public Functions
-
virtual std::string type_name() const = 0#
The name identifying the kind of partitioning.
-
virtual Result<compute::Expression> Parse(const std::string &path) const = 0#
Parse a path into a partition expression.
Public Static Functions
-
static std::shared_ptr<Partitioning> Default()#
A default Partitioning which always yields scalar(true)
-
struct PartitionedBatches#
- #include <arrow/dataset/partition.h>
If the input batch shares any fields with this partitioning, produce sub-batches which satisfy mutually exclusive Expressions.
-
struct PartitionPathFormat#
- #include <arrow/dataset/partition.h>
-
virtual std::string type_name() const = 0#
-
struct arrow::dataset::KeyValuePartitioningOptions#
- #include <arrow/dataset/partition.h>
Options for key-value based partitioning (hive/directory).
Subclassed by arrow::dataset::HivePartitioningOptions
Public Members
-
SegmentEncoding segment_encoding = SegmentEncoding::Uri#
After splitting a path into components, decode the path components before parsing according to this scheme.
-
SegmentEncoding segment_encoding = SegmentEncoding::Uri#
-
struct arrow::dataset::PartitioningFactoryOptions#
- #include <arrow/dataset/partition.h>
Options for inferring a partitioning.
Subclassed by arrow::dataset::HivePartitioningFactoryOptions
Public Members
-
bool infer_dictionary = false#
When inferring a schema for partition fields, yield dictionary encoded types instead of plain.
This can be more efficient when materializing virtual columns, and Expressions parsed by the finished Partitioning will include dictionaries of all unique inspected values for each field.
-
std::shared_ptr<Schema> schema#
Optionally, an expected schema can be provided, in which case inference will only check discovered fields against the schema and update internal state (such as dictionaries).
-
SegmentEncoding segment_encoding = SegmentEncoding::Uri#
After splitting a path into components, decode the path components before parsing according to this scheme.
-
bool infer_dictionary = false#
-
struct arrow::dataset::HivePartitioningFactoryOptions : public arrow::dataset::PartitioningFactoryOptions#
- #include <arrow/dataset/partition.h>
Options for inferring a hive-style partitioning.
Public Members
-
std::string null_fallback#
The hive partitioning scheme maps null to a hard coded fallback string.
-
std::string null_fallback#
-
class arrow::dataset::PartitioningFactory#
- #include <arrow/dataset/partition.h>
PartitioningFactory provides creation of a partitioning when the specific schema must be inferred from available paths (no explicit schema is known).
Public Functions
-
virtual std::string type_name() const = 0#
The name identifying the kind of partitioning.
-
virtual Result<std::shared_ptr<Schema>> Inspect(const std::vector<std::string> &paths) = 0#
Get the schema for the resulting Partitioning.
This may reset internal state, for example dictionaries of unique representations.
Create a partitioning using the provided schema (fields may be dropped).
-
virtual std::string type_name() const = 0#
-
class arrow::dataset::KeyValuePartitioning : public arrow::dataset::Partitioning#
- #include <arrow/dataset/partition.h>
Subclass for the common case of a partitioning which yields an equality expression for each segment.
Subclassed by arrow::dataset::DirectoryPartitioning, arrow::dataset::FilenamePartitioning, arrow::dataset::HivePartitioning
Public Functions
-
virtual Result<compute::Expression> Parse(const std::string &path) const override#
Parse a path into a partition expression.
-
struct Key#
- #include <arrow/dataset/partition.h>
An unconverted equality expression consisting of a field name and the representation of a scalar value.
-
virtual Result<compute::Expression> Parse(const std::string &path) const override#
-
class arrow::dataset::DirectoryPartitioning : public arrow::dataset::KeyValuePartitioning#
- #include <arrow/dataset/partition.h>
DirectoryPartitioning parses one segment of a path for each field in its schema.
All fields are required, so paths passed to DirectoryPartitioning::Parse must contain segments for each field.
For example given schema<year:int16, month:int8> the path “/2009/11” would be parsed to (“year”_ == 2009 and “month”_ == 11)
Public Functions
If a field in schema is of dictionary type, the corresponding element of dictionaries must be contain the dictionary of values for that field.
-
inline virtual std::string type_name() const override#
The name identifying the kind of partitioning.
Public Static Functions
-
static std::shared_ptr<PartitioningFactory> MakeFactory(std::vector<std::string> field_names, PartitioningFactoryOptions = {})#
Create a factory for a directory partitioning.
- Parameters
field_names – [in] The names for the partition fields. Types will be inferred.
-
struct HivePartitioningOptions : public arrow::dataset::KeyValuePartitioningOptions#
- #include <arrow/dataset/partition.h>
-
class arrow::dataset::HivePartitioning : public arrow::dataset::KeyValuePartitioning#
- #include <arrow/dataset/partition.h>
Multi-level, directory based partitioning originating from Apache Hive with all data files stored in the leaf directories.
Data is partitioned by static values of a particular column in the schema. Partition keys are represented in the form $key=$value in directory names. Field order is ignored, as are missing or unrecognized field names.
For example given schema<year:int16, month:int8, day:int8> the path “/day=321/ignored=3.4/year=2009” parses to (“year”_ == 2009 and “day”_ == 321)
Public Functions
If a field in schema is of dictionary type, the corresponding element of dictionaries must be contain the dictionary of values for that field.
-
inline virtual std::string type_name() const override#
The name identifying the kind of partitioning.
Public Static Functions
-
static std::shared_ptr<PartitioningFactory> MakeFactory(HivePartitioningFactoryOptions = {})#
Create a factory for a hive partitioning.
-
class arrow::dataset::FunctionPartitioning : public arrow::dataset::Partitioning#
- #include <arrow/dataset/partition.h>
Implementation provided by lambda or other callable.
Public Functions
-
inline virtual std::string type_name() const override#
The name identifying the kind of partitioning.
-
inline virtual Result<compute::Expression> Parse(const std::string &path) const override#
Parse a path into a partition expression.
