pyarrow.ChunkedArray

class pyarrow.ChunkedArray

Bases: pyarrow.lib._PandasConvertible

An array-like composed from a (possibly empty) collection of pyarrow.Arrays

Warning

Do not call this class’s constructor directly.

__init__(*args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(*args, **kwargs)

Initialize self.

cast(self, target_type[, safe])

Cast array values to another data type

chunk(self, i)

Select a chunk by its index

combine_chunks(self, MemoryPool memory_pool=None)

Flatten this ChunkedArray into a single non-chunked array.

dictionary_encode(self[, null_encoding])

Compute dictionary-encoded representation of array

drop_null(self)

Remove missing values from a chunked array.

equals(self, ChunkedArray other)

Return whether the contents of two chunked arrays are equal.

fill_null(self, fill_value)

See pyarrow.compute.fill_null docstring for usage.

filter(self, mask[, null_selection_behavior])

Select values from a chunked array.

flatten(self, MemoryPool memory_pool=None)

Flatten this ChunkedArray.

format(self, **kwargs)

index(self, value[, start, end, memory_pool])

Find the first index of a value.

is_null(self, *[, nan_is_null])

Return boolean array indicating the null values.

is_valid(self)

Return boolean array indicating the non-null values.

iterchunks(self)

length(self)

slice(self[, offset, length])

Compute zero-copy slice of this ChunkedArray

take(self, indices)

Select values from a chunked array.

to_numpy(self)

Return a NumPy copy of this array (experimental).

to_pandas(self[, memory_pool, categories, …])

Convert to a pandas-compatible NumPy array or DataFrame, as appropriate

to_pylist(self)

Convert to a list of native Python objects.

to_string(self, *, int indent=0, …)

Render a “pretty-printed” string representation of the ChunkedArray

unify_dictionaries(self, …)

Unify dictionaries across all chunks.

unique(self)

Compute distinct elements in array

validate(self, *[, full])

Perform validation checks.

value_counts(self)

Compute counts of unique elements in array.

Attributes

chunks

data

nbytes

Total number of bytes consumed by the elements of the chunked array.

null_count

Number of null entries

num_chunks

Number of underlying chunks

type

cast(self, target_type, safe=True)

Cast array values to another data type

See pyarrow.compute.cast for usage

chunk(self, i)

Select a chunk by its index

Parameters

i (int) –

Returns

pyarrow.Array

chunks
combine_chunks(self, MemoryPool memory_pool=None)

Flatten this ChunkedArray into a single non-chunked array.

Parameters

memory_pool (MemoryPool, default None) – For memory allocations, if required, otherwise use default pool

Returns

result (Array)

data
dictionary_encode(self, null_encoding='mask')

Compute dictionary-encoded representation of array

Returns

pyarrow.ChunkedArray – Same chunking as the input, all chunks share a common dictionary.

drop_null(self)

Remove missing values from a chunked array. See pyarrow.compute.drop_null for full description.

equals(self, ChunkedArray other)

Return whether the contents of two chunked arrays are equal.

Parameters

other (pyarrow.ChunkedArray) – Chunked array to compare against.

Returns

are_equal (bool)

fill_null(self, fill_value)

See pyarrow.compute.fill_null docstring for usage.

filter(self, mask, null_selection_behavior='drop')

Select values from a chunked array. See pyarrow.compute.filter for full usage.

flatten(self, MemoryPool memory_pool=None)

Flatten this ChunkedArray. If it has a struct type, the column is flattened into one array per struct field.

Parameters

memory_pool (MemoryPool, default None) – For memory allocations, if required, otherwise use default pool

Returns

result (List[ChunkedArray])

format(self, **kwargs)
index(self, value, start=None, end=None, *, memory_pool=None)

Find the first index of a value.

See pyarrow.compute.index for full usage.

is_null(self, *, nan_is_null=False)

Return boolean array indicating the null values.

Parameters

nan_is_null (bool (optional, default False)) – Whether floating-point NaN values should also be considered null.

