Skip to contents

The arrow package provides functionality allowing users to manipulate tabular Arrow data (Table and Dataset objects) with familiar dplyr syntax. To enable this functionality, ensure that the arrow and dplyr packages are both loaded. In this article we will take the starwars data set included in dplyr, convert it to an Arrow Table, and then analyze this data. Note that, although these examples all use an in-memory Table object, the same functionality works for an on-disk Dataset object with only minor differences in behavior (documented later in the article).

To get started let’s load the packages and create the data:

library(dplyr, warn.conflicts = FALSE)
library(arrow, warn.conflicts = FALSE)

sw <- arrow_table(starwars, as_data_frame = FALSE)

One-table dplyr verbs

The arrow package provides support for the dplyr one-table verbs, allowing users to construct data analysis pipelines in a familiar way. The example below shows the use of filter(), rename(), mutate(), arrange() and select():

result <- sw %>%
  filter(homeworld == "Tatooine") %>%
  rename(height_cm = height, mass_kg = mass) %>%
  mutate(height_in = height_cm / 2.54, mass_lbs = mass_kg * 2.2046) %>%
  arrange(desc(birth_year)) %>%
  select(name, height_in, mass_lbs)

It is important to note that arrow uses lazy evaluation to delay computation until the result is explicitly requested. This speeds up processing by enabling the Arrow C++ library to perform multiple computations in one operation. As a consequence of this design choice, we have not yet performed computations on the sw data. The result variable is an object with class arrow_dplyr_query that represents all the computations to be performed:

result
## Table (query)
## name: string
## height_in: double (divide(cast(height, {to_type=double, allow_int_overflow=false, allow_time_truncate=false, allow_time_overflow=false, allow_decimal_truncate=false, allow_float_truncate=false, allow_invalid_utf8=false}), cast(2.54, {to_type=double, allow_int_overflow=false, allow_time_truncate=false, allow_time_overflow=false, allow_decimal_truncate=false, allow_float_truncate=false, allow_invalid_utf8=false})))
## mass_lbs: double (multiply_checked(mass, 2.2046))
## 
## * Filter: (homeworld == "Tatooine")
## * Sorted by birth_year [desc]
## See $.data for the source Arrow object

To perform these computations and materialize the result, we call compute() or collect(). The difference between the two determines what kind of object will be returned. Calling compute() returns an Arrow Table, suitable for passing to other arrow or dplyr functions:

compute(result)
## Table
## 10 rows x 3 columns
## $name <string>
## $height_in <double>
## $mass_lbs <double>

In contrast, collect() returns an R data frame, suitable for viewing or passing to other R functions for analysis or visualization:

collect(result)
## # A tibble: 10 x 3
##    name               height_in mass_lbs
##    <chr>                  <dbl>    <dbl>
##  1 C-3PO                   65.7    165. 
##  2 Cliegg Lars             72.0     NA  
##  3 Shmi Skywalker          64.2     NA  
##  4 Owen Lars               70.1    265. 
##  5 Beru Whitesun Lars      65.0    165. 
##  6 Darth Vader             79.5    300. 
##  7 Anakin Skywalker        74.0    185. 
##  8 Biggs Darklighter       72.0    185. 
##  9 Luke Skywalker          67.7    170. 
## 10 R5-D4                   38.2     70.5

The arrow package has broad support for single-table dplyr verbs, including those that compute aggregates. For example, it supports group_by() and summarize(), as well as commonly-used convenience functions such as count():

sw %>%
  group_by(species) %>%
  summarize(mean_height = mean(height, na.rm = TRUE)) %>%
  collect()
## # A tibble: 38 x 2
##    species        mean_height
##    <chr>                <dbl>
##  1 Human                 178 
##  2 Droid                 131.
##  3 Wookiee               231 
##  4 Rodian                173 
##  5 Hutt                  175 
##  6 NA                    175 
##  7 Yoda's species         66 
##  8 Trandoshan            190 
##  9 Mon Calamari          180 
## 10 Ewok                   88 
## # i 28 more rows
sw %>%
  count(gender) %>%
  collect()
## # A tibble: 3 x 2
##   gender        n
##   <chr>     <int>
## 1 masculine    66
## 2 feminine     17
## 3 NA            4

Note, however, that window functions such as ntile() are not yet supported.

Two-table dplyr verbs

Equality joins (e.g. left_join(), inner_join()) are supported for joining multiple tables. This is illustrated below:

jedi <- data.frame(
  name = c("C-3PO", "Luke Skywalker", "Obi-Wan Kenobi"),
  jedi = c(FALSE, TRUE, TRUE)
)

sw %>%
  select(1:3) %>%
  right_join(jedi) %>%
  collect()
## # A tibble: 3 x 4
##   name           height  mass jedi 
##   <chr>           <int> <dbl> <lgl>
## 1 Luke Skywalker    172    77 TRUE 
## 2 C-3PO             167    75 FALSE
## 3 Obi-Wan Kenobi    182    77 TRUE

Expressions within dplyr verbs

Inside dplyr verbs, Arrow offers support for many functions and operators, with common functions mapped to their base R and tidyverse equivalents: you can find a list of supported functions within dplyr queries in the function documentation. If there are additional functions you would like to see implemented, please file an issue as described in the Getting help guidelines.