-
inline virtual std::string type_name() const override#
-
class arrow::dataset::FilenamePartitioning : public arrow::dataset::KeyValuePartitioning#
- #include <arrow/dataset/partition.h>
Public Functions
Construct a FilenamePartitioning from its components.
If a field in schema is of dictionary type, the corresponding element of dictionaries must be contain the dictionary of values for that field.
-
inline virtual std::string type_name() const override#
The name identifying the kind of partitioning.
Public Static Functions
-
static std::shared_ptr<PartitioningFactory> MakeFactory(std::vector<std::string> field_names, PartitioningFactoryOptions = {})#
Create a factory for a filename partitioning.
- Parameters
field_names – [in] The names for the partition fields. Types will be inferred.
-
class arrow::dataset::PartitioningOrFactory#
- #include <arrow/dataset/partition.h>
Either a Partitioning or a PartitioningFactory.
Public Functions
-
inline const std::shared_ptr<Partitioning> &partitioning() const#
The partitioning (if given).
-
inline const std::shared_ptr<PartitioningFactory> &factory() const#
The partition factory (if given).
-
inline const std::shared_ptr<Partitioning> &partitioning() const#
Dataset discovery/factories#
-
struct arrow::dataset::InspectOptions#
- #include <arrow/dataset/discovery.h>
Public Members
-
int fragments = 1#
Indicate how many fragments should be inspected to infer the unified dataset schema.
Limiting the number of fragments accessed improves the latency of the discovery process when dealing with a high number of fragments and/or high latency file systems.
The default value of
1
inspects the schema of the first (in no particular order) fragment only. If the dataset has a uniform schema for all fragments, this default is the optimal value. In order to inspect all fragments and robustly unify their potentially varying schemas, set this option tokInspectAllFragments
. A value of0
disables inspection of fragments altogether so only the partitioning schema will be inspected.
Public Static Attributes
-
static constexpr int kInspectAllFragments = -1#
See
fragments
property.
-
int fragments = 1#
-
struct arrow::dataset::FinishOptions#
- #include <arrow/dataset/discovery.h>
Public Members
-
std::shared_ptr<Schema> schema = NULLPTR#
Finalize the dataset with this given schema.
If the schema is not provided, infer the schema via the Inspect, see the
inspect_options
property.
-
InspectOptions inspect_options = {}#
If the schema is not provided, it will be discovered by passing the following options to
DatasetDiscovery::Inspect
.
-
std::shared_ptr<Schema> schema = NULLPTR#
-
class arrow::dataset::DatasetFactory#
- #include <arrow/dataset/discovery.h>
DatasetFactory provides a way to inspect/discover a Dataset’s expected schema before materializing said Dataset.
Subclassed by arrow::dataset::FileSystemDatasetFactory, arrow::dataset::ParquetDatasetFactory, arrow::dataset::UnionDatasetFactory
Public Functions
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) = 0#
Get the schemas of the Fragments and Partitioning.
-
Result<std::shared_ptr<Schema>> Inspect(InspectOptions options = {})#
Get unified schema for the resulting Dataset.
Create a Dataset with the given schema (see InspectOptions::schema)
-
virtual Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) = 0#
Create a Dataset with the given options.
-
inline const compute::Expression &root_partition() const#
Optional root partition for the resulting Dataset.
-
inline Status SetRootPartition(compute::Expression partition)#
Set the root partition for the resulting Dataset.
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) = 0#
Scanning#
-
using TaggedRecordBatchGenerator = std::function<Future<TaggedRecordBatch>()>#
-
using TaggedRecordBatchIterator = Iterator<TaggedRecordBatch>#
-
using EnumeratedRecordBatchGenerator = std::function<Future<EnumeratedRecordBatch>()>#
-
using EnumeratedRecordBatchIterator = Iterator<EnumeratedRecordBatch>#
-
constexpr int64_t kDefaultBatchSize = 1 << 17#
-
constexpr int32_t kDefaultBatchReadahead = 16#
-
constexpr int32_t kDefaultFragmentReadahead = 4#
-
void SetProjection(ScanOptions *options, ProjectionDescr projection)#
Utility method to set the projection expression and schema.
-
class FragmentScanOptions#
- #include <arrow/dataset/dataset.h>
Per-scan options for fragment(s) in a dataset.
These options are not intrinsic to the format or fragment itself, but do affect the results of a scan. These are options which make sense to change between repeated reads of the same dataset, such as format-specific conversion options (that do not affect the schema).
Subclassed by arrow::dataset::CsvFragmentScanOptions, arrow::dataset::IpcFragmentScanOptions, arrow::dataset::ParquetFragmentScanOptions
-
struct arrow::dataset::ScanOptions#
- #include <arrow/dataset/scanner.h>
Scan-specific options, which can be changed between scans of the same dataset.
Public Functions
-
std::vector<FieldRef> MaterializedFields() const#
Return a vector of FieldRefs that require materialization.
This is usually the union of the fields referenced in the projection and the filter expression. Examples:
SELECT a, b WHERE a < 2 && c > 1
=> [“a”, “b”, “a”, “c”]SELECT a + b < 3 WHERE a > 1
=> [“a”, “b”]
This is needed for expression where a field may not be directly used in the final projection but is still required to evaluate the expression.
This is used by Fragment implementations to apply the column sub-selection optimization.
Public Members
-
compute::Expression filter = compute::literal(true)#
A row filter (which will be pushed down to partitioning/reading if supported).
-
compute::Expression projection#
A projection expression (which can add/remove/rename columns).
-
std::shared_ptr<Schema> dataset_schema#
Schema with which batches will be read from fragments.
This is also known as the “reader schema” it will be used (for example) in constructing CSV file readers to identify column types for parsing. Usually only a subset of its fields (see MaterializedFields) will be materialized during a scan.
-
std::shared_ptr<Schema> projected_schema#
Schema of projected record batches.
