Source code for pyarrow.parquet.core

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.


from collections import defaultdict
from concurrent import futures
from contextlib import nullcontext
from functools import partial, reduce

import json
from collections.abc import Collection
import numpy as np
import os
import re
import operator
import urllib.parse
import warnings

import pyarrow as pa
import pyarrow.lib as lib
import pyarrow._parquet as _parquet

from pyarrow._parquet import (ParquetReader, Statistics,  # noqa
                              FileMetaData, RowGroupMetaData,
                              ColumnChunkMetaData,
                              ParquetSchema, ColumnSchema,
                              ParquetLogicalType,
                              FileEncryptionProperties,
                              FileDecryptionProperties)
from pyarrow.fs import (LocalFileSystem, FileSystem,
                        _resolve_filesystem_and_path, _ensure_filesystem)
from pyarrow import filesystem as legacyfs
from pyarrow.util import guid, _is_path_like, _stringify_path, _deprecate_api

_URI_STRIP_SCHEMES = ('hdfs',)


def _parse_uri(path):
    path = _stringify_path(path)
    parsed_uri = urllib.parse.urlparse(path)
    if parsed_uri.scheme in _URI_STRIP_SCHEMES:
        return parsed_uri.path
    else:
        # ARROW-4073: On Windows returning the path with the scheme
        # stripped removes the drive letter, if any
        return path


def _get_filesystem_and_path(passed_filesystem, path):
    if passed_filesystem is None:
        return legacyfs.resolve_filesystem_and_path(path, passed_filesystem)
    else:
        passed_filesystem = legacyfs._ensure_filesystem(passed_filesystem)
        parsed_path = _parse_uri(path)
        return passed_filesystem, parsed_path


def _check_contains_null(val):
    if isinstance(val, bytes):
        for byte in val:
            if isinstance(byte, bytes):
                compare_to = chr(0)
            else:
                compare_to = 0
            if byte == compare_to:
                return True
    elif isinstance(val, str):
        return '\x00' in val
    return False


def _check_filters(filters, check_null_strings=True):
    """
    Check if filters are well-formed.
    """
    if filters is not None:
        if len(filters) == 0 or any(len(f) == 0 for f in filters):
            raise ValueError("Malformed filters")
        if isinstance(filters[0][0], str):
            # We have encountered the situation where we have one nesting level
            # too few:
            #   We have [(,,), ..] instead of [[(,,), ..]]
            filters = [filters]
        if check_null_strings:
            for conjunction in filters:
                for col, op, val in conjunction:
                    if (
                        isinstance(val, list) and
                        all(_check_contains_null(v) for v in val) or
                        _check_contains_null(val)
                    ):
                        raise NotImplementedError(
                            "Null-terminated binary strings are not supported "
                            "as filter values."
                        )
    return filters


_DNF_filter_doc = """Predicates are expressed in disjunctive normal form (DNF),
    like ``[[('x', '=', 0), ...], ...]``. DNF allows arbitrary boolean logical
    combinations of single column predicates. The innermost tuples each
    describe a single column predicate. The list of inner predicates is
    interpreted as a conjunction (AND), forming a more selective and multiple
    column predicate. Finally, the most outer list combines these filters as a
    disjunction (OR).

    Predicates may also be passed as List[Tuple]. This form is interpreted
    as a single conjunction. To express OR in predicates, one must
    use the (preferred) List[List[Tuple]] notation.

    Each tuple has format: (``key``, ``op``, ``value``) and compares the
    ``key`` with the ``value``.
    The supported ``op`` are:  ``=`` or ``==``, ``!=``, ``<``, ``>``, ``<=``,
    ``>=``, ``in`` and ``not in``. If the ``op`` is ``in`` or ``not in``, the
    ``value`` must be a collection such as a ``list``, a ``set`` or a
    ``tuple``.

    Examples:

    .. code-block:: python

        ('x', '=', 0)
        ('y', 'in', ['a', 'b', 'c'])
        ('z', 'not in', {'a','b'})

    """


def filters_to_expression(filters):
    """
    Check if filters are well-formed and convert to an ``Expression``.

    Parameters
    ----------
    filters : List[Tuple] or List[List[Tuple]]

    Notes
    -----
    See internal ``pyarrow._DNF_filter_doc`` attribute for more details.

    Examples
    --------

    >>> filters_to_expression([('foo', '==', 'bar')])
    <pyarrow.compute.Expression (foo == "bar")>

    Returns
    -------
    pyarrow.compute.Expression
    """
    import pyarrow.dataset as ds

    if isinstance(filters, ds.Expression):
        return filters

    filters = _check_filters(filters, check_null_strings=False)

    def convert_single_predicate(col, op, val):
        field = ds.field(col)

        if op == "=" or op == "==":
            return field == val
        elif op == "!=":
            return field != val
        elif op == '<':
            return field < val
        elif op == '>':
            return field > val
        elif op == '<=':
            return field <= val
        elif op == '>=':
            return field >= val
        elif op == 'in':
            return field.isin(val)
        elif op == 'not in':
            return ~field.isin(val)
        else:
            raise ValueError(
                '"{0}" is not a valid operator in predicates.'.format(
                    (col, op, val)))

    disjunction_members = []

    for conjunction in filters:
        conjunction_members = [
            convert_single_predicate(col, op, val)
            for col, op, val in conjunction
        ]

        disjunction_members.append(reduce(operator.and_, conjunction_members))

    return reduce(operator.or_, disjunction_members)


_filters_to_expression = _deprecate_api(
    "_filters_to_expression", "filters_to_expression",
    filters_to_expression, "10.0.0", DeprecationWarning)