Returns

array (boolean Array or ChunkedArray)

is_valid(self)

Return boolean array indicating the non-null values.

iterchunks(self)
length(self)
nbytes

Total number of bytes consumed by the elements of the chunked array.

null_count

Number of null entries

Returns

int

num_chunks

Number of underlying chunks

Returns

int

slice(self, offset=0, length=None)

Compute zero-copy slice of this ChunkedArray

Parameters
  • offset (int, default 0) – Offset from start of array to slice

  • length (int, default None) – Length of slice (default is until end of batch starting from offset)

Returns

sliced (ChunkedArray)

take(self, indices)

Select values from a chunked array. See pyarrow.compute.take for full usage.

to_numpy(self)

Return a NumPy copy of this array (experimental).

Returns

array (numpy.ndarray)

to_pandas(self, memory_pool=None, categories=None, bool strings_to_categorical=False, bool zero_copy_only=False, bool integer_object_nulls=False, bool date_as_object=True, bool timestamp_as_object=False, bool use_threads=True, bool deduplicate_objects=True, bool ignore_metadata=False, bool safe=True, bool split_blocks=False, bool self_destruct=False, types_mapper=None)

Convert to a pandas-compatible NumPy array or DataFrame, as appropriate

Parameters
  • memory_pool (MemoryPool, default None) – Arrow MemoryPool to use for allocations. Uses the default memory pool is not passed.

  • strings_to_categorical (bool, default False) – Encode string (UTF8) and binary types to pandas.Categorical.

  • categories (list, default empty) – List of fields that should be returned as pandas.Categorical. Only applies to table-like data structures.

  • zero_copy_only (bool, default False) – Raise an ArrowException if this function call would require copying the underlying data.

  • integer_object_nulls (bool, default False) – Cast integers with nulls to objects

  • date_as_object (bool, default True) – Cast dates to objects. If False, convert to datetime64[ns] dtype.

  • timestamp_as_object (bool, default False) – Cast non-nanosecond timestamps (np.datetime64) to objects. This is useful if you have timestamps that don’t fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). If False, all timestamps are converted to datetime64[ns] dtype.

  • use_threads (bool, default True) – Whether to parallelize the conversion using multiple threads.

  • deduplicate_objects (bool, default False) – Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower.

  • ignore_metadata (bool, default False) – If True, do not use the ‘pandas’ metadata to reconstruct the DataFrame index, if present

  • safe (bool, default True) – For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not.

  • split_blocks (bool, default False) – If True, generate one internal “block” for each column when creating a pandas.DataFrame from a RecordBatch or Table. While this can temporarily reduce memory note that various pandas operations can trigger “consolidation” which may balloon memory use.

  • self_destruct (bool, default False) –

    EXPERIMENTAL: If True, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling to_pandas with this option it will crash your program.

    Note that you may not see always memory usage improvements. For example, if multiple columns share an underlying allocation, memory can’t be freed until all columns are converted.

  • types_mapper (function, default None) – A function mapping a pyarrow DataType to a pandas ExtensionDtype. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas ExtensionDtype or None if the default conversion should be used for that type. If you have a dictionary mapping, you can pass dict.get as function.

Returns

pandas.Series or pandas.DataFrame depending on type of object

to_pylist(self)

Convert to a list of native Python objects.

to_string(self, *, int indent=0, int window=10, bool skip_new_lines=False)

Render a “pretty-printed” string representation of the ChunkedArray

Parameters
  • indent (int) – How much to indent right the content of the array, by default 0.

  • window (int) – How many items to preview at the begin and end of the array when the arrays is bigger than the window. The other elements will be ellipsed.

  • skip_new_lines (bool) – If the array should be rendered as a single line of text or if each element should be on its own line.

type
unify_dictionaries(self, MemoryPool memory_pool=None)

Unify dictionaries across all chunks.

This method returns an equivalent chunked array, but where all chunks share the same dictionary values. Dictionary indices are transposed accordingly.

If there are no dictionaries in the chunked array, it is returned unchanged.

Parameters

memory_pool (MemoryPool, default None) – For memory allocations, if required, otherwise use default pool

Returns

result (ChunkedArray)

unique(self)

Compute distinct elements in array

Returns

pyarrow.Array

validate(self, *, full=False)

Perform validation checks. An exception is raised if validation fails.

By default only cheap validation checks are run. Pass full=True for thorough validation checks (potentially O(n)).

Parameters

full (bool, default False) – If True, run expensive checks, otherwise cheap checks only.

Raises

ArrowInvalid

value_counts(self)

Compute counts of unique elements in array.

Returns

An array of <input type “Values”, int64_t “Counts”> structs