This is independent of dataset_schema as its fields are derived from the projection. For example, let
dataset_schema = {“a”: int32, “b”: int32, “id”: utf8} projection = project({equal(field_ref(“a”), field_ref(“b”))}, {“a_plus_b”})
(no filter specified). In this case, the projected_schema would be
{“a_plus_b”: int32}
-
int64_t batch_size = kDefaultBatchSize#
Maximum row count for scanned batches.
-
int32_t batch_readahead = kDefaultBatchReadahead#
How many batches to read ahead within a file.
Set to 0 to disable batch readahead
Note: May not be supported by all formats Note: Will be ignored if use_threads is set to false
-
int32_t fragment_readahead = kDefaultFragmentReadahead#
How many files to read ahead.
Set to 0 to disable fragment readahead
Note: May not be enforced by all scanners Note: Will be ignored if use_threads is set to false
-
MemoryPool *pool = arrow::default_memory_pool()#
A pool from which materialized and scanned arrays will be allocated.
-
io::IOContext io_context#
IOContext for any IO tasks.
Note: The IOContext executor will be ignored if use_threads is set to false
-
bool use_threads = false#
If true the scanner will scan in parallel.
Note: If true, this will use threads from both the cpu_executor and the io_context.executor Note: This must be true in order for any readahead to happen
-
std::shared_ptr<FragmentScanOptions> fragment_scan_options#
Fragment-specific scan options.
-
compute::BackpressureOptions backpressure = compute::BackpressureOptions::DefaultBackpressure()#
Parameters which control when the plan should pause for a slow consumer.
-
std::vector<FieldRef> MaterializedFields() const#
-
struct arrow::dataset::ProjectionDescr#
- #include <arrow/dataset/scanner.h>
Describes a projection.
Public Members
-
compute::Expression expression#
The projection expression itself This expression must be a call to make_struct.
Public Static Functions
-
static Result<ProjectionDescr> FromStructExpression(const compute::Expression &expression, const Schema &dataset_schema)#
Create a ProjectionDescr by binding an expression to the dataset schema.
expression must return a struct type
-
static Result<ProjectionDescr> FromExpressions(std::vector<compute::Expression> exprs, std::vector<std::string> names, const Schema &dataset_schema)#
Create a ProjectionDescr from expressions/names for each field.
-
static Result<ProjectionDescr> FromNames(std::vector<std::string> names, const Schema &dataset_schema)#
Create a default projection referencing fields in the dataset schema.
-
static Result<ProjectionDescr> Default(const Schema &dataset_schema)#
Make a projection that projects every field in the dataset schema.
-
compute::Expression expression#
-
struct TaggedRecordBatch#
- #include <arrow/dataset/scanner.h>
Combines a record batch with the fragment that the record batch originated from.
Knowing the source fragment can be useful for debugging & understanding loaded data
-
struct EnumeratedRecordBatch#
- #include <arrow/dataset/scanner.h>
Combines a tagged batch with positional information.
This is returned when scanning batches in an unordered fashion. This information is needed if you ever want to reassemble the batches in order
-
class arrow::dataset::Scanner#
- #include <arrow/dataset/scanner.h>
A scanner glues together several dataset classes to load in data.
The dataset contains a collection of fragments and partitioning rules.
The fragments identify independently loadable units of data (i.e. each fragment has a potentially unique schema and possibly even format. It should be possible to read fragments in parallel if desired).
The fragment’s format contains the logic necessary to actually create a task to load the fragment into memory. That task may or may not support parallel execution of its own.
The scanner is then responsible for creating scan tasks from every fragment in the dataset and (potentially) sequencing the loaded record batches together.
The scanner should not buffer the entire dataset in memory (unless asked) instead yielding record batches as soon as they are ready to scan. Various readahead properties control how much data is allowed to be scanned before pausing to let a slow consumer catchup.
Today the scanner also handles projection & filtering although that may change in the future.
Public Functions
-
virtual Status Scan(std::function<Status(TaggedRecordBatch)> visitor) = 0#
Apply a visitor to each RecordBatch as it is scanned.
If multiple threads are used (via use_threads), the visitor will be invoked from those threads and is responsible for any synchronization.
-
virtual Result<std::shared_ptr<Table>> ToTable() = 0#
Convert a Scanner into a Table.
Use this convenience utility with care. This will serially materialize the Scan result in memory before creating the Table.
-
virtual Result<TaggedRecordBatchIterator> ScanBatches() = 0#
Scan the dataset into a stream of record batches.
Each batch is tagged with the fragment it originated from. The batches will arrive in order. The order of fragments is determined by the dataset.
Note: The scanner will perform some readahead but will avoid materializing too much in memory (this is goverended by the readahead options and use_threads option). If the readahead queue fills up then I/O will pause until the calling thread catches up.
-
virtual Result<EnumeratedRecordBatchIterator> ScanBatchesUnordered() = 0#
Scan the dataset into a stream of record batches.
Unlike ScanBatches this method may allow record batches to be returned out of order. This allows for more efficient scanning: some fragments may be accessed more quickly than others (e.g. may be cached in RAM or just happen to get scheduled earlier by the I/O)
To make up for the out-of-order iteration each batch is further tagged with positional information.
-
virtual Result<std::shared_ptr<Table>> TakeRows(const Array &indices) = 0#
A convenience to synchronously load the given rows by index.
Will only consume as many batches as needed from ScanBatches().
-
virtual Result<int64_t> CountRows() = 0#
Count rows matching a predicate.
This method will push down the predicate and compute the result based on fragment metadata if possible.
-
virtual Result<std::shared_ptr<RecordBatchReader>> ToRecordBatchReader() = 0#
Convert the Scanner to a RecordBatchReader so it can be easily used with APIs that expect a reader.
-
inline const std::shared_ptr<ScanOptions> &options() const#
Get the options for this scan.
-
virtual Status Scan(std::function<Status(TaggedRecordBatch)> visitor) = 0#
-
class arrow::dataset::ScannerBuilder#
- #include <arrow/dataset/scanner.h>
ScannerBuilder is a factory class to construct a Scanner.
It is used to pass information, notably a potential filter expression and a subset of columns to materialize.