# ----------------------------------------------------------------------
# Reading a single Parquet file


[docs]class ParquetFile: """ Reader interface for a single Parquet file. Parameters ---------- source : str, pathlib.Path, pyarrow.NativeFile, or file-like object Readable source. For passing bytes or buffer-like file containing a Parquet file, use pyarrow.BufferReader. metadata : FileMetaData, default None Use existing metadata object, rather than reading from file. common_metadata : FileMetaData, default None Will be used in reads for pandas schema metadata if not found in the main file's metadata, no other uses at the moment. memory_map : bool, default False If the source is a file path, use a memory map to read file, which can improve performance in some environments. buffer_size : int, default 0 If positive, perform read buffering when deserializing individual column chunks. Otherwise IO calls are unbuffered. pre_buffer : bool, default False Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool. read_dictionary : list List of column names to read directly as DictionaryArray. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be inferred as timestamps in nanoseconds. decryption_properties : FileDecryptionProperties, default None File decryption properties for Parquet Modular Encryption. thrift_string_size_limit : int, default None If not None, override the maximum total string size allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files. thrift_container_size_limit : int, default None If not None, override the maximum total size of containers allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files. Examples -------- Generate an example PyArrow Table and write it to Parquet file: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') Create a ``ParquetFile`` object from the Parquet file: >>> parquet_file = pq.ParquetFile('example.parquet') Read the data: >>> parquet_file.read() pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[2,2,4,4,5,100]] animal: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]] Create a ParquetFile object with "animal" column as DictionaryArray: >>> parquet_file = pq.ParquetFile('example.parquet', ... read_dictionary=["animal"]) >>> parquet_file.read() pyarrow.Table n_legs: int64 animal: dictionary<values=string, indices=int32, ordered=0> ---- n_legs: [[2,2,4,4,5,100]] animal: [ -- dictionary: ["Flamingo","Parrot",...,"Brittle stars","Centipede"] -- indices: [0,1,2,3,4,5]] """
[docs] def __init__(self, source, *, metadata=None, common_metadata=None, read_dictionary=None, memory_map=False, buffer_size=0, pre_buffer=False, coerce_int96_timestamp_unit=None, decryption_properties=None, thrift_string_size_limit=None, thrift_container_size_limit=None): self.reader = ParquetReader() self.reader.open( source, use_memory_map=memory_map, buffer_size=buffer_size, pre_buffer=pre_buffer, read_dictionary=read_dictionary, metadata=metadata, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit, decryption_properties=decryption_properties, thrift_string_size_limit=thrift_string_size_limit, thrift_container_size_limit=thrift_container_size_limit, ) self._close_source = getattr(source, 'closed', True) self.common_metadata = common_metadata self._nested_paths_by_prefix = self._build_nested_paths()
def __enter__(self): return self def __exit__(self, *args, **kwargs): self.close() def _build_nested_paths(self): paths = self.reader.column_paths result = defaultdict(list) for i, path in enumerate(paths): key = path[0] rest = path[1:] while True: result[key].append(i) if not rest: break key = '.'.join((key, rest[0])) rest = rest[1:] return result @property def metadata(self): """ Return the Parquet metadata. """ return self.reader.metadata @property def schema(self): """ Return the Parquet schema, unconverted to Arrow types """ return self.metadata.schema @property def schema_arrow(self): """ Return the inferred Arrow schema, converted from the whole Parquet file's schema Examples -------- Generate an example Parquet file: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') Read the Arrow schema: >>> parquet_file.schema_arrow n_legs: int64 animal: string """ return self.reader.schema_arrow @property def num_row_groups(self): """ Return the number of row groups of the Parquet file. Examples -------- >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') >>> parquet_file.num_row_groups 1 """ return self.reader.num_row_groups
[docs] def close(self, force: bool = False): if self._close_source or force: self.reader.close()
@property def closed(self) -> bool: return self.reader.closed
[docs] def read_row_group(self, i, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a single row group from a Parquet file. Parameters ---------- i : int Index of the individual row group that we want to read. columns : list If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.table.Table Content of the row group as a table (of columns) Examples -------- >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') >>> parquet_file.read_row_group(0) pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[2,2,4,4,5,100]] animal: [["Flamingo","Parrot",...,"Brittle stars","Centipede"]] """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_row_group(i, column_indices=column_indices, use_threads=use_threads)
[docs] def read_row_groups(self, row_groups, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a multiple row groups from a Parquet file. Parameters ---------- row_groups : list Only these row groups will be read from the file. columns : list If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.table.Table Content of the row groups as a table (of columns). Examples -------- >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') >>> parquet_file.read_row_groups([0,0]) pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[2,2,4,4,5,...,2,4,4,5,100]] animal: [["Flamingo","Parrot","Dog",...,"Brittle stars","Centipede"]] """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_row_groups(row_groups, column_indices=column_indices, use_threads=use_threads)
[docs] def iter_batches(self, batch_size=65536, row_groups=None, columns=None, use_threads=True, use_pandas_metadata=False): """ Read streaming batches from a Parquet file. Parameters ---------- batch_size : int, default 64K Maximum number of records to yield per batch. Batches may be smaller if there aren't enough rows in the file. row_groups : list Only these row groups will be read from the file. columns : list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : boolean, default True Perform multi-threaded column reads. use_pandas_metadata : boolean, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- iterator of pyarrow.RecordBatch Contents of each batch as a record batch Examples -------- Generate an example Parquet file: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') >>> for i in parquet_file.iter_batches(): ... print("RecordBatch") ... print(i.to_pandas()) ... RecordBatch n_legs animal 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede """ if row_groups is None: row_groups = range(0, self.metadata.num_row_groups) column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) batches = self.reader.iter_batches(batch_size, row_groups=row_groups, column_indices=column_indices, use_threads=use_threads) return batches
[docs] def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read a Table from Parquet format. Parameters ---------- columns : list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.table.Table Content of the file as a table (of columns). Examples -------- Generate an example Parquet file: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') Read a Table: >>> parquet_file.read(columns=["animal"]) pyarrow.Table animal: string ---- animal: [["Flamingo","Parrot",...,"Brittle stars","Centipede"]] """ column_indices = self._get_column_indices( columns, use_pandas_metadata=use_pandas_metadata) return self.reader.read_all(column_indices=column_indices, use_threads=use_threads)
[docs] def scan_contents(self, columns=None, batch_size=65536): """ Read contents of file for the given columns and batch size. Notes ----- This function's primary purpose is benchmarking. The scan is executed on a single thread. Parameters ---------- columns : list of integers, default None Select columns to read, if None scan all columns. batch_size : int, default 64K Number of rows to read at a time internally. Returns ------- num_rows : number of rows in file Examples -------- >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') >>> parquet_file.scan_contents() 6 """ column_indices = self._get_column_indices(columns) return self.reader.scan_contents(column_indices, batch_size=batch_size)
def _get_column_indices(self, column_names, use_pandas_metadata=False): if column_names is None: return None indices = [] for name in column_names: if name in self._nested_paths_by_prefix: indices.extend(self._nested_paths_by_prefix[name]) if use_pandas_metadata: file_keyvalues = self.metadata.metadata common_keyvalues = (self.common_metadata.metadata if self.common_metadata is not None else None) if file_keyvalues and b'pandas' in file_keyvalues: index_columns = _get_pandas_index_columns(file_keyvalues) elif common_keyvalues and b'pandas' in common_keyvalues: index_columns = _get_pandas_index_columns(common_keyvalues) else: index_columns = [] if indices is not None and index_columns: indices += [self.reader.column_name_idx(descr) for descr in index_columns if not isinstance(descr, dict)] return indices
_SPARK_DISALLOWED_CHARS = re.compile('[ ,;{}()\n\t=]') def _sanitized_spark_field_name(name): return _SPARK_DISALLOWED_CHARS.sub('_', name) def _sanitize_schema(schema, flavor): if 'spark' in flavor: sanitized_fields = [] schema_changed = False for field in schema: name = field.name sanitized_name = _sanitized_spark_field_name(name) if sanitized_name != name: schema_changed = True sanitized_field = pa.field(sanitized_name, field.type, field.nullable, field.metadata) sanitized_fields.append(sanitized_field) else: sanitized_fields.append(field) new_schema = pa.schema(sanitized_fields, metadata=schema.metadata) return new_schema, schema_changed else: return schema, False def _sanitize_table(table, new_schema, flavor): # TODO: This will not handle prohibited characters in nested field names if 'spark' in flavor: column_data = [table[i] for i in range(table.num_columns)] return pa.Table.from_arrays(column_data, schema=new_schema) else: return table _parquet_writer_arg_docs = """version : {"1.0", "2.4", "2.6"}, default "2.4" Determine which Parquet logical types are available for use, whether the reduced set from the Parquet 1.x.x format or the expanded logical types added in later format versions. Files written with version='2.4' or '2.6' may not be readable in all Parquet implementations, so version='1.0' is likely the choice that maximizes file compatibility. UINT32 and some logical types are only available with version '2.4'. Nanosecond timestamps are only available with version '2.6'. Other features such as compression algorithms or the new serialized data page format must be enabled separately (see 'compression' and 'data_page_version'). use_dictionary : bool or list Specify if we should use dictionary encoding in general or only for some columns. use_deprecated_int96_timestamps : bool, default None Write timestamps to INT96 Parquet format. Defaults to False unless enabled by flavor argument. This take priority over the coerce_timestamps option. coerce_timestamps : str, default None Cast timestamps to a particular resolution. If omitted, defaults are chosen depending on `version`. By default, for ``version='1.0'`` (the default) and ``version='2.4'``, nanoseconds are cast to microseconds ('us'), while for other `version` values, they are written natively without loss of resolution. Seconds are always cast to milliseconds ('ms') by default, as Parquet does not have any temporal type with seconds resolution. If the casting results in loss of data, it will raise an exception unless ``allow_truncated_timestamps=True`` is given. Valid values: {None, 'ms', 'us'} data_page_size : int, default None Set a target threshold for the approximate encoded size of data pages within a column chunk (in bytes). If None, use the default data page size of 1MByte. allow_truncated_timestamps : bool, default False Allow loss of data when coercing timestamps to a particular resolution. E.g. if microsecond or nanosecond data is lost when coercing to 'ms', do not raise an exception. Passing ``allow_truncated_timestamp=True`` will NOT result in the truncation exception being ignored unless ``coerce_timestamps`` is not None. compression : str or dict Specify the compression codec, either on a general basis or per-column. Valid values: {'NONE', 'SNAPPY', 'GZIP', 'BROTLI', 'LZ4', 'ZSTD'}. write_statistics : bool or list Specify if we should write statistics in general (default is True) or only for some columns. flavor : {'spark'}, default None Sanitize schema or set other compatibility options to work with various target systems. filesystem : FileSystem, default None If nothing passed, will be inferred from `where` if path-like, else `where` is already a file-like object so no filesystem is needed. compression_level : int or dict, default None Specify the compression level for a codec, either on a general basis or per-column. If None is passed, arrow selects the compression level for the compression codec in use. The compression level has a different meaning for each codec, so you have to read the documentation of the codec you are using. An exception is thrown if the compression codec does not allow specifying a compression level. use_byte_stream_split : bool or list, default False Specify if the byte_stream_split encoding should be used in general or only for some columns. If both dictionary and byte_stream_stream are enabled, then dictionary is preferred. The byte_stream_split encoding is valid only for floating-point data types and should be combined with a compression codec. column_encoding : string or dict, default None Specify the encoding scheme on a per column basis. Currently supported values: {'PLAIN', 'BYTE_STREAM_SPLIT'}. Certain encodings are only compatible with certain data types. Please refer to the encodings section of `Reading and writing Parquet files <https://arrow.apache.org/docs/cpp/parquet.html#encodings>`_. data_page_version : {"1.0", "2.0"}, default "1.0" The serialized Parquet data page format version to write, defaults to 1.0. This does not impact the file schema logical types and Arrow to Parquet type casting behavior; for that use the "version" option. use_compliant_nested_type : bool, default False Whether to write compliant Parquet nested type (lists) as defined `here <https://github.com/apache/parquet-format/blob/master/ LogicalTypes.md#nested-types>`_, defaults to ``False``. For ``use_compliant_nested_type=True``, this will write into a list with 3-level structure where the middle level, named ``list``, is a repeated group with a single field named ``element``:: <list-repetition> group <name> (LIST) { repeated group list { <element-repetition> <element-type> element; } } For ``use_compliant_nested_type=False``, this will also write into a list with 3-level structure, where the name of the single field of the middle level ``list`` is taken from the element name for nested columns in Arrow, which defaults to ``item``:: <list-repetition> group <name> (LIST) { repeated group list { <element-repetition> <element-type> item; } } encryption_properties : FileEncryptionProperties, default None File encryption properties for Parquet Modular Encryption. If None, no encryption will be done. The encryption properties can be created using: ``CryptoFactory.file_encryption_properties()``. write_batch_size : int, default None Number of values to write to a page at a time. If None, use the default of 1024. ``write_batch_size`` is complementary to ``data_page_size``. If pages are exceeding the ``data_page_size`` due to large column values, lowering the batch size can help keep page sizes closer to the intended size. dictionary_pagesize_limit : int, default None Specify the dictionary page size limit per row group. If None, use the default 1MB. """ _parquet_writer_example_doc = """\ Generate an example PyArrow Table and RecordBatch: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> batch = pa.record_batch([[2, 2, 4, 4, 5, 100], ... ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]], ... names=['n_legs', 'animal']) create a ParquetWriter object: >>> import pyarrow.parquet as pq >>> writer = pq.ParquetWriter('example.parquet', table.schema) and write the Table into the Parquet file: >>> writer.write_table(table) >>> writer.close() >>> pq.read_table('example.parquet').to_pandas() n_legs animal 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede create a ParquetWriter object for the RecordBatch: >>> writer2 = pq.ParquetWriter('example2.parquet', batch.schema) and write the RecordBatch into the Parquet file: >>> writer2.write_batch(batch) >>> writer2.close() >>> pq.read_table('example2.parquet').to_pandas() n_legs animal 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede """
[docs]class ParquetWriter: __doc__ = """ Class for incrementally building a Parquet file for Arrow tables. Parameters ---------- where : path or file-like object schema : pyarrow.Schema {} writer_engine_version : unused **options : dict If options contains a key `metadata_collector` then the corresponding value is assumed to be a list (or any object with `.append` method) that will be filled with the file metadata instance of the written file. Examples -------- {} """.format(_parquet_writer_arg_docs, _parquet_writer_example_doc)
[docs] def __init__(self, where, schema, filesystem=None, flavor=None, version='2.4', use_dictionary=True, compression='snappy', write_statistics=True, use_deprecated_int96_timestamps=None, compression_level=None, use_byte_stream_split=False, column_encoding=None, writer_engine_version=None, data_page_version='1.0', use_compliant_nested_type=False, encryption_properties=None, write_batch_size=None, dictionary_pagesize_limit=None, **options): if use_deprecated_int96_timestamps is None: # Use int96 timestamps for Spark if flavor is not None and 'spark' in flavor: use_deprecated_int96_timestamps = True else: use_deprecated_int96_timestamps = False self.flavor = flavor if flavor is not None: schema, self.schema_changed = _sanitize_schema(schema, flavor) else: self.schema_changed = False self.schema = schema self.where = where # If we open a file using a filesystem, store file handle so we can be # sure to close it when `self.close` is called. self.file_handle = None filesystem, path = _resolve_filesystem_and_path( where, filesystem, allow_legacy_filesystem=True ) if filesystem is not None: if isinstance(filesystem, legacyfs.FileSystem): # legacy filesystem (eg custom subclass) # TODO deprecate sink = self.file_handle = filesystem.open(path, 'wb') else: # ARROW-10480: do not auto-detect compression. While # a filename like foo.parquet.gz is nonconforming, it # shouldn't implicitly apply compression. sink = self.file_handle = filesystem.open_output_stream( path, compression=None) else: sink = where self._metadata_collector = options.pop('metadata_collector', None) engine_version = 'V2' self.writer = _parquet.ParquetWriter( sink, schema, version=version, compression=compression, use_dictionary=use_dictionary, write_statistics=write_statistics, use_deprecated_int96_timestamps=use_deprecated_int96_timestamps, compression_level=compression_level, use_byte_stream_split=use_byte_stream_split, column_encoding=column_encoding, writer_engine_version=engine_version, data_page_version=data_page_version, use_compliant_nested_type=use_compliant_nested_type, encryption_properties=encryption_properties, write_batch_size=write_batch_size, dictionary_pagesize_limit=dictionary_pagesize_limit, **options) self.is_open = True
def __del__(self): if getattr(self, 'is_open', False): self.close() def __enter__(self): return self def __exit__(self, *args, **kwargs): self.close() # return false since we want to propagate exceptions return False
[docs] def write(self, table_or_batch, row_group_size=None): """ Write RecordBatch or Table to the Parquet file. Parameters ---------- table_or_batch : {RecordBatch, Table} row_group_size : int, default None Maximum size of each written row group. If None, the row group size will be the minimum of the input table or batch length and 64 * 1024 * 1024. """ if isinstance(table_or_batch, pa.RecordBatch): self.write_batch(table_or_batch, row_group_size) elif isinstance(table_or_batch, pa.Table): self.write_table(table_or_batch, row_group_size) else: raise TypeError(type(table_or_batch))
[docs] def write_batch(self, batch, row_group_size=None): """ Write RecordBatch to the Parquet file. Parameters ---------- batch : RecordBatch row_group_size : int, default None Maximum size of each written row group. If None, the row group size will be the minimum of the RecordBatch size and 64 * 1024 * 1024. """ table = pa.Table.from_batches([batch], batch.schema) self.write_table(table, row_group_size)
[docs] def write_table(self, table, row_group_size=None): """ Write Table to the Parquet file. Parameters ---------- table : Table row_group_size : int, default None Maximum size of each written row group. If None, the row group size will be the minimum of the Table size and 64 * 1024 * 1024. """ if self.schema_changed: table = _sanitize_table(table, self.schema, self.flavor) assert self.is_open if not table.schema.equals(self.schema, check_metadata=False): msg = ('Table schema does not match schema used to create file: ' '\ntable:\n{!s} vs. \nfile:\n{!s}' .format(table.schema, self.schema)) raise ValueError(msg) self.writer.write_table(table, row_group_size=row_group_size)
[docs] def close(self): """ Close the connection to the Parquet file. """ if self.is_open: self.writer.close() self.is_open = False if self._metadata_collector is not None: self._metadata_collector.append(self.writer.metadata) if self.file_handle is not None: self.file_handle.close()
def _get_pandas_index_columns(keyvalues): return (json.loads(keyvalues[b'pandas'].decode('utf8')) ['index_columns']) # ---------------------------------------------------------------------- # Metadata container providing instructions about reading a single Parquet # file, possibly part of a partitioned dataset class ParquetDatasetPiece: """ DEPRECATED: A single chunk of a potentially larger Parquet dataset to read. The arguments will indicate to read either a single row group or all row groups, and whether to add partition keys to the resulting pyarrow.Table. .. deprecated:: 5.0 Directly constructing a ``ParquetDatasetPiece`` is deprecated, as well as accessing the pieces of a ``ParquetDataset`` object. Specify ``use_legacy_dataset=False`` when constructing the ``ParquetDataset`` and use the ``ParquetDataset.fragments`` attribute instead. Parameters ---------- path : str or pathlib.Path Path to file in the file system where this piece is located. open_file_func : callable Function to use for obtaining file handle to dataset piece. partition_keys : list of tuples Two-element tuples of ``(column name, ordinal index)``. row_group : int, default None Row group to load. By default, reads all row groups. file_options : dict Options """ def __init__(self, path, open_file_func=partial(open, mode='rb'), file_options=None, row_group=None, partition_keys=None): warnings.warn( "ParquetDatasetPiece is deprecated as of pyarrow 5.0.0 and will " "be removed in a future version.", FutureWarning, stacklevel=2) self._init( path, open_file_func, file_options, row_group, partition_keys) @staticmethod def _create(path, open_file_func=partial(open, mode='rb'), file_options=None, row_group=None, partition_keys=None): self = ParquetDatasetPiece.__new__(ParquetDatasetPiece) self._init( path, open_file_func, file_options, row_group, partition_keys) return self def _init(self, path, open_file_func, file_options, row_group, partition_keys): self.path = _stringify_path(path) self.open_file_func = open_file_func self.row_group = row_group self.partition_keys = partition_keys or [] self.file_options = file_options or {} def __eq__(self, other): if not isinstance(other, ParquetDatasetPiece): return False return (self.path == other.path and self.row_group == other.row_group and self.partition_keys == other.partition_keys) def __repr__(self): return ('{}({!r}, row_group={!r}, partition_keys={!r})' .format(type(self).