pyarrow.ChunkedArray¶
-
class
pyarrow.
ChunkedArray
¶ Bases:
pyarrow.lib._PandasConvertible
An array-like composed from a (possibly empty) collection of pyarrow.Arrays
Warning
Do not call this class’s constructor directly.
-
__init__
(*args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(*args, **kwargs)Initialize self.
cast
(self, target_type[, safe])Cast array values to another data type
chunk
(self, i)Select a chunk by its index
combine_chunks
(self, MemoryPool memory_pool=None)Flatten this ChunkedArray into a single non-chunked array.
dictionary_encode
(self[, null_encoding])Compute dictionary-encoded representation of array
drop_null
(self)Remove missing values from a chunked array.
equals
(self, ChunkedArray other)Return whether the contents of two chunked arrays are equal.
fill_null
(self, fill_value)See pyarrow.compute.fill_null docstring for usage.
filter
(self, mask[, null_selection_behavior])Select values from a chunked array.
flatten
(self, MemoryPool memory_pool=None)Flatten this ChunkedArray.
format
(self, **kwargs)index
(self, value[, start, end, memory_pool])Find the first index of a value.
is_null
(self, *[, nan_is_null])Return boolean array indicating the null values.
is_valid
(self)Return boolean array indicating the non-null values.
iterchunks
(self)length
(self)slice
(self[, offset, length])Compute zero-copy slice of this ChunkedArray
take
(self, indices)Select values from a chunked array.
to_numpy
(self)Return a NumPy copy of this array (experimental).
to_pandas
(self[, memory_pool, categories, …])Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
to_pylist
(self)Convert to a list of native Python objects.
to_string
(self, *, int indent=0, …)Render a “pretty-printed” string representation of the ChunkedArray
unify_dictionaries
(self, …)Unify dictionaries across all chunks.
unique
(self)Compute distinct elements in array
validate
(self, *[, full])Perform validation checks.
value_counts
(self)Compute counts of unique elements in array.
Attributes
Total number of bytes consumed by the elements of the chunked array.
Number of null entries
Number of underlying chunks
-
cast
(self, target_type, safe=True)¶ Cast array values to another data type
See pyarrow.compute.cast for usage
-
chunk
(self, i)¶ Select a chunk by its index
- Parameters
i (int) –
- Returns
pyarrow.Array
-
chunks
¶
-
combine_chunks
(self, MemoryPool memory_pool=None)¶ Flatten this ChunkedArray into a single non-chunked array.
- Parameters
memory_pool (MemoryPool, default None) – For memory allocations, if required, otherwise use default pool
- Returns
result (Array)
-
data
¶
-
dictionary_encode
(self, null_encoding='mask')¶ Compute dictionary-encoded representation of array
- Returns
pyarrow.ChunkedArray – Same chunking as the input, all chunks share a common dictionary.
-
drop_null
(self)¶ Remove missing values from a chunked array. See pyarrow.compute.drop_null for full description.
-
equals
(self, ChunkedArray other)¶ Return whether the contents of two chunked arrays are equal.
- Parameters
other (pyarrow.ChunkedArray) – Chunked array to compare against.
- Returns
are_equal (bool)
-
fill_null
(self, fill_value)¶ See pyarrow.compute.fill_null docstring for usage.
-
filter
(self, mask, null_selection_behavior='drop')¶ Select values from a chunked array. See pyarrow.compute.filter for full usage.
-
flatten
(self, MemoryPool memory_pool=None)¶ Flatten this ChunkedArray. If it has a struct type, the column is flattened into one array per struct field.
- Parameters
memory_pool (MemoryPool, default None) – For memory allocations, if required, otherwise use default pool
- Returns
result (List[ChunkedArray])
-
format
(self, **kwargs)¶
-
index
(self, value, start=None, end=None, *, memory_pool=None)¶ Find the first index of a value.
See pyarrow.compute.index for full usage.
-
is_null
(self, *, nan_is_null=False)¶ Return boolean array indicating the null values.
- Parameters
nan_is_null (bool (optional, default False)) – Whether floating-point NaN values should also be considered null.
- Returns
array (boolean Array or ChunkedArray)
-
is_valid
(self)¶ Return boolean array indicating the non-null values.
-
iterchunks
(self)¶
-
length
(self)¶
-
nbytes
¶ Total number of bytes consumed by the elements of the chunked array.