Public Functions
-
Status Project(std::vector<std::string> columns)#
Set the subset of columns to materialize.
Columns which are not referenced may not be read from fragments.
- Parameters
columns – [in] list of columns to project. Order and duplicates will be preserved.
- Returns
Failure if any column name does not exists in the dataset’s Schema.
-
Status Project(std::vector<compute::Expression> exprs, std::vector<std::string> names)#
Set expressions which will be evaluated to produce the materialized columns.
Columns which are not referenced may not be read from fragments.
- Parameters
exprs – [in] expressions to evaluate to produce columns.
names – [in] list of names for the resulting columns.
- Returns
Failure if any referenced column does not exists in the dataset’s Schema.
-
Status Filter(const compute::Expression &filter)#
Set the filter expression to return only rows matching the filter.
The predicate will be passed down to Sources and corresponding Fragments to exploit predicate pushdown if possible using partition information or Fragment internal metadata, e.g. Parquet statistics. Columns which are not referenced may not be read from fragments.
- Parameters
filter – [in] expression to filter rows with.
- Returns
Failure if any referenced columns does not exist in the dataset’s Schema.
-
Status UseThreads(bool use_threads = true)#
Indicate if the Scanner should make use of the available ThreadPool found in ScanOptions;.
-
Status FragmentReadahead(int fragment_readahead)#
Limit how many fragments the scanner will read at once.
-
Status BatchSize(int64_t batch_size)#
Set the maximum number of rows per RecordBatch.
This option provides a control limiting the memory owned by any RecordBatch.
- Parameters
batch_size – [in] the maximum number of rows.
- Returns
An error if the number for batch is not greater than 0.
-
Status Pool(MemoryPool *pool)#
Set the pool from which materialized and scanned arrays will be allocated.
Set fragment-specific scan options.
-
Status Backpressure(compute::BackpressureOptions backpressure)#
Override default backpressure configuration.
Public Static Functions
Make a scanner from a record batch reader.
The resulting scanner can be scanned only once. This is intended to support writing data from streaming sources or other sources that can be iterated only once.
-
Status Project(std::vector<std::string> columns)#
-
class ScanNodeOptions : public arrow::compute::ExecNodeOptions#
- #include <arrow/dataset/scanner.h>
Construct a source ExecNode which yields batches from a dataset scan.
Does not construct associated filter or project nodes. Yielded batches will be augmented with fragment/batch indices to enable stable ordering for simple ExecPlans.
Concrete implementations#
-
class arrow::dataset::InMemoryFragment : public arrow::dataset::Fragment#
- #include <arrow/dataset/dataset.h>
A trivial Fragment that yields ScanTask out of a fixed set of RecordBatch.
Public Functions
An asynchronous version of Scan.
Count the number of rows in this fragment matching the filter using metadata only.
That is, this method may perform I/O, but will not load data.
If this is not possible, resolve with an empty optional. The fragment can perform I/O (e.g. to read metadata) before it deciding whether it can satisfy the request.
-
class arrow::dataset::InMemoryDataset : public arrow::dataset::Dataset#
- #include <arrow/dataset/dataset.h>
A Source which yields fragments wrapping a stream of record batches.
The record batches must match the schema provided to the source at construction.
Public Functions
Construct a dataset from a schema and a factory of record batch iterators.
Convenience constructor taking a fixed list of batches.
Convenience constructor taking a Table.
Return a copy of this Dataset with a different schema.
The copy will view the same Fragments. If the new schema is not compatible with the original dataset’s schema then an error will be raised.
-
class RecordBatchGenerator#
- #include <arrow/dataset/dataset.h>
-
class arrow::dataset::UnionDataset : public arrow::dataset::Dataset#
- #include <arrow/dataset/dataset.h>
A Dataset wrapping child Datasets.
Public Functions
Return a copy of this Dataset with a different schema.
The copy will view the same Fragments. If the new schema is not compatible with the original dataset’s schema then an error will be raised.
Public Static Functions
Construct a UnionDataset wrapping child Datasets.
- Parameters
schema – [in] the schema of the resulting dataset.
children – [in] one or more child Datasets. Their schemas must be identical to schema.
-
class arrow::dataset::UnionDatasetFactory : public arrow::dataset::DatasetFactory#
- #include <arrow/dataset/discovery.h>
DatasetFactory provides a way to inspect/discover a Dataset’s expected schema before materialization.
Public Functions
-
inline const std::vector<std::shared_ptr<DatasetFactory>> &factories() const#
Return the list of child DatasetFactory.
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) override#
Get the schemas of the Datasets.
Instead of applying options globally, it applies at each child factory. This will not respect
options.fragments
exactly, but will respect the spirit of peeking the first fragments or all of them.
-
virtual Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) override#
Create a Dataset.
-
inline const std::vector<std::shared_ptr<DatasetFactory>> &factories() const#
File System Datasets#
-
struct arrow::dataset::FileSystemFactoryOptions#
- #include <arrow/dataset/discovery.h>
Public Members
-
PartitioningOrFactory partitioning = {Partitioning::Default()}#
Either an explicit Partitioning or a PartitioningFactory to discover one.
If a factory is provided, it will be used to infer a schema for partition fields based on file and directory paths then construct a Partitioning. The default is a Partitioning which will yield no partition information.
The (explicit or discovered) partitioning will be applied to discovered files and the resulting partition information embedded in the Dataset.
-
std::string partition_base_dir#
For the purposes of applying the partitioning, paths will be stripped of the partition_base_dir.
Files not matching the partition_base_dir prefix will be skipped for partition discovery. The ignored files will still be part of the Dataset, but will not have partition information.
Example: partition_base_dir = “/dataset”;
“/dataset/US/sales.csv” -> “US/sales.csv” will be given to the partitioning
”/home/john/late_sales.csv” -> Will be ignored for partition discovery.
This is useful for partitioning which parses directory when ordering is important, e.g. DirectoryPartitioning.
-
bool exclude_invalid_files = false#
Invalid files (via selector or explicitly) will be excluded by checking with the FileFormat::IsSupported method.