__name__, self.path, self.row_group, self.partition_keys)) def __str__(self): result = '' if len(self.partition_keys) > 0: partition_str = ', '.join('{}={}'.format(name, index) for name, index in self.partition_keys) result += 'partition[{}] '.format(partition_str) result += self.path if self.row_group is not None: result += ' | row_group={}'.format(self.row_group) return result def get_metadata(self): """ Return the file's metadata. Returns ------- metadata : FileMetaData """ with self.open() as parquet: return parquet.metadata def open(self): """ Return instance of ParquetFile. """ reader = self.open_file_func(self.path) if not isinstance(reader, ParquetFile): reader = ParquetFile(reader, **self.file_options) return reader def read(self, columns=None, use_threads=True, partitions=None, file=None, use_pandas_metadata=False): """ Read this piece as a pyarrow.Table. Parameters ---------- columns : list of column names, default None use_threads : bool, default True Perform multi-threaded column reads. partitions : ParquetPartitions, default None file : file-like object Passed to ParquetFile. use_pandas_metadata : bool If pandas metadata should be used or not. Returns ------- table : pyarrow.Table """ if self.open_file_func is not None: reader = self.open() elif file is not None: reader = ParquetFile(file, **self.file_options) else: # try to read the local path reader = ParquetFile(self.path, **self.file_options) options = dict(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata) if self.row_group is not None: table = reader.read_row_group(self.row_group, **options) else: table = reader.read(**options) if len(self.partition_keys) > 0: if partitions is None: raise ValueError('Must pass partition sets') # Here, the index is the categorical code of the partition where # this piece is located. Suppose we had # # /foo=a/0.parq # /foo=b/0.parq # /foo=c/0.parq # # Then we assign a=0, b=1, c=2. And the resulting Table pieces will # have a DictionaryArray column named foo having the constant index # value as indicated. The distinct categories of the partition have # been computed in the ParquetManifest for i, (name, index) in enumerate(self.partition_keys): # The partition code is the same for all values in this piece indices = np.full(len(table), index, dtype='i4') # This is set of all partition values, computed as part of the # manifest, so ['a', 'b', 'c'] as in our example above. dictionary = partitions.levels[i].dictionary arr = pa.DictionaryArray.from_arrays(indices, dictionary) table = table.append_column(name, arr) # To ParquetFile the source looked like it was already open, so won't # actually close it without overriding. reader.close(force=True) return table class PartitionSet: """ A data structure for cataloguing the observed Parquet partitions at a particular level. So if we have /foo=a/bar=0 /foo=a/bar=1 /foo=a/bar=2 /foo=b/bar=0 /foo=b/bar=1 /foo=b/bar=2 Then we have two partition sets, one for foo, another for bar. As we visit levels of the partition hierarchy, a PartitionSet tracks the distinct values and assigns categorical codes to use when reading the pieces Parameters ---------- name : str Name of the partition set. Under which key to collect all values. keys : list All possible values that have been collected for that partition set. """ def __init__(self, name, keys=None): self.name = name self.keys = keys or [] self.key_indices = {k: i for i, k in enumerate(self.keys)} self._dictionary = None def get_index(self, key): """ Get the index of the partition value if it is known, otherwise assign one Parameters ---------- key : The value for which we want to known the index. """ if key in self.key_indices: return self.key_indices[key] else: index = len(self.key_indices) self.keys.append(key) self.key_indices[key] = index return index @property def dictionary(self): if self._dictionary is not None: return self._dictionary if len(self.keys) == 0: raise ValueError('No known partition keys') # Only integer and string partition types are supported right now try: integer_keys = [int(x) for x in self.keys] dictionary = lib.array(integer_keys) except ValueError: dictionary = lib.array(self.keys) self._dictionary = dictionary return dictionary @property def is_sorted(self): return list(self.keys) == sorted(self.keys) class ParquetPartitions: def __init__(self): self.levels = [] self.partition_names = set() def __len__(self): return len(self.levels) def __getitem__(self, i): return self.levels[i] def equals(self, other): if not isinstance(other, ParquetPartitions): raise TypeError('`other` must be an instance of ParquetPartitions') return (self.levels == other.levels and self.partition_names == other.partition_names) def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented def get_index(self, level, name, key): """ Record a partition value at a particular level, returning the distinct code for that value at that level. Examples -------- partitions.get_index(1, 'foo', 'a') returns 0 partitions.get_index(1, 'foo', 'b') returns 1 partitions.get_index(1, 'foo', 'c') returns 2 partitions.get_index(1, 'foo', 'a') returns 0 Parameters ---------- level : int The nesting level of the partition we are observing name : str The partition name key : str or int The partition value """ if level == len(self.levels): if name in self.partition_names: raise ValueError('{} was the name of the partition in ' 'another level'.format(name)) part_set = PartitionSet(name) self.levels.append(part_set) self.partition_names.add(name) return self.levels[level].get_index(key) def filter_accepts_partition(self, part_key, filter, level): p_column, p_value_index = part_key f_column, op, f_value = filter if p_column != f_column: return True f_type = type(f_value) if op in {'in', 'not in'}: if not isinstance(f_value, Collection): raise TypeError( "'%s' object is not a collection", f_type.__name__) if not f_value: raise ValueError("Cannot use empty collection as filter value") if len({type(item) for item in f_value}) != 1: raise ValueError("All elements of the collection '%s' must be" " of same type", f_value) f_type = type(next(iter(f_value))) elif not isinstance(f_value, str) and isinstance(f_value, Collection): raise ValueError( "Op '%s' not supported with a collection value", op) p_value = f_type(self.levels[level] .dictionary[p_value_index].as_py()) if op == "=" or op == "==": return p_value == f_value elif op == "!=": return p_value != f_value elif op == '<': return p_value < f_value elif op == '>': return p_value > f_value elif op == '<=': return p_value <= f_value elif op == '>=': return p_value >= f_value elif op == 'in': return p_value in f_value elif op == 'not in': return p_value not in f_value else: raise ValueError("'%s' is not a valid operator in predicates.", filter[1]) class ParquetManifest: def __init__(self, dirpath, open_file_func=None, filesystem=None, pathsep='/', partition_scheme='hive', metadata_nthreads=1): filesystem, dirpath = _get_filesystem_and_path(filesystem, dirpath) self.filesystem = filesystem self.open_file_func = open_file_func self.pathsep = pathsep self.dirpath = _stringify_path(dirpath) self.partition_scheme = partition_scheme self.partitions = ParquetPartitions() self.pieces = [] self._metadata_nthreads = metadata_nthreads self._thread_pool = futures.ThreadPoolExecutor( max_workers=metadata_nthreads) self.common_metadata_path = None self.metadata_path = None self._visit_level(0, self.dirpath, []) # Due to concurrency, pieces will potentially by out of order if the # dataset is partitioned so we sort them to yield stable results self.pieces.sort(key=lambda piece: piece.path) if self.common_metadata_path is None: # _common_metadata is a subset of _metadata self.common_metadata_path = self.metadata_path self._thread_pool.shutdown() def _visit_level(self, level, base_path, part_keys): fs = self.filesystem _, directories, files = next(fs.walk(base_path)) filtered_files = [] for path in files: full_path = self.pathsep.join((base_path, path)) if path.endswith('_common_metadata'): self.common_metadata_path = full_path elif path.endswith('_metadata'): self.metadata_path = full_path elif self._should_silently_exclude(path): continue else: filtered_files.append(full_path) # ARROW-1079: Filter out "private" directories starting with underscore filtered_directories = [self.pathsep.join((base_path, x)) for x in directories if not _is_private_directory(x)] filtered_files.sort() filtered_directories.sort() if len(filtered_files) > 0 and len(filtered_directories) > 0: raise ValueError('Found files in an intermediate ' 'directory: {}'.format(base_path)) elif len(filtered_directories) > 0: self._visit_directories(level, filtered_directories, part_keys) else: self._push_pieces(filtered_files, part_keys) def _should_silently_exclude(self, file_name): return (file_name.endswith('.crc') or # Checksums file_name.endswith('_$folder$') or # HDFS directories in S3 file_name.startswith('.') or # Hidden files starting with . file_name.startswith('_') or # Hidden files starting with _ file_name in EXCLUDED_PARQUET_PATHS) def _visit_directories(self, level, directories, part_keys): futures_list = [] for path in directories: head, tail = _path_split(path, self.pathsep) name, key = _parse_hive_partition(tail) index = self.partitions.get_index(level, name, key) dir_part_keys = part_keys + [(name, index)] # If you have less threads than levels, the wait call will block # indefinitely due to multiple waits within a thread. if level < self._metadata_nthreads: future = self._thread_pool.submit(self._visit_level, level + 1, path, dir_part_keys) futures_list.append(future) else: self._visit_level(level + 1, path, dir_part_keys) if futures_list: futures.wait(futures_list) def _parse_partition(self, dirname): if self.partition_scheme == 'hive': return _parse_hive_partition(dirname) else: raise NotImplementedError('partition schema: {}' .format(self.partition_scheme)) def _push_pieces(self, files, part_keys): self.pieces.extend([ ParquetDatasetPiece._create(path, partition_keys=part_keys, open_file_func=self.open_file_func) for path in files ]) def _parse_hive_partition(value): if '=' not in value: raise ValueError('Directory name did not appear to be a ' 'partition: {}'.format(value)) return value.split('=', 1) def _is_private_directory(x): _, tail = os.path.split(x) return (tail.startswith('_') or tail.startswith('.')) and '=' not in tail def _path_split(path, sep): i = path.rfind(sep) + 1 head, tail = path[:i], path[i:] head = head.rstrip(sep) return head, tail EXCLUDED_PARQUET_PATHS = {'_SUCCESS'} class _ParquetDatasetMetadata: __slots__ = ('fs', 'memory_map', 'read_dictionary', 'common_metadata', 'buffer_size') def _open_dataset_file(dataset, path, meta=None): if (dataset.fs is not None and not isinstance(dataset.fs, legacyfs.LocalFileSystem)): path = dataset.fs.open(path, mode='rb') return ParquetFile( path, metadata=meta, memory_map=dataset.memory_map, read_dictionary=dataset.read_dictionary, common_metadata=dataset.common_metadata, buffer_size=dataset.buffer_size ) _DEPR_MSG = ( "'{}' attribute is deprecated as of pyarrow 5.0.0 and will be removed " "in a future version.{}" ) _read_docstring_common = """\ read_dictionary : list, default None List of names or column paths (for nested types) to read directly as DictionaryArray. Only supported for BYTE_ARRAY storage. To read a flat column as dictionary-encoded pass the column name. For nested types, you must pass the full column "path", which could be something like level1.level2.list.item. Refer to the Parquet file's schema to obtain the paths. memory_map : bool, default False If the source is a file path, use a memory map to read file, which can improve performance in some environments. buffer_size : int, default 0 If positive, perform read buffering when deserializing individual column chunks. Otherwise IO calls are unbuffered. partitioning : pyarrow.dataset.Partitioning or str or list of str, \ default "hive" The partitioning scheme for a partitioned dataset. The default of "hive" assumes directory names with key=value pairs like "/year=2009/month=11". In addition, a scheme like "/2009/11" is also supported, in which case you need to specify the field names or a full schema. See the ``pyarrow.dataset.partitioning()`` function for more details.""" _parquet_dataset_example = """\ Generate an example PyArrow Table and write it to a partitioned dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_name', ... partition_cols=['year'], ... use_legacy_dataset=False) create a ParquetDataset object from the dataset source: >>> dataset = pq.ParquetDataset('dataset_name/', use_legacy_dataset=False) and read the data: >>> dataset.read().to_pandas() n_legs animal year 0 5 Brittle stars 2019 1 2 Flamingo 2020 2 4 Dog 2021 3 100 Centipede 2021 4 2 Parrot 2022 5 4 Horse 2022 create a ParquetDataset object with filter: >>> dataset = pq.ParquetDataset('dataset_name/', use_legacy_dataset=False, ... filters=[('n_legs','=',4)]) >>> dataset.read().to_pandas() n_legs animal year 0 4 Dog 2021 1 4 Horse 2022 """