-
null_count
¶ Number of null entries
- Returns
int
-
num_chunks
¶ Number of underlying chunks
- Returns
int
-
slice
(self, offset=0, length=None)¶ Compute zero-copy slice of this ChunkedArray
- Parameters
offset (int, default 0) – Offset from start of array to slice
length (int, default None) – Length of slice (default is until end of batch starting from offset)
- Returns
sliced (ChunkedArray)
-
take
(self, indices)¶ Select values from a chunked array. See pyarrow.compute.take for full usage.
-
to_numpy
(self)¶ Return a NumPy copy of this array (experimental).
- Returns
array (numpy.ndarray)
-
to_pandas
(self, memory_pool=None, categories=None, bool strings_to_categorical=False, bool zero_copy_only=False, bool integer_object_nulls=False, bool date_as_object=True, bool timestamp_as_object=False, bool use_threads=True, bool deduplicate_objects=True, bool ignore_metadata=False, bool safe=True, bool split_blocks=False, bool self_destruct=False, types_mapper=None)¶ Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
- Parameters
memory_pool (MemoryPool, default None) – Arrow MemoryPool to use for allocations. Uses the default memory pool is not passed.
strings_to_categorical (bool, default False) – Encode string (UTF8) and binary types to pandas.Categorical.
categories (list, default empty) – List of fields that should be returned as pandas.Categorical. Only applies to table-like data structures.
zero_copy_only (bool, default False) – Raise an ArrowException if this function call would require copying the underlying data.
integer_object_nulls (bool, default False) – Cast integers with nulls to objects
date_as_object (bool, default True) – Cast dates to objects. If False, convert to datetime64[ns] dtype.
timestamp_as_object (bool, default False) – Cast non-nanosecond timestamps (np.datetime64) to objects. This is useful if you have timestamps that don’t fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). If False, all timestamps are converted to datetime64[ns] dtype.
use_threads (bool, default True) – Whether to parallelize the conversion using multiple threads.
deduplicate_objects (bool, default False) – Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower.
ignore_metadata (bool, default False) – If True, do not use the ‘pandas’ metadata to reconstruct the DataFrame index, if present
safe (bool, default True) – For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not.
split_blocks (bool, default False) – If True, generate one internal “block” for each column when creating a pandas.DataFrame from a RecordBatch or Table. While this can temporarily reduce memory note that various pandas operations can trigger “consolidation” which may balloon memory use.
self_destruct (bool, default False) –
EXPERIMENTAL: If True, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling to_pandas with this option it will crash your program.
Note that you may not see always memory usage improvements. For example, if multiple columns share an underlying allocation, memory can’t be freed until all columns are converted.
types_mapper (function, default None) – A function mapping a pyarrow DataType to a pandas ExtensionDtype. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas ExtensionDtype or
None
if the default conversion should be used for that type. If you have a dictionary mapping, you can passdict.get
as function.
- Returns
pandas.Series or pandas.DataFrame depending on type of object
-
to_pylist
(self)¶ Convert to a list of native Python objects.
-
to_string
(self, *, int indent=0, int window=10, bool skip_new_lines=False)¶ Render a “pretty-printed” string representation of the ChunkedArray
- Parameters
indent (int) – How much to indent right the content of the array, by default
0
.window (int) – How many items to preview at the begin and end of the array when the arrays is bigger than the window. The other elements will be ellipsed.
skip_new_lines (bool) – If the array should be rendered as a single line of text or if each element should be on its own line.
-
type
¶
-
unify_dictionaries
(self, MemoryPool memory_pool=None)¶ Unify dictionaries across all chunks.
This method returns an equivalent chunked array, but where all chunks share the same dictionary values. Dictionary indices are transposed accordingly.
If there are no dictionaries in the chunked array, it is returned unchanged.
- Parameters
memory_pool (MemoryPool, default None) – For memory allocations, if required, otherwise use default pool
- Returns
result (ChunkedArray)
-
unique
(self)¶ Compute distinct elements in array
- Returns
pyarrow.Array
-
validate
(self, *, full=False)¶ Perform validation checks. An exception is raised if validation fails.
By default only cheap validation checks are run. Pass full=True for thorough validation checks (potentially O(n)).
- Parameters
full (bool, default False) – If True, run expensive checks, otherwise cheap checks only.
- Raises
ArrowInvalid –
-
value_counts
(self)¶ Compute counts of unique elements in array.
- Returns
An array of <input type “Values”, int64_t “Counts”> structs
-