This will incur IO for each files in a serial and single threaded fashion. Disabling this feature will skip the IO, but unsupported files may be present in the Dataset (resulting in an error at scan time).
-
std::vector<std::string> selector_ignore_prefixes = {".", "_",}#
When discovering from a Selector (and not from an explicit file list), ignore files and directories matching any of these prefixes.
Example (with selector = “/dataset/‍**”): selector_ignore_prefixes = {“_”, “.DS_STORE” };
“/dataset/data.csv” -> not ignored
”/dataset/_metadata” -> ignored
”/dataset/.DS_STORE” -> ignored
”/dataset/_hidden/dat” -> ignored
”/dataset/nested/.DS_STORE” -> ignored
-
PartitioningOrFactory partitioning = {Partitioning::Default()}#
-
class arrow::dataset::FileSystemDatasetFactory : public arrow::dataset::DatasetFactory#
- #include <arrow/dataset/discovery.h>
FileSystemDatasetFactory creates a Dataset from a vector of fs::FileInfo or a fs::FileSelector.
Public Functions
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) override#
Get the schemas of the Fragments and Partitioning.
-
virtual Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) override#
Create a Dataset with the given options.
Public Static Functions
Build a FileSystemDatasetFactory from an explicit list of paths.
- Parameters
filesystem – [in] passed to FileSystemDataset
paths – [in] passed to FileSystemDataset
format – [in] passed to FileSystemDataset
options – [in] see FileSystemFactoryOptions for more information.
Build a FileSystemDatasetFactory from a fs::FileSelector.
The selector will expand to a vector of FileInfo. The expansion/crawling is performed in this function call. Thus, the finalized Dataset is working with a snapshot of the filesystem. If options.partition_base_dir is not provided, it will be overwritten with selector.base_dir.
- Parameters
filesystem – [in] passed to FileSystemDataset
selector – [in] used to crawl and search files
format – [in] passed to FileSystemDataset
options – [in] see FileSystemFactoryOptions for more information.
Build a FileSystemDatasetFactory from an uri including filesystem information.
- Parameters
uri – [in] passed to FileSystemDataset
format – [in] passed to FileSystemDataset
options – [in] see FileSystemFactoryOptions for more information.
Build a FileSystemDatasetFactory from an explicit list of file information.
- Parameters
filesystem – [in] passed to FileSystemDataset
files – [in] passed to FileSystemDataset
format – [in] passed to FileSystemDataset
options – [in] see FileSystemFactoryOptions for more information.
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) override#
-
class arrow::dataset::FileSource#
- #include <arrow/dataset/file_base.h>
The path and filesystem where an actual file is located or a buffer which can be read like a file.
Public Functions
-
inline Compression::type compression() const#
Return the type of raw compression on the file, if any.
-
inline const std::string &path() const#
Return the file path, if any. Only valid when file source wraps a path.
-
inline const std::shared_ptr<fs::FileSystem> &filesystem() const#
Return the filesystem, if any. Otherwise returns nullptr.
-
inline const std::shared_ptr<Buffer> &buffer() const#
Return the buffer containing the file, if any. Otherwise returns nullptr.
-
Result<std::shared_ptr<io::RandomAccessFile>> Open() const#
Get a RandomAccessFile which views this file source.
-
Result<std::shared_ptr<io::InputStream>> OpenCompressed(util::optional<Compression::type> compression = util::nullopt) const#
Get an InputStream which views this file source (and decompresses if needed)
- Parameters
compression – [in] If nullopt, guess the compression scheme from the filename, else decompress with the given codec
-
inline Compression::type compression() const#
-
class arrow::dataset::FileFormat : public std::enable_shared_from_this<FileFormat>#
- #include <arrow/dataset/file_base.h>
Base class for file format implementation.
Subclassed by arrow::dataset::CsvFileFormat, arrow::dataset::IpcFileFormat, arrow::dataset::OrcFileFormat, arrow::dataset::ParquetFileFormat, skyhook::SkyhookFileFormat
Public Functions
-
virtual std::string type_name() const = 0#
The name identifying the kind of file format.
-
virtual Result<bool> IsSupported(const FileSource &source) const = 0#
Indicate if the FileSource is supported/readable by this format.
-
virtual Result<std::shared_ptr<Schema>> Inspect(const FileSource &source) const = 0#
Return the schema of the file if possible.
Open a fragment.
-
Result<std::shared_ptr<FileFragment>> MakeFragment(FileSource source, compute::Expression partition_expression)#
Create a FileFragment for a FileSource.
Create a FileFragment for a FileSource.
Create a writer for this format.
-
virtual std::shared_ptr<FileWriteOptions> DefaultWriteOptions() = 0#
Get default write options for this format.
Public Members
-
std::shared_ptr<FragmentScanOptions> default_fragment_scan_options#
Options affecting how this format is scanned.
The options here can be overridden at scan time.
-
virtual std::string type_name() const = 0#
-
class arrow::dataset::FileFragment : public arrow::dataset::Fragment#
- #include <arrow/dataset/file_base.h>
A Fragment that is stored in a file with a known format.
Subclassed by arrow::dataset::ParquetFileFragment
Public Functions
An asynchronous version of Scan.
Count the number of rows in this fragment matching the filter using metadata only.
That is, this method may perform I/O, but will not load data.
If this is not possible, resolve with an empty optional. The fragment can perform I/O (e.g. to read metadata) before it deciding whether it can satisfy the request.
-
class arrow::dataset::FileSystemDataset : public arrow::dataset::Dataset#
- #include <arrow/dataset/file_base.h>
A Dataset of FileFragments.
A FileSystemDataset is composed of one or more FileFragment. The fragments are independent and don’t need to share the same format and/or filesystem.
Public Functions
-
inline virtual std::string type_name() const override#
Return the type name of the dataset.
Replace the schema of the dataset.
-
std::vector<std::string> files() const#
Return the path of files.
-
inline const std::shared_ptr<FileFormat> &format() const#
Return the format.