[docs]class ParquetDataset: __doc__ = """ Encapsulates details of reading a complete Parquet dataset possibly consisting of multiple files and partitions in subdirectories. Parameters ---------- path_or_paths : str or List[str] A directory name, single file name, or list of file names. filesystem : FileSystem, default None If nothing passed, will be inferred based on path. Path will try to be found in the local on-disk filesystem otherwise it will be parsed as an URI to determine the filesystem. metadata : pyarrow.parquet.FileMetaData Use metadata obtained elsewhere to validate file schemas. schema : pyarrow.parquet.Schema Use schema obtained elsewhere to validate file schemas. Alternative to metadata parameter. split_row_groups : bool, default False Divide files into pieces for each row group in the file. validate_schema : bool, default True Check that individual file schemas are all the same / compatible. filters : List[Tuple] or List[List[Tuple]] or None (default) Rows which do not match the filter predicate will be removed from scanned data. Partition keys embedded in a nested directory structure will be exploited to avoid loading files at all if they contain no matching rows. If `use_legacy_dataset` is True, filters can only reference partition keys and only a hive-style directory structure is supported. When setting `use_legacy_dataset` to False, also within-file level filtering and different partitioning schemes are supported. {1} metadata_nthreads : int, default 1 How many threads to allow the thread pool which is used to read the dataset metadata. Increasing this is helpful to read partitioned datasets. {0} use_legacy_dataset : bool, default True Set to False to enable the new code path (using the new Arrow Dataset API). Among other things, this allows to pass `filters` for all columns and not only the partition keys, enables different partitioning schemes, etc. pre_buffer : bool, default True Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool. This option is only supported for use_legacy_dataset=False. If using a filesystem layer that itself performs readahead (e.g. fsspec's S3FS), disable readahead for best results. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be inferred as timestamps in nanoseconds. thrift_string_size_limit : int, default None If not None, override the maximum total string size allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files. thrift_container_size_limit : int, default None If not None, override the maximum total size of containers allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files. Examples -------- {2} """.format(_read_docstring_common, _DNF_filter_doc, _parquet_dataset_example) def __new__(cls, path_or_paths=None, filesystem=None, schema=None, metadata=None, split_row_groups=False, validate_schema=True, filters=None, metadata_nthreads=None, read_dictionary=None, memory_map=False, buffer_size=0, partitioning="hive", use_legacy_dataset=None, pre_buffer=True, coerce_int96_timestamp_unit=None, thrift_string_size_limit=None, thrift_container_size_limit=None): if use_legacy_dataset is None: # if a new filesystem is passed -> default to new implementation if isinstance(filesystem, FileSystem): use_legacy_dataset = False # otherwise the default is still True else: use_legacy_dataset = True if not use_legacy_dataset: return _ParquetDatasetV2( path_or_paths, filesystem=filesystem, filters=filters, partitioning=partitioning, read_dictionary=read_dictionary, memory_map=memory_map, buffer_size=buffer_size, pre_buffer=pre_buffer, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit, # unsupported keywords schema=schema, metadata=metadata, split_row_groups=split_row_groups, validate_schema=validate_schema, metadata_nthreads=metadata_nthreads, thrift_string_size_limit=thrift_string_size_limit, thrift_container_size_limit=thrift_container_size_limit, ) self = object.__new__(cls) return self
[docs] def __init__(self, path_or_paths, filesystem=None, schema=None, metadata=None, split_row_groups=False, validate_schema=True, filters=None, metadata_nthreads=None, read_dictionary=None, memory_map=False, buffer_size=0, partitioning="hive", use_legacy_dataset=True, pre_buffer=True, coerce_int96_timestamp_unit=None, thrift_string_size_limit=None, thrift_container_size_limit=None): if partitioning != "hive": raise ValueError( 'Only "hive" for hive-like partitioning is supported when ' 'using use_legacy_dataset=True') if metadata_nthreads is not None: warnings.warn( "Specifying the 'metadata_nthreads' argument is deprecated as " "of pyarrow 8.0.0, and the argument will be removed in a " "future version", FutureWarning, stacklevel=2, ) else: metadata_nthreads = 1 self._ds_metadata = _ParquetDatasetMetadata() a_path = path_or_paths if isinstance(a_path, list): a_path = a_path[0] self._ds_metadata.fs, _ = _get_filesystem_and_path(filesystem, a_path) if isinstance(path_or_paths, list): self.paths = [_parse_uri(path) for path in path_or_paths] else: self.paths = _parse_uri(path_or_paths) self._ds_metadata.read_dictionary = read_dictionary self._ds_metadata.memory_map = memory_map self._ds_metadata.buffer_size = buffer_size (self._pieces, self._partitions, self._common_metadata_path, self._metadata_path) = _make_manifest( path_or_paths, self._fs, metadata_nthreads=metadata_nthreads, open_file_func=partial(_open_dataset_file, self._ds_metadata) ) if self._common_metadata_path is not None: with self._fs.open(self._common_metadata_path) as f: self._ds_metadata.common_metadata = read_metadata( f, memory_map=memory_map ) else: self._ds_metadata.common_metadata = None if metadata is not None: warnings.warn( "Specifying the 'metadata' argument with 'use_legacy_dataset=" "True' is deprecated as of pyarrow 8.0.0.", FutureWarning, stacklevel=2) if metadata is None and self._metadata_path is not None: with self._fs.open(self._metadata_path) as f: self._metadata = read_metadata(f, memory_map=memory_map) else: self._metadata = metadata if schema is not None: warnings.warn( "Specifying the 'schema' argument with 'use_legacy_dataset=" "True' is deprecated as of pyarrow 8.0.0. You can still " "specify it in combination with 'use_legacy_dataet=False', " "but in that case you need to specify a pyarrow.Schema " "instead of a ParquetSchema.", FutureWarning, stacklevel=2) self._schema = schema self.split_row_groups = split_row_groups if split_row_groups: raise NotImplementedError("split_row_groups not yet implemented") if filters is not None: if hasattr(filters, "cast"): raise TypeError( "Expressions as filter not supported for legacy dataset") filters = _check_filters(filters) self._filter(filters) if validate_schema: self.validate_schemas()
[docs] def equals(self, other): if not isinstance(other, ParquetDataset): raise TypeError('`other` must be an instance of ParquetDataset') if self._fs.__class__ != other._fs.__class__: return False for prop in ('paths', '_pieces', '_partitions', '_common_metadata_path', '_metadata_path', '_common_metadata', '_metadata', '_schema', 'split_row_groups'): if getattr(self, prop) != getattr(other, prop): return False for prop in ('memory_map', 'buffer_size'): if ( getattr(self._ds_metadata, prop) != getattr(other._ds_metadata, prop) ): return False return True
def __eq__(self, other): try: return self.equals(other) except TypeError: return NotImplemented
[docs] def validate_schemas(self): if self._metadata is None and self._schema is None: if self._common_metadata is not None: self._schema = self._common_metadata.schema else: self._schema = self._pieces[0].get_metadata().schema elif self._schema is None: self._schema = self._metadata.schema # Verify schemas are all compatible dataset_schema = self._schema.to_arrow_schema() # Exclude the partition columns from the schema, they are provided # by the path, not the DatasetPiece if self._partitions is not None: for partition_name in self._partitions.partition_names: if dataset_schema.get_field_index(partition_name) != -1: field_idx = dataset_schema.get_field_index(partition_name) dataset_schema = dataset_schema.remove(field_idx) for piece in self._pieces: file_metadata = piece.get_metadata() file_schema = file_metadata.schema.to_arrow_schema() if not dataset_schema.equals(file_schema, check_metadata=False): raise ValueError('Schema in {!s} was different. \n' '{!s}\n\nvs\n\n{!s}' .format(piece, file_schema, dataset_schema))
[docs] def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read multiple Parquet files as a single pyarrow.Table. Parameters ---------- columns : List[str] Names of columns to read from the file. use_threads : bool, default True Perform multi-threaded column reads use_pandas_metadata : bool, default False Passed through to each dataset piece. Returns ------- pyarrow.Table Content of the file as a table (of columns). Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_name_read', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_name_read/', ... use_legacy_dataset=False) Read multiple Parquet files as a single pyarrow.Table: >>> dataset.read(columns=["n_legs"]) pyarrow.Table n_legs: int64 ---- n_legs: [[5],[2],[4,100],[2,4]] """ tables = [] for piece in self._pieces: table = piece.read(columns=columns, use_threads=use_threads, partitions=self._partitions, use_pandas_metadata=use_pandas_metadata) tables.append(table) all_data = lib.concat_tables(tables) if use_pandas_metadata: # We need to ensure that this metadata is set in the Table's schema # so that Table.to_pandas will construct pandas.DataFrame with the # right index common_metadata = self._get_common_pandas_metadata() current_metadata = all_data.schema.metadata or {} if common_metadata and b'pandas' not in current_metadata: all_data = all_data.replace_schema_metadata({ b'pandas': common_metadata}) return all_data
[docs] def read_pandas(self, **kwargs): """ Read dataset including pandas metadata, if any. Other arguments passed through to ParquetDataset.read, see docstring for further details. Parameters ---------- **kwargs : optional All additional options to pass to the reader. Returns ------- pyarrow.Table Content of the file as a table (of columns). Examples -------- Generate an example PyArrow Table and write it to a partitioned dataset: >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'table.parquet') >>> dataset = pq.ParquetDataset('table.parquet', ... use_legacy_dataset=False) Read dataset including pandas metadata: >>> dataset.read_pandas(columns=["n_legs"]) pyarrow.Table n_legs: int64 ---- n_legs: [[2,2,4,4,5,100]] Select pandas metadata: >>> dataset.read_pandas(columns=["n_legs"]).schema.pandas_metadata {'index_columns': [{'kind': 'range', 'name': None, 'start': 0, ...} """ return self.read(use_pandas_metadata=True, **kwargs)
def _get_common_pandas_metadata(self): if self._common_metadata is None: return None keyvalues = self._common_metadata.metadata return keyvalues.get(b'pandas', None) def _filter(self, filters): accepts_filter = self._partitions.filter_accepts_partition def one_filter_accepts(piece, filter): return all(accepts_filter(part_key, filter, level) for level, part_key in enumerate(piece.partition_keys)) def all_filters_accept(piece): return any(all(one_filter_accepts(piece, f) for f in conjunction) for conjunction in filters) self._pieces = [p for p in self._pieces if all_filters_accept(p)] @property def pieces(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format( "ParquetDataset.pieces", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.fragments' attribute " "instead."), FutureWarning, stacklevel=2) return self._pieces @property def partitions(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format( "ParquetDataset.partitions", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.partitioning' attribute " "instead."), FutureWarning, stacklevel=2) return self._partitions @property def schema(self): warnings.warn( _DEPR_MSG.format( "ParquetDataset.schema", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.schema' attribute " "instead (which will return an Arrow schema instead of a " "Parquet schema)."), FutureWarning, stacklevel=2) return self._schema @property def memory_map(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.memory_map", ""), FutureWarning, stacklevel=2) return self._ds_metadata.memory_map @property def read_dictionary(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.read_dictionary", ""), FutureWarning, stacklevel=2) return self._ds_metadata.read_dictionary @property def buffer_size(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.buffer_size", ""), FutureWarning, stacklevel=2) return self._ds_metadata.buffer_size _fs = property( operator.attrgetter('_ds_metadata.fs') ) @property def fs(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format( "ParquetDataset.fs", " Specify 'use_legacy_dataset=False' while constructing the " "ParquetDataset, and then use the '.filesystem' attribute " "instead."), FutureWarning, stacklevel=2) return self._ds_metadata.fs @property def metadata(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.metadata", ""), FutureWarning, stacklevel=2) return self._metadata @property def metadata_path(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.metadata_path", ""), FutureWarning, stacklevel=2) return self._metadata_path @property def common_metadata_path(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.common_metadata_path", ""), FutureWarning, stacklevel=2) return self._common_metadata_path _common_metadata = property( operator.attrgetter('_ds_metadata.common_metadata') ) @property def common_metadata(self): """ DEPRECATED """ warnings.warn( _DEPR_MSG.format("ParquetDataset.common_metadata", ""), FutureWarning, stacklevel=2) return self._ds_metadata.common_metadata @property def fragments(self): """ A list of the Dataset source fragments or pieces with absolute file paths. To use this property set 'use_legacy_dataset=False' while constructing ParquetDataset object. Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_name_fragments', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_name_fragments/', ... use_legacy_dataset=False) List the fragments: >>> dataset.fragments [<pyarrow.dataset.ParquetFileFragment path=dataset_name_fragments/... """ raise NotImplementedError( "To use this property set 'use_legacy_dataset=False' while " "constructing the ParquetDataset") @property def files(self): """ A list of absolute Parquet file paths in the Dataset source. To use this property set 'use_legacy_dataset=False' while constructing ParquetDataset object. Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_name_files', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_name_files/', ... use_legacy_dataset=False) List the files: >>> dataset.files ['dataset_name_files/year=2019/...-0.parquet', ... """ raise NotImplementedError( "To use this property set 'use_legacy_dataset=False' while " "constructing the ParquetDataset") @property def filesystem(self): """ The filesystem type of the Dataset source. To use this property set 'use_legacy_dataset=False' while constructing ParquetDataset object. """ raise NotImplementedError( "To use this property set 'use_legacy_dataset=False' while " "constructing the ParquetDataset") @property def partitioning(self): """ The partitioning of the Dataset source, if discovered. To use this property set 'use_legacy_dataset=False' while constructing ParquetDataset object. """ raise NotImplementedError( "To use this property set 'use_legacy_dataset=False' while " "constructing the ParquetDataset")