-
inline const std::shared_ptr<fs::FileSystem> &filesystem() const#
Return the filesystem. May be nullptr if the fragments wrap buffers.
-
inline const std::shared_ptr<Partitioning> &partitioning() const#
Return the partitioning.
May be nullptr if the dataset was not constructed with a partitioning.
Public Static Functions
Create a FileSystemDataset.
Note that fragments wrapping files resident in differing filesystems are not permitted; to work with multiple filesystems use a UnionDataset.
- Parameters
schema – [in] the schema of the dataset
root_partition – [in] the partition expression of the dataset
format – [in] the format of each FileFragment.
filesystem – [in] the filesystem of each FileFragment, or nullptr if the fragments wrap buffers.
fragments – [in] list of fragments to create the dataset from.
partitioning – [in] the Partitioning object in case the dataset is created with a known partitioning (e.g. from a discovered partitioning through a DatasetFactory), or nullptr if not known.
- Returns
A constructed dataset.
Write a dataset.
-
inline virtual std::string type_name() const override#
-
class FileWriteOptions#
- #include <arrow/dataset/file_base.h>
Options for writing a file of this format.
Subclassed by arrow::dataset::CsvFileWriteOptions, arrow::dataset::IpcFileWriteOptions, arrow::dataset::ParquetFileWriteOptions
-
class arrow::dataset::FileWriter#
- #include <arrow/dataset/file_base.h>
A writer for this format.
Subclassed by arrow::dataset::CsvFileWriter, arrow::dataset::IpcFileWriter, arrow::dataset::ParquetFileWriter
Public Functions
Write the given batch.
-
Status Write(RecordBatchReader *batches)#
Write all batches from the reader.
-
struct arrow::dataset::FileSystemDatasetWriteOptions#
- #include <arrow/dataset/file_base.h>
Options for writing a dataset.
Public Members
-
std::shared_ptr<FileWriteOptions> file_write_options#
Options for individual fragment writing.
-
std::shared_ptr<fs::FileSystem> filesystem#
FileSystem into which a dataset will be written.
-
std::string base_dir#
Root directory into which the dataset will be written.
-
std::shared_ptr<Partitioning> partitioning#
Partitioning used to generate fragment paths.
-
int max_partitions = 1024#
Maximum number of partitions any batch may be written into, default is 1K.
-
std::string basename_template#
Template string used to generate fragment basenames.
{i} will be replaced by an auto incremented integer.
-
uint32_t max_open_files = 900#
If greater than 0 then this will limit the maximum number of files that can be left open.
If an attempt is made to open too many files then the least recently used file will be closed. If this setting is set too low you may end up fragmenting your data into many small files.
The default is 900 which also allows some # of files to be open by the scanner before hitting the default Linux limit of 1024
-
uint64_t max_rows_per_file = 0#
If greater than 0 then this will limit how many rows are placed in any single file.
Otherwise there will be no limit and one file will be created in each output directory unless files need to be closed to respect max_open_files
-
uint64_t min_rows_per_group = 0#
If greater than 0 then this will cause the dataset writer to batch incoming data and only write the row groups to the disk when sufficient rows have accumulated.
The final row group size may be less than this value and other options such as
max_open_files
ormax_rows_per_file
lead to smaller row group sizes.
-
uint64_t max_rows_per_group = 1 << 20#
If greater than 0 then the dataset writer may split up large incoming batches into multiple row groups.
If this value is set then min_rows_per_group should also be set or else you may end up with very small row groups (e.g. if the incoming row group size is just barely larger than this value).
-
ExistingDataBehavior existing_data_behavior = ExistingDataBehavior::kError#
Controls what happens if an output directory already exists.
-
bool create_dir = true#
If false the dataset writer will not create directories This is mainly intended for filesystems that do not require directories such as S3.
-
std::function<Status(FileWriter*)> writer_pre_finish =
[](FileWriter*) {returnStatus::OK();}
# Callback to be invoked against all FileWriters before they are finalized with FileWriter::Finish().
-
std::function<Status(FileWriter*)> writer_post_finish =
[](FileWriter*) {returnStatus::OK();}
# Callback to be invoked against all FileWriters after they have called FileWriter::Finish().
-
std::shared_ptr<FileWriteOptions> file_write_options#
-
class arrow::dataset::WriteNodeOptions : public arrow::compute::ExecNodeOptions#
- #include <arrow/dataset/file_base.h>
Wraps FileSystemDatasetWriteOptions for consumption as compute::ExecNodeOptions.
Public Members
-
FileSystemDatasetWriteOptions write_options#
Options to control how to write the dataset.
-
std::shared_ptr<const KeyValueMetadata> custom_metadata#
Optional metadata to attach to written batches.
-
FileSystemDatasetWriteOptions write_options#
File Formats#
-
constexpr char kIpcTypeName[] = "ipc"#
-
constexpr char kOrcTypeName[] = "orc"#
-
constexpr char kParquetTypeName[] = "parquet"#
-
class arrow::dataset::CsvFileFormat : public arrow::dataset::FileFormat#
- #include <arrow/dataset/file_csv.h>
A FileFormat implementation that reads from and writes to Csv files.
Public Functions
-
inline virtual std::string type_name() const override#
The name identifying the kind of file format.
-
virtual Result<bool> IsSupported(const FileSource &source) const override#
Indicate if the FileSource is supported/readable by this format.
-
virtual Result<std::shared_ptr<Schema>> Inspect(const FileSource &source) const override#
Return the schema of the file if possible.
Create a writer for this format.
-
virtual std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override#
Get default write options for this format.
Public Members
-
csv::ParseOptions parse_options = csv::ParseOptions::Defaults()#
Options affecting the parsing of CSV files.
-
inline virtual std::string type_name() const override#
-
struct arrow::dataset::CsvFragmentScanOptions : public arrow::dataset::FragmentScanOptions#
- #include <arrow/dataset/file_csv.h>
Per-scan options for CSV fragments.