def _make_manifest(path_or_paths, fs, pathsep='/', metadata_nthreads=1, open_file_func=None): partitions = None common_metadata_path = None metadata_path = None if isinstance(path_or_paths, list) and len(path_or_paths) == 1: # Dask passes a directory as a list of length 1 path_or_paths = path_or_paths[0] if _is_path_like(path_or_paths) and fs.isdir(path_or_paths): manifest = ParquetManifest(path_or_paths, filesystem=fs, open_file_func=open_file_func, pathsep=getattr(fs, "pathsep", "/"), metadata_nthreads=metadata_nthreads) common_metadata_path = manifest.common_metadata_path metadata_path = manifest.metadata_path pieces = manifest.pieces partitions = manifest.partitions else: if not isinstance(path_or_paths, list): path_or_paths = [path_or_paths] # List of paths if len(path_or_paths) == 0: raise ValueError('Must pass at least one file path') pieces = [] for path in path_or_paths: if not fs.isfile(path): raise OSError('Passed non-file path: {}' .format(path)) piece = ParquetDatasetPiece._create( path, open_file_func=open_file_func) pieces.append(piece) return pieces, partitions, common_metadata_path, metadata_path def _is_local_file_system(fs): return isinstance(fs, LocalFileSystem) or isinstance( fs, legacyfs.LocalFileSystem ) class _ParquetDatasetV2: """ ParquetDataset shim using the Dataset API under the hood. Examples -------- Generate an example PyArrow Table and write it to a partitioned dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_v2', ... partition_cols=['year'], ... use_legacy_dataset=False) create a ParquetDataset object from the dataset source: >>> dataset = pq.ParquetDataset('dataset_v2/', use_legacy_dataset=False) and read the data: >>> dataset.read().to_pandas() n_legs animal year 0 5 Brittle stars 2019 1 2 Flamingo 2020 2 4 Dog 2021 3 100 Centipede 2021 4 2 Parrot 2022 5 4 Horse 2022 create a ParquetDataset object with filter: >>> dataset = pq.ParquetDataset('dataset_v2/', ... filters=[('n_legs','=',4)], ... use_legacy_dataset=False) >>> dataset.read().to_pandas() n_legs animal year 0 4 Dog 2021 1 4 Horse 2022 """ def __init__(self, path_or_paths, filesystem=None, *, filters=None, partitioning="hive", read_dictionary=None, buffer_size=None, memory_map=False, ignore_prefixes=None, pre_buffer=True, coerce_int96_timestamp_unit=None, schema=None, decryption_properties=None, thrift_string_size_limit=None, thrift_container_size_limit=None, **kwargs): import pyarrow.dataset as ds # Raise error for not supported keywords for keyword, default in [ ("metadata", None), ("split_row_groups", False), ("validate_schema", True), ("metadata_nthreads", None)]: if keyword in kwargs and kwargs[keyword] is not default: raise ValueError( "Keyword '{0}' is not yet supported with the new " "Dataset API".format(keyword)) # map format arguments read_options = { "pre_buffer": pre_buffer, "coerce_int96_timestamp_unit": coerce_int96_timestamp_unit, "thrift_string_size_limit": thrift_string_size_limit, "thrift_container_size_limit": thrift_container_size_limit, } if buffer_size: read_options.update(use_buffered_stream=True, buffer_size=buffer_size) if read_dictionary is not None: read_options.update(dictionary_columns=read_dictionary) if decryption_properties is not None: read_options.update(decryption_properties=decryption_properties) self._filter_expression = None if filters is not None: self._filter_expression = filters_to_expression(filters) # map old filesystems to new one if filesystem is not None: filesystem = _ensure_filesystem( filesystem, use_mmap=memory_map) elif filesystem is None and memory_map: # if memory_map is specified, assume local file system (string # path can in principle be URI for any filesystem) filesystem = LocalFileSystem(use_mmap=memory_map) # This needs to be checked after _ensure_filesystem, because that # handles the case of an fsspec LocalFileSystem if ( hasattr(path_or_paths, "__fspath__") and filesystem is not None and not _is_local_file_system(filesystem) ): raise TypeError( "Path-like objects with __fspath__ must only be used with " f"local file systems, not {type(filesystem)}" ) # check for single fragment dataset single_file = None if not isinstance(path_or_paths, list): if _is_path_like(path_or_paths): path_or_paths = _stringify_path(path_or_paths) if filesystem is None: # path might be a URI describing the FileSystem as well try: filesystem, path_or_paths = FileSystem.from_uri( path_or_paths) except ValueError: filesystem = LocalFileSystem(use_mmap=memory_map) if filesystem.get_file_info(path_or_paths).is_file: single_file = path_or_paths else: single_file = path_or_paths parquet_format = ds.ParquetFileFormat(**read_options) if single_file is not None: fragment = parquet_format.make_fragment(single_file, filesystem) self._dataset = ds.FileSystemDataset( [fragment], schema=schema or fragment.physical_schema, format=parquet_format, filesystem=fragment.filesystem ) return # check partitioning to enable dictionary encoding if partitioning == "hive": partitioning = ds.HivePartitioning.discover( infer_dictionary=True) self._dataset = ds.dataset(path_or_paths, filesystem=filesystem, schema=schema, format=parquet_format, partitioning=partitioning, ignore_prefixes=ignore_prefixes) @property def schema(self): """ Schema of the Dataset. Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_v2_schema', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_v2_schema/', ... use_legacy_dataset=False) Read the schema: >>> dataset.schema n_legs: int64 animal: string year: dictionary<values=int32, indices=int32, ordered=0> """ return self._dataset.schema def read(self, columns=None, use_threads=True, use_pandas_metadata=False): """ Read (multiple) Parquet files as a single pyarrow.Table. Parameters ---------- columns : List[str] Names of columns to read from the dataset. The partition fields are not automatically included (in contrast to when setting ``use_legacy_dataset=True``). use_threads : bool, default True Perform multi-threaded column reads. use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded. Returns ------- pyarrow.Table Content of the file as a table (of columns). Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_v2_read', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_v2_read/', ... use_legacy_dataset=False) Read the dataset: >>> dataset.read(columns=["n_legs"]) pyarrow.Table n_legs: int64 ---- n_legs: [[5],[2],[4,100],[2,4]] """ # if use_pandas_metadata, we need to include index columns in the # column selection, to be able to restore those in the pandas DataFrame metadata = self.schema.metadata if columns is not None and use_pandas_metadata: if metadata and b'pandas' in metadata: # RangeIndex can be represented as dict instead of column name index_columns = [ col for col in _get_pandas_index_columns(metadata) if not isinstance(col, dict) ] columns = ( list(columns) + list(set(index_columns) - set(columns)) ) table = self._dataset.to_table( columns=columns, filter=self._filter_expression, use_threads=use_threads ) # if use_pandas_metadata, restore the pandas metadata (which gets # lost if doing a specific `columns` selection in to_table) if use_pandas_metadata: if metadata and b"pandas" in metadata: new_metadata = table.schema.metadata or {} new_metadata.update({b"pandas": metadata[b"pandas"]}) table = table.replace_schema_metadata(new_metadata) return table def read_pandas(self, **kwargs): """ Read dataset including pandas metadata, if any. Other arguments passed through to ParquetDataset.read, see docstring for further details. Examples -------- Generate an example parquet file: >>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'table_V2.parquet') >>> dataset = pq.ParquetDataset('table_V2.parquet', ... use_legacy_dataset=False) Read the dataset with pandas metadata: >>> dataset.read_pandas(columns=["n_legs"]) pyarrow.Table n_legs: int64 ---- n_legs: [[2,2,4,4,5,100]] >>> dataset.read_pandas(columns=["n_legs"]).schema.pandas_metadata {'index_columns': [{'kind': 'range', 'name': None, 'start': 0, ...} """ return self.read(use_pandas_metadata=True, **kwargs) @property def pieces(self): warnings.warn( _DEPR_MSG.format("ParquetDataset.pieces", " Use the '.fragments' attribute instead"), FutureWarning, stacklevel=2) return list(self._dataset.get_fragments()) @property def fragments(self): """ A list of the Dataset source fragments or pieces with absolute file paths. Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_v2_fragments', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_v2_fragments/', ... use_legacy_dataset=False) List the fragments: >>> dataset.fragments [<pyarrow.dataset.ParquetFileFragment path=dataset_v2_fragments/... """ return list(self._dataset.get_fragments()) @property def files(self): """ A list of absolute Parquet file paths in the Dataset source. Examples -------- Generate an example dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_v2_files', ... partition_cols=['year'], ... use_legacy_dataset=False) >>> dataset = pq.ParquetDataset('dataset_v2_files/', ... use_legacy_dataset=False) List the files: >>> dataset.files ['dataset_v2_files/year=2019/...-0.parquet', ... """ return self._dataset.files @property def filesystem(self): """ The filesystem type of the Dataset source. """ return self._dataset.filesystem @property def partitioning(self): """ The partitioning of the Dataset source, if discovered. """ return self._dataset.partitioning _read_table_docstring = """ {0} Parameters ---------- source : str, pyarrow.NativeFile, or file-like object If a string passed, can be a single file name or directory name. For file-like objects, only read a single file. Use pyarrow.BufferReader to read a file contained in a bytes or buffer-like object. columns : list If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e'. If empty, no columns will be read. Note that the table will still have the correct num_rows set despite having no columns. use_threads : bool, default True Perform multi-threaded column reads. metadata : FileMetaData If separately computed schema : Schema, optional Optionally provide the Schema for the parquet dataset, in which case it will not be inferred from the source. {1} use_legacy_dataset : bool, default False By default, `read_table` uses the new Arrow Datasets API since pyarrow 1.0.0. Among other things, this allows to pass `filters` for all columns and not only the partition keys, enables different partitioning schemes, etc. Set to True to use the legacy behaviour (this option is deprecated, and the legacy implementation will be removed in a future version). ignore_prefixes : list, optional Files matching any of these prefixes will be ignored by the discovery process if use_legacy_dataset=False. This is matched to the basename of a path. By default this is ['.', '_']. Note that discovery happens only if a directory is passed as source. filesystem : FileSystem, default None If nothing passed, will be inferred based on path. Path will try to be found in the local on-disk filesystem otherwise it will be parsed as an URI to determine the filesystem. filters : List[Tuple] or List[List[Tuple]] or None (default) Rows which do not match the filter predicate will be removed from scanned data. Partition keys embedded in a nested directory structure will be exploited to avoid loading files at all if they contain no matching rows. If `use_legacy_dataset` is True, filters can only reference partition keys and only a hive-style directory structure is supported. When setting `use_legacy_dataset` to False, also within-file level filtering and different partitioning schemes are supported. {3} pre_buffer : bool, default True Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool. This option is only supported for use_legacy_dataset=False. If using a filesystem layer that itself performs readahead (e.g. fsspec's S3FS), disable readahead for best results. coerce_int96_timestamp_unit : str, default None. Cast timestamps that are stored in INT96 format to a particular resolution (e.g. 