Public Members
-
csv::ConvertOptions convert_options = csv::ConvertOptions::Defaults()#
CSV conversion options.
-
csv::ReadOptions read_options = csv::ReadOptions::Defaults()#
CSV reading options.
Note that use_threads is always ignored.
-
csv::ConvertOptions convert_options = csv::ConvertOptions::Defaults()#
-
class arrow::dataset::CsvFileWriteOptions : public arrow::dataset::FileWriteOptions#
- #include <arrow/dataset/file_csv.h>
Public Members
-
std::shared_ptr<csv::WriteOptions> write_options#
Options passed to csv::MakeCSVWriter.
-
std::shared_ptr<csv::WriteOptions> write_options#
-
class arrow::dataset::CsvFileWriter : public arrow::dataset::FileWriter#
- #include <arrow/dataset/file_csv.h>
Public Functions
Write the given batch.
-
class arrow::dataset::IpcFileFormat : public arrow::dataset::FileFormat#
- #include <arrow/dataset/file_ipc.h>
A FileFormat implementation that reads from and writes to Ipc files.
Public Functions
-
inline virtual std::string type_name() const override#
The name identifying the kind of file format.
-
virtual Result<bool> IsSupported(const FileSource &source) const override#
Indicate if the FileSource is supported/readable by this format.
-
virtual Result<std::shared_ptr<Schema>> Inspect(const FileSource &source) const override#
Return the schema of the file if possible.
Create a writer for this format.
-
virtual std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override#
Get default write options for this format.
-
inline virtual std::string type_name() const override#
-
class arrow::dataset::IpcFragmentScanOptions : public arrow::dataset::FragmentScanOptions#
- #include <arrow/dataset/file_ipc.h>
Per-scan options for IPC fragments.
Public Members
-
std::shared_ptr<ipc::IpcReadOptions> options#
Options passed to the IPC file reader.
included_fields, memory_pool, and use_threads are ignored.
-
std::shared_ptr<io::CacheOptions> cache_options#
If present, the async scanner will enable I/O coalescing.
This is ignored by the sync scanner.
-
std::shared_ptr<ipc::IpcReadOptions> options#
-
class arrow::dataset::IpcFileWriteOptions : public arrow::dataset::FileWriteOptions#
- #include <arrow/dataset/file_ipc.h>
Public Members
-
std::shared_ptr<ipc::IpcWriteOptions> options#
Options passed to ipc::MakeFileWriter. use_threads is ignored.
-
std::shared_ptr<const KeyValueMetadata> metadata#
custom_metadata written to the file’s footer
-
std::shared_ptr<ipc::IpcWriteOptions> options#
-
class arrow::dataset::IpcFileWriter : public arrow::dataset::FileWriter#
- #include <arrow/dataset/file_ipc.h>
Public Functions
Write the given batch.
-
class arrow::dataset::OrcFileFormat : public arrow::dataset::FileFormat#
- #include <arrow/dataset/file_orc.h>
A FileFormat implementation that reads from and writes to ORC files.
Public Functions
-
inline virtual std::string type_name() const override#
The name identifying the kind of file format.
-
virtual Result<bool> IsSupported(const FileSource &source) const override#
Indicate if the FileSource is supported/readable by this format.
-
virtual Result<std::shared_ptr<Schema>> Inspect(const FileSource &source) const override#
Return the schema of the file if possible.
Create a writer for this format.
-
virtual std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override#
Get default write options for this format.
-
inline virtual std::string type_name() const override#
-
class arrow::dataset::ParquetFileFormat : public arrow::dataset::FileFormat#
- #include <arrow/dataset/file_parquet.h>
A FileFormat implementation that reads from Parquet files.
Public Functions
-
explicit ParquetFileFormat(const parquet::ReaderProperties &reader_properties)#
Convenience constructor which copies properties from a parquet::ReaderProperties.
memory_pool will be ignored.
-
inline virtual std::string type_name() const override#
The name identifying the kind of file format.
-
virtual Result<bool> IsSupported(const FileSource &source) const override#
Indicate if the FileSource is supported/readable by this format.
-
virtual Result<std::shared_ptr<Schema>> Inspect(const FileSource &source) const override#
Return the schema of the file if possible.
Create a Fragment targeting all RowGroups.
Create a Fragment, restricted to the specified row groups.
Return a FileReader on the given source.
Create a writer for this format.
-
virtual std::shared_ptr<FileWriteOptions> DefaultWriteOptions() override#
Get default write options for this format.
-
Result<std::shared_ptr<FileFragment>> MakeFragment(FileSource source, compute::Expression partition_expression, std::shared_ptr<Schema> physical_schema)
Open a fragment.
-
Result<std::shared_ptr<FileFragment>> MakeFragment(FileSource source, compute::Expression partition_expression)#
Create a FileFragment for a FileSource.
Create a FileFragment for a FileSource.
-
struct ReaderOptions#
- #include <arrow/dataset/file_parquet.h>
-
explicit ParquetFileFormat(const parquet::ReaderProperties &reader_properties)#
-
class arrow::dataset::ParquetFileFragment : public arrow::dataset::FileFragment#
- #include <arrow/dataset/file_parquet.h>
A FileFragment with parquet logic.
ParquetFileFragment provides a lazy (with respect to IO) interface to scan parquet files. Any heavy IO calls are deferred to the Scan() method.
The caller can provide an optional list of selected RowGroups to limit the number of scanned RowGroups, or to partition the scans across multiple threads.
Metadata can be explicitly provided, enabling pushdown predicate benefits without the potentially heavy IO of loading Metadata from the file system. This can induce significant performance boost when scanning high latency file systems.
Public Functions
-
inline const std::vector<int> &row_groups() const#
Return the RowGroups selected by this fragment.
-
inline const std::shared_ptr<parquet::FileMetaData> &metadata() const#
Return the FileMetaData associated with this fragment.
-
Status EnsureCompleteMetadata(parquet::arrow::FileReader *reader = NULLPTR)#
Ensure this fragment’s FileMetaData is in memory.
-
Result<std::shared_ptr<Fragment>> Subset(compute::Expression predicate)#
Return fragment which selects a filtered subset of this fragment’s RowGroups.
-
inline const std::vector<int> &row_groups() const#
-
class arrow::dataset::ParquetFragmentScanOptions : public arrow::dataset::FragmentScanOptions#
- #include <arrow/dataset/file_parquet.h>
Per-scan options for Parquet fragments.
Public Members
-
std::shared_ptr<parquet::ReaderProperties> reader_properties#
Reader properties.
Not all properties are respected: memory_pool comes from ScanOptions.
-
std::shared_ptr<parquet::ArrowReaderProperties> arrow_reader_properties#
Arrow reader properties.
Not all properties are respected: batch_size comes from ScanOptions. Additionally, dictionary columns come from ParquetFileFormat::ReaderOptions::dict_columns.
-
std::shared_ptr<parquet::ReaderProperties> reader_properties#
-
class arrow::dataset::ParquetFileWriteOptions : public arrow::dataset::FileWriteOptions#
- #include <arrow/dataset/file_parquet.h>
Public Members
-
std::shared_ptr<parquet::WriterProperties> writer_properties#
Parquet writer properties.
-
std::shared_ptr<parquet::ArrowWriterProperties> arrow_writer_properties#
Parquet Arrow writer properties.
-
std::shared_ptr<parquet::WriterProperties> writer_properties#
-
class arrow::dataset::ParquetFileWriter : public arrow::dataset::FileWriter#
- #include <arrow/dataset/file_parquet.h>
Public Functions
Write the given batch.
-
struct arrow::dataset::ParquetFactoryOptions#
- #include <arrow/dataset/file_parquet.h>
Options for making a FileSystemDataset from a Parquet _metadata file.
Public Members
-
PartitioningOrFactory partitioning = {Partitioning::Default()}#
Either an explicit Partitioning or a PartitioningFactory to discover one.
If a factory is provided, it will be used to infer a schema for partition fields based on file and directory paths then construct a Partitioning. The default is a Partitioning which will yield no partition information.
The (explicit or discovered) partitioning will be applied to discovered files and the resulting partition information embedded in the Dataset.
-
std::string partition_base_dir#
For the purposes of applying the partitioning, paths will be stripped of the partition_base_dir.
Files not matching the partition_base_dir prefix will be skipped for partition discovery. The ignored files will still be part of the Dataset, but will not have partition information.
Example: partition_base_dir = “/dataset”;
“/dataset/US/sales.csv” -> “US/sales.csv” will be given to the partitioning
”/home/john/late_sales.csv” -> Will be ignored for partition discovery.
This is useful for partitioning which parses directory when ordering is important, e.g. DirectoryPartitioning.
-
bool validate_column_chunk_paths = false#
Assert that all ColumnChunk paths are consistent.
The parquet spec allows for ColumnChunk data to be stored in multiple files, but ParquetDatasetFactory supports only a single file with all ColumnChunk data. If this flag is set construction of a ParquetDatasetFactory will raise an error if ColumnChunk data is not resident in a single file.
-
PartitioningOrFactory partitioning = {Partitioning::Default()}#
-
class arrow::dataset::ParquetDatasetFactory : public arrow::dataset::DatasetFactory#
- #include <arrow/dataset/file_parquet.h>
Create FileSystemDataset from custom
_metadata
cache file.Dask and other systems will generate a cache metadata file by concatenating the RowGroupMetaData of multiple parquet files into a single parquet file that only contains metadata and no ColumnChunk data.
ParquetDatasetFactory creates a FileSystemDataset composed of ParquetFileFragment where each fragment is pre-populated with the exact number of row groups and statistics for each columns.
Public Functions
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) override#
Get the schemas of the Fragments and Partitioning.
-
virtual Result<std::shared_ptr<Dataset>> Finish(FinishOptions options) override#
Create a Dataset with the given options.
Public Static Functions
Create a ParquetDatasetFactory from a metadata path.
The
metadata_path
will be read fromfilesystem
. Each RowGroup contained in the metadata file will be relative todirname(metadata_path)
.- Parameters
metadata_path – [in] path of the metadata parquet file
filesystem – [in] from which to open/read the path
format – [in] to read the file with.
options – [in] see ParquetFactoryOptions
Create a ParquetDatasetFactory from a metadata source.
Similar to the previous Make definition, but the metadata can be a Buffer and the base_path is explicited instead of inferred from the metadata path.
- Parameters
metadata – [in] source to open the metadata parquet file from
base_path – [in] used as the prefix of every parquet files referenced
filesystem – [in] from which to read the files referenced.
format – [in] to read the file with.
options – [in] see ParquetFactoryOptions
-
virtual Result<std::vector<std::shared_ptr<Schema>>> InspectSchemas(InspectOptions options) override#
-
struct RadosConnCtx#
- #include <skyhook/client/file_skyhook.h>
A struct to hold the parameters required for connecting to a RADOS cluster.
-
class skyhook::SkyhookFileFormat : public arrow::dataset::FileFormat#
- #include <skyhook/client/file_skyhook.h>
A FileFormat implementation that offloads fragment scan operations to the Ceph OSDs. For more details, see the Skyhook paper, https://arxiv.org/pdf/2105.09894.pdf.
Public Functions
-
inline virtual std::string type_name() const override#
The name identifying the kind of file format.
-
inline virtual arrow::Result<bool> IsSupported(const arrow::dataset::FileSource &source) const override#
Indicate if the FileSource is supported/readable by this format.
-
virtual arrow::Result<std::shared_ptr<arrow::Schema>> Inspect(const arrow::dataset::FileSource &source) const override#
Return the schema of the file fragment.
- Parameters
source – [in] The source of the file fragment.
- Returns
The schema of the file fragment.
Create a writer for this format.
-
virtual std::shared_ptr<arrow::dataset::FileWriteOptions> DefaultWriteOptions() override#
Get default write options for this format.
-
inline virtual std::string type_name() const override#