'ms'). Setting to None is equivalent to 'ns' and therefore INT96 timestamps will be inferred as timestamps in nanoseconds. decryption_properties : FileDecryptionProperties or None File-level decryption properties. The decryption properties can be created using ``CryptoFactory.file_decryption_properties()``. thrift_string_size_limit : int, default None If not None, override the maximum total string size allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files. thrift_container_size_limit : int, default None If not None, override the maximum total size of containers allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files. Returns ------- {2} {4} """ _read_table_example = """\ Examples -------- Generate an example PyArrow Table and write it to a partitioned dataset: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_name_2', ... partition_cols=['year']) Read the data: >>> pq.read_table('dataset_name_2').to_pandas() n_legs animal year 0 5 Brittle stars 2019 1 2 Flamingo 2020 2 4 Dog 2021 3 100 Centipede 2021 4 2 Parrot 2022 5 4 Horse 2022 Read only a subset of columns: >>> pq.read_table('dataset_name_2', columns=["n_legs", "animal"]) pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[5],[2],[4,100],[2,4]] animal: [["Brittle stars"],["Flamingo"],["Dog","Centipede"],["Parrot","Horse"]] Read a subset of columns and read one column as DictionaryArray: >>> pq.read_table('dataset_name_2', columns=["n_legs", "animal"], ... read_dictionary=["animal"]) pyarrow.Table n_legs: int64 animal: dictionary<values=string, indices=int32, ordered=0> ---- n_legs: [[5],[2],[4,100],[2,4]] animal: [ -- dictionary: ["Brittle stars"] -- indices: [0], -- dictionary: ["Flamingo"] -- indices: [0], -- dictionary: ["Dog","Centipede"] -- indices: [0,1], -- dictionary: ["Parrot","Horse"] -- indices: [0,1]] Read the table with filter: >>> pq.read_table('dataset_name_2', columns=["n_legs", "animal"], ... filters=[('n_legs','<',4)]).to_pandas() n_legs animal 0 2 Flamingo 1 2 Parrot Read data from a single Parquet file: >>> pq.write_table(table, 'example.parquet') >>> pq.read_table('dataset_name_2').to_pandas() n_legs animal year 0 5 Brittle stars 2019 1 2 Flamingo 2020 2 4 Dog 2021 3 100 Centipede 2021 4 2 Parrot 2022 5 4 Horse 2022 """
[docs]def read_table(source, *, columns=None, use_threads=True, metadata=None, schema=None, use_pandas_metadata=False, memory_map=False, read_dictionary=None, filesystem=None, filters=None, buffer_size=0, partitioning="hive", use_legacy_dataset=False, ignore_prefixes=None, pre_buffer=True, coerce_int96_timestamp_unit=None, decryption_properties=None, thrift_string_size_limit=None, thrift_container_size_limit=None): if not use_legacy_dataset: if metadata is not None: raise ValueError( "The 'metadata' keyword is no longer supported with the new " "datasets-based implementation. Specify " "'use_legacy_dataset=True' to temporarily recover the old " "behaviour." ) try: dataset = _ParquetDatasetV2( source, schema=schema, filesystem=filesystem, partitioning=partitioning, memory_map=memory_map, read_dictionary=read_dictionary, buffer_size=buffer_size, filters=filters, ignore_prefixes=ignore_prefixes, pre_buffer=pre_buffer, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit, thrift_string_size_limit=thrift_string_size_limit, thrift_container_size_limit=thrift_container_size_limit, ) except ImportError: # fall back on ParquetFile for simple cases when pyarrow.dataset # module is not available if filters is not None: raise ValueError( "the 'filters' keyword is not supported when the " "pyarrow.dataset module is not available" ) if partitioning != "hive": raise ValueError( "the 'partitioning' keyword is not supported when the " "pyarrow.dataset module is not available" ) if schema is not None: raise ValueError( "the 'schema' argument is not supported when the " "pyarrow.dataset module is not available" ) filesystem, path = _resolve_filesystem_and_path(source, filesystem) if filesystem is not None: source = filesystem.open_input_file(path) # TODO test that source is not a directory or a list dataset = ParquetFile( source, metadata=metadata, read_dictionary=read_dictionary, memory_map=memory_map, buffer_size=buffer_size, pre_buffer=pre_buffer, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit, decryption_properties=decryption_properties, thrift_string_size_limit=thrift_string_size_limit, thrift_container_size_limit=thrift_container_size_limit, ) return dataset.read(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata) warnings.warn( "Passing 'use_legacy_dataset=True' to get the legacy behaviour is " "deprecated as of pyarrow 8.0.0, and the legacy implementation will " "be removed in a future version.", FutureWarning, stacklevel=2) if ignore_prefixes is not None: raise ValueError( "The 'ignore_prefixes' keyword is only supported when " "use_legacy_dataset=False") if schema is not None: raise ValueError( "The 'schema' argument is only supported when " "use_legacy_dataset=False") if _is_path_like(source): pf = ParquetDataset( source, metadata=metadata, memory_map=memory_map, read_dictionary=read_dictionary, buffer_size=buffer_size, filesystem=filesystem, filters=filters, partitioning=partitioning, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit ) else: pf = ParquetFile( source, metadata=metadata, read_dictionary=read_dictionary, memory_map=memory_map, buffer_size=buffer_size, coerce_int96_timestamp_unit=coerce_int96_timestamp_unit, decryption_properties=decryption_properties ) return pf.read(columns=columns, use_threads=use_threads, use_pandas_metadata=use_pandas_metadata)
read_table.__doc__ = _read_table_docstring.format( """Read a Table from Parquet format Note: starting with pyarrow 1.0, the default for `use_legacy_dataset` is switched to False.""", "\n".join((_read_docstring_common, """use_pandas_metadata : bool, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded.""")), """pyarrow.Table Content of the file as a table (of columns)""", _DNF_filter_doc, _read_table_example)
[docs]def read_pandas(source, columns=None, **kwargs): return read_table( source, columns=columns, use_pandas_metadata=True, **kwargs )
read_pandas.__doc__ = _read_table_docstring.format( 'Read a Table from Parquet format, also reading DataFrame\n' 'index values if known in the file metadata', "\n".join((_read_docstring_common, """**kwargs additional options for :func:`read_table`""")), """pyarrow.Table Content of the file as a Table of Columns, including DataFrame indexes as columns""", _DNF_filter_doc, "")
[docs]def write_table(table, where, row_group_size=None, version='2.4', use_dictionary=True, compression='snappy', write_statistics=True, use_deprecated_int96_timestamps=None, coerce_timestamps=None, allow_truncated_timestamps=False, data_page_size=None, flavor=None, filesystem=None, compression_level=None, use_byte_stream_split=False, column_encoding=None, data_page_version='1.0', use_compliant_nested_type=False, encryption_properties=None, write_batch_size=None, dictionary_pagesize_limit=None, **kwargs): row_group_size = kwargs.pop('chunk_size', row_group_size) use_int96 = use_deprecated_int96_timestamps try: with ParquetWriter( where, table.schema, filesystem=filesystem, version=version, flavor=flavor, use_dictionary=use_dictionary, write_statistics=write_statistics, coerce_timestamps=coerce_timestamps, data_page_size=data_page_size, allow_truncated_timestamps=allow_truncated_timestamps, compression=compression, use_deprecated_int96_timestamps=use_int96, compression_level=compression_level, use_byte_stream_split=use_byte_stream_split, column_encoding=column_encoding, data_page_version=data_page_version, use_compliant_nested_type=use_compliant_nested_type, encryption_properties=encryption_properties, write_batch_size=write_batch_size, dictionary_pagesize_limit=dictionary_pagesize_limit, **kwargs) as writer: writer.write_table(table, row_group_size=row_group_size) except Exception: if _is_path_like(where): try: os.remove(_stringify_path(where)) except os.error: pass raise
_write_table_example = """\ Generate an example PyArrow Table: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) and write the Table into Parquet file: >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') Defining row group size for the Parquet file: >>> pq.write_table(table, 'example.parquet', row_group_size=3) Defining row group compression (default is Snappy): >>> pq.write_table(table, 'example.parquet', compression='none') Defining row group compression and encoding per-column: >>> pq.write_table(table, 'example.parquet', ... compression={'n_legs': 'snappy', 'animal': 'gzip'}, ... use_dictionary=['n_legs', 'animal']) Defining column encoding per-column: >>> pq.write_table(table, 'example.parquet', ... column_encoding={'animal':'PLAIN'}, ... use_dictionary=False) """ write_table.__doc__ = """ Write a Table to Parquet format. Parameters ---------- table : pyarrow.Table where : string or pyarrow.NativeFile row_group_size : int Maximum size of each written row group. If None, the row group size will be the minimum of the Table size and 64 * 1024 * 1024. {} **kwargs : optional Additional options for ParquetWriter Examples -------- {} """.format(_parquet_writer_arg_docs, _write_table_example) def _mkdir_if_not_exists(fs, path): if fs._isfilestore() and not fs.exists(path): try: fs.mkdir(path) except OSError: assert fs.exists(path)
[docs]def write_to_dataset(table, root_path, partition_cols=None, partition_filename_cb=None, filesystem=None, use_legacy_dataset=None, schema=None, partitioning=None, basename_template=None, use_threads=None, file_visitor=None, existing_data_behavior=None, **kwargs): """Wrapper around dataset.write_dataset (when use_legacy_dataset=False) or parquet.write_table (when use_legacy_dataset=True) for writing a Table to Parquet format by partitions. For each combination of partition columns and values, a subdirectories are created in the following manner: root_dir/ group1=value1 group2=value1 <uuid>.parquet group2=value2 <uuid>.parquet group1=valueN group2=value1 <uuid>.parquet group2=valueN <uuid>.parquet Parameters ---------- table : pyarrow.Table root_path : str, pathlib.Path The root directory of the dataset filesystem : FileSystem, default None If nothing passed, will be inferred based on path. Path will try to be found in the local on-disk filesystem otherwise it will be parsed as an URI to determine the filesystem. partition_cols : list, Column names by which to partition the dataset. Columns are partitioned in the order they are given partition_filename_cb : callable, A callback function that takes the partition key(s) as an argument and allow you to override the partition filename. If nothing is passed, the filename will consist of a uuid. This option is only supported for use_legacy_dataset=True. When use_legacy_dataset=None and this option is specified, use_legacy_datase will be set to True. use_legacy_dataset : bool Default is False. Set to True to use the the legacy behaviour (this option is deprecated, and the legacy implementation will be removed in a future version). The legacy implementation still supports the `partition_filename_cb` keyword but is less efficient when using partition columns. use_threads : bool, default True Write files in parallel. If enabled, then maximum parallelism will be used determined by the number of available CPU cores. This option is only supported for use_legacy_dataset=False. schema : Schema, optional This option is only supported for use_legacy_dataset=False. partitioning : Partitioning or list[str], optional The partitioning scheme specified with the ``pyarrow.dataset.partitioning()`` function or a list of field names. When providing a list of field names, you can use ``partitioning_flavor`` to drive which partitioning type should be used. This option is only supported for use_legacy_dataset=False. basename_template : str, optional A template string used to generate basenames of written data files. The token '{i}' will be replaced with an automatically incremented integer. If not specified, it defaults to "guid-{i}.parquet". This option is only supported for use_legacy_dataset=False. file_visitor : function If set, this function will be called with a WrittenFile instance for each file created during the call. This object will have both a path attribute and a metadata attribute. The path attribute will be a string containing the path to the created file. The metadata attribute will be the parquet metadata of the file. This metadata will have the file path attribute set and can be used to build a _metadata file. The metadata attribute will be None if the format is not parquet. Example visitor which simple collects the filenames created:: visited_paths = [] def file_visitor(written_file): visited_paths.append(written_file.path) This option is only supported for use_legacy_dataset=False. existing_data_behavior : 'overwrite_or_ignore' | 'error' | \ 'delete_matching' Controls how the dataset will handle data that already exists in the destination. The default behaviour is 'overwrite_or_ignore'. 'overwrite_or_ignore' will ignore any existing data and will overwrite files with the same name as an output file. Other existing files will be ignored. This behavior, in combination with a unique basename_template for each write, will allow for an append workflow. 'error' will raise an error if any data exists in the destination. 'delete_matching' is useful when you are writing a partitioned dataset. The first time each partition directory is encountered the entire directory will be deleted. This allows you to overwrite old partitions completely. This option is only supported for use_legacy_dataset=False. **kwargs : dict, When use_legacy_dataset=False, used as additional kwargs for `dataset.write_dataset` function (passed to `ParquetFileFormat.make_write_options`). See the docstring of `write_table` for the available options. When use_legacy_dataset=True, used as additional kwargs for `parquet.write_table` function (See docstring for `write_table` or `ParquetWriter` for more information). Using `metadata_collector` in kwargs allows one to collect the file metadata instances of dataset pieces. The file paths in the ColumnChunkMetaData will be set relative to `root_path`. Examples -------- Generate an example PyArrow Table: >>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) and write it to a partitioned dataset: >>> import pyarrow.parquet as pq >>> pq.write_to_dataset(table, root_path='dataset_name_3', ... partition_cols=['year']) >>> pq.ParquetDataset('dataset_name_3', use_legacy_dataset=False).files ['dataset_name_3/year=2019/...-0.parquet', ... Write a single Parquet file into the root folder: >>> pq.write_to_dataset(table, root_path='dataset_name_4') >>> pq.ParquetDataset('dataset_name_4/', use_legacy_dataset=False).files ['dataset_name_4/...-0.parquet'] """ # Choose the implementation if use_legacy_dataset is None: # if partition_filename_cb is specified -> # default to the old implementation if partition_filename_cb: use_legacy_dataset = True # otherwise the default is False else: use_legacy_dataset = False # Check for conflicting kewords msg_confl_0 = ( "The '{0}' argument is not supported by use_legacy_dataset={2}. " "Use only '{1}' instead." ) msg_confl_1 = ( "The '{1}' argument is not supported by use_legacy_dataset={2}. " "Use only '{0}' instead." ) msg_confl = msg_confl_0 if use_legacy_dataset else msg_confl_1 if partition_filename_cb is not None and basename_template is not None: raise ValueError(msg_confl.format("basename_template", "partition_filename_cb", use_legacy_dataset)) if partition_cols is not None and partitioning is not None: raise ValueError(msg_confl.format("partitioning", "partition_cols", use_legacy_dataset)) metadata_collector = kwargs.pop('metadata_collector', None) if metadata_collector is not None and file_visitor is not None: raise ValueError(msg_confl.format("file_visitor", "metadata_collector", use_legacy_dataset)) # New dataset implementation if not use_legacy_dataset: import pyarrow.dataset as ds # extract non-file format options schema = kwargs.pop("schema", None) use_threads = kwargs.pop("use_threads", True) chunk_size = kwargs.pop("chunk_size", None) row_group_size = kwargs.pop("row_group_size", None) row_group_size = ( row_group_size if row_group_size is not None else chunk_size ) # raise for unsupported keywords msg = ( "The '{}' argument is not supported with the new dataset " "implementation." ) if metadata_collector is not None: def file_visitor(written_file): metadata_collector.append(written_file.metadata) if partition_filename_cb is not None: raise ValueError(msg.format("partition_filename_cb")) # map format arguments parquet_format = ds.ParquetFileFormat() write_options = parquet_format.make_write_options(**kwargs) # map old filesystems to new one if filesystem is not None: filesystem = _ensure_filesystem(filesystem) if partition_cols: part_schema = table.select(partition_cols).schema partitioning = ds.partitioning(part_schema, flavor="hive") if basename_template is None: basename_template = guid() + '-{i}.parquet' if existing_data_behavior is None: existing_data_behavior = 'overwrite_or_ignore' ds.write_dataset( table, root_path, filesystem=filesystem, format=parquet_format, file_options=write_options, schema=schema, partitioning=partitioning, use_threads=use_threads, file_visitor=file_visitor, basename_template=basename_template, existing_data_behavior=existing_data_behavior, max_rows_per_group=row_group_size) return # warnings and errors when using legacy implementation if use_legacy_dataset: warnings.warn( "Passing 'use_legacy_dataset=True' to get the legacy behaviour is " "deprecated as of pyarrow 8.0.0, and the legacy implementation " "will be removed in a future version.", FutureWarning, stacklevel=2) msg2 = ( "The '{}' argument is not supported with the legacy " "implementation. To use this argument specify " "'use_legacy_dataset=False' while constructing the " "ParquetDataset." ) if schema is not None: raise ValueError(msg2.format("schema")) if partitioning is not None: raise ValueError(msg2.format("partitioning")) if use_threads is not None: raise ValueError(msg2.format("use_threads")) if file_visitor is not None: raise ValueError(msg2.format("file_visitor")) if existing_data_behavior is not None: raise ValueError(msg2.format("existing_data_behavior")) if basename_template is not None: raise ValueError(msg2.format("basename_template")) if partition_filename_cb is not None: warnings.warn( _DEPR_MSG.format("partition_filename_cb", " Specify " "'use_legacy_dataset=False' while constructing " "the ParquetDataset, and then use the " "'basename_template' parameter instead. For " "usage see `pyarrow.dataset.write_dataset`"), FutureWarning, stacklevel=2) # Legacy implementation fs, root_path = legacyfs.resolve_filesystem_and_path(root_path, filesystem) _mkdir_if_not_exists(fs, root_path) if partition_cols is not None and len(partition_cols) > 0: df = table.to_pandas() partition_keys = [df[col] for col in partition_cols] data_df = df.drop(partition_cols, axis='columns') data_cols = df.columns.drop(partition_cols) if len(data_cols) == 0: raise ValueError('No data left to save outside partition columns') subschema = table.schema # ARROW-2891: Ensure the output_schema is preserved when writing a # partitioned dataset for col in table.schema.names: if col in partition_cols: subschema = subschema.remove(subschema.get_field_index(col)) # ARROW-17829: avoid deprecation warnings for df.groupby # https://github.com/pandas-dev/pandas/issues/42795 if len(partition_keys) == 1: partition_keys = partition_keys[0] for keys, subgroup in data_df.groupby(partition_keys): if not isinstance(keys, tuple): keys = (keys,) subdir = '/'.join( ['{colname}={value}'.format(colname=name, value=val) for name, val in zip(partition_cols, keys)]) subtable = pa.Table.from_pandas(subgroup, schema=subschema, safe=False) _mkdir_if_not_exists(fs, '/'.join([root_path, subdir])) if partition_filename_cb: outfile = partition_filename_cb(keys) else: outfile = guid() + '.parquet' relative_path = '/'.join([subdir, outfile]) full_path = '/'.join([root_path, relative_path]) with fs.open(full_path, 'wb') as f: write_table(subtable, f, metadata_collector=metadata_collector, **kwargs) if metadata_collector is not None: metadata_collector[-1].set_file_path(relative_path) else: if partition_filename_cb: outfile = partition_filename_cb(None) else: outfile = guid() + '.parquet' full_path = '/'.join([root_path, outfile]) with fs.open(full_path, 'wb') as f: write_table(table, f, metadata_collector=metadata_collector, **kwargs) if metadata_collector is not None: metadata_collector[-1].set_file_path(outfile)
[docs]def write_metadata(schema, where, metadata_collector=None, **kwargs): """ Write metadata-only Parquet file from schema. This can be used with `write_to_dataset` to generate `_common_metadata` and `_metadata` sidecar files. Parameters ---------- schema : pyarrow.Schema where : string or pyarrow.NativeFile metadata_collector : list where to collect metadata information. **kwargs : dict, Additional kwargs for ParquetWriter class. See docstring for `ParquetWriter` for more information. Examples -------- Generate example data: >>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) Write a dataset and collect metadata information. >>> metadata_collector = [] >>> import pyarrow.parquet as pq >>> pq.write_to_dataset( ... table, 'dataset_metadata', ... metadata_collector=metadata_collector) Write the `_common_metadata` parquet file without row groups statistics. >>> pq.write_metadata( ... table.schema, 'dataset_metadata/_common_metadata') Write the `_metadata` parquet file with row groups statistics. >>> pq.write_metadata( ... table.schema, 'dataset_metadata/_metadata', ... metadata_collector=metadata_collector) """ writer = ParquetWriter(where, schema, **kwargs) writer.close() if metadata_collector is not None: # ParquetWriter doesn't expose the metadata until it's written. Write # it and read it again. metadata = read_metadata(where) for m in metadata_collector: metadata.append_row_groups(m) metadata.write_metadata_file(where)
[docs]def read_metadata(where, memory_map=False, decryption_properties=None, filesystem=None): """ Read FileMetaData from footer of a single Parquet file. Parameters ---------- where : str (file path) or file-like object memory_map : bool, default False Create memory map when the source is a file path. decryption_properties : FileDecryptionProperties, default None Decryption properties for reading encrypted Parquet files. filesystem : FileSystem, default None If nothing passed, will be inferred based on path. Path will try to be found in the local on-disk filesystem otherwise it will be parsed as an URI to determine the filesystem. Returns ------- metadata : FileMetaData Examples -------- >>> import pyarrow as pa >>> import pyarrow.parquet as pq >>> table = pa.table({'n_legs': [4, 5, 100], ... 'animal': ["Dog", "Brittle stars", "Centipede"]}) >>> pq.write_table(table, 'example.parquet') >>> pq.read_metadata('example.parquet') <pyarrow._parquet.FileMetaData object at ...> created_by: parquet-cpp-arrow version ... num_columns: 2 num_rows: 3 num_row_groups: 1 format_version: 2.6 serialized_size: ... """ filesystem, where = _resolve_filesystem_and_path(where, filesystem) file_ctx = nullcontext() if filesystem is not None: file_ctx = where = filesystem.open_input_file(where) with file_ctx: file = ParquetFile(where, memory_map=memory_map, decryption_properties=decryption_properties) return file.metadata
[docs]def read_schema(where, memory_map=False, decryption_properties=None, filesystem=None): """ Read effective Arrow schema from Parquet file metadata. Parameters ---------- where : str (file path) or file-like object memory_map : bool, default False Create memory map when the source is a file path. decryption_properties : FileDecryptionProperties, default None Decryption properties for reading encrypted Parquet files. filesystem : FileSystem, default None If nothing passed, will be inferred based on path. Path will try to be found in the local on-disk filesystem otherwise it will be parsed as an URI to determine the filesystem. Returns ------- schema : pyarrow.Schema Examples -------- >>> import pyarrow as pa >>> import pyarrow.parquet as pq >>> table = pa.table({'n_legs': [4, 5, 100], ... 'animal': ["Dog", "Brittle stars", "Centipede"]}) >>> pq.write_table(table, 'example.parquet') >>> pq.read_schema('example.parquet') n_legs: int64 animal: string """ filesystem, where = _resolve_filesystem_and_path(where, filesystem) file_ctx = nullcontext() if filesystem is not None: file_ctx = where = filesystem.open_input_file(where) with file_ctx: file = ParquetFile( where, memory_map=memory_map, decryption_properties=decryption_properties) return file.schema.to_arrow_schema()
__all__ = ( "ColumnChunkMetaData", "ColumnSchema", "FileDecryptionProperties", "FileEncryptionProperties", "FileMetaData", "ParquetDataset", "ParquetDatasetPiece", "ParquetFile", "ParquetLogicalType", "ParquetManifest", "ParquetPartitions", "ParquetReader", "ParquetSchema", "ParquetWriter", "PartitionSet", "RowGroupMetaData", "Statistics", "read_metadata", "read_pandas", "read_schema", "read_table", "write_metadata", "write_table", "write_to_dataset", "_filters_to_expression", "filters_to_expression", )