Registering custom bindings

The arrow package makes it possible for users to supply bindings for custom functions in some situations using register_scalar_function(). To operate correctly, the to-be-registered function must have context as its first argument, as required by the query engine. For example, suppose we wanted to implement a function that converts a string to snake case (a greatly simplified version of janitor::make_clean_names()). The function could be written as follows:

to_snake_name <- function(context, string) {
  replace <- c(`'` = "", `"` = "", `-` = "", `\\.` = "_", ` ` = "_")
  string %>%
    stringr::str_replace_all(replace) %>%
    stringr::str_to_lower() %>%
    stringi::stri_trans_general(id = "Latin-ASCII")
}

To call this within an arrow/dplyr pipeline, it needs to be registered:

register_scalar_function(
  name = "to_snake_name",
  fun = to_snake_name,
  in_type = utf8(),
  out_type = utf8(),
  auto_convert = TRUE
)

In this expression, the name argument specifies the name by which it will be recognized in the context of the arrow/dplyr pipeline and fun is the function itself. The in_type and out_type arguments are used to specify the expected data type for the input and output, and auto_convert specifies whether arrow should automatically convert any R inputs to their Arrow equivalents.

Once registered, the following works:

sw %>%
  mutate(name, snake_name = to_snake_name(name), .keep = "none") %>%
  collect()
## # A tibble: 87 x 2
##    name               snake_name        
##    <chr>              <chr>             
##  1 Luke Skywalker     luke_skywalker    
##  2 C-3PO              c3po              
##  3 R2-D2              r2d2              
##  4 Darth Vader        darth_vader       
##  5 Leia Organa        leia_organa       
##  6 Owen Lars          owen_lars         
##  7 Beru Whitesun Lars beru_whitesun_lars
##  8 R5-D4              r5d4              
##  9 Biggs Darklighter  biggs_darklighter 
## 10 Obi-Wan Kenobi     obiwan_kenobi     
## # i 77 more rows

To learn more, see help("register_scalar_function", package = "arrow").

Handling unsupported expressions

For dplyr queries on Table objects, which are held in memory and should usually be representable as data frames, if the arrow package detects an unimplemented function within a dplyr verb, it automatically calls collect() to return the data as an R data frame before processing that dplyr verb. As an example, neither lm() nor residuals() are implemented, so if we write code that computes the residuals for a linear regression model, this automatic collection takes place:

sw %>%
  filter(!is.na(height), !is.na(mass)) %>%
  transmute(name, height, mass, res = residuals(lm(mass ~ height)))
## Warning: In residuals(lm(mass ~ height)): 
## i Expression not supported in Arrow
## > Pulling data into R
## # A tibble: 59 x 4
##    name               height  mass   res
##    <chr>               <int> <dbl> <dbl>
##  1 Luke Skywalker        172    77 -18.8
##  2 C-3PO                 167    75 -17.7
##  3 R2-D2                  96    32 -16.4
##  4 Darth Vader           202   136  21.4
##  5 Leia Organa           150    49 -33.1
##  6 Owen Lars             178   120  20.4
##  7 Beru Whitesun Lars    165    75 -16.5
##  8 R5-D4                  97    32 -17.0
##  9 Biggs Darklighter     183    84 -18.7
## 10 Obi-Wan Kenobi        182    77 -25.1
## # i 49 more rows

For queries on Dataset objects – which can be larger than memory – arrow is more conservative and always raises an error if it detects an unsupported expression. To illustrate this behavior, we can write the starwars data to disk and then open it as a Dataset. When we use the same pipeline on the Dataset, we obtain an error:

# write and open starwars dataset
dataset_path <- tempfile()
write_dataset(starwars, dataset_path)
sw2 <- open_dataset(dataset_path)

# dplyr pipeline with unsupported expressions
sw2 %>%
  filter(!is.na(height), !is.na(mass)) %>%
  transmute(name, height, mass, res = residuals(lm(mass ~ height)))
## Error in `residuals()`:
## ! Expression not supported in Arrow
## > Call collect() first to pull data into R.

Calling collect() in the middle of the pipeline fixes the issue:

sw2 %>%
  filter(!is.na(height), !is.na(mass)) %>%
  collect() %>%
  transmute(name, height, mass, res = residuals(lm(mass ~ height)))
## # A tibble: 59 x 4
##    name               height  mass   res
##    <chr>               <int> <dbl> <dbl>
##  1 Luke Skywalker        172    77 -18.8
##  2 C-3PO                 167    75 -17.7
##  3 R2-D2                  96    32 -16.4
##  4 Darth Vader           202   136  21.4
##  5 Leia Organa           150    49 -33.1
##  6 Owen Lars             178   120  20.4
##  7 Beru Whitesun Lars    165    75 -16.5
##  8 R5-D4                  97    32 -17.0
##  9 Biggs Darklighter     183    84 -18.7
## 10 Obi-Wan Kenobi        182    77 -25.1
## # i 49 more rows

For some operations, you can use DuckDB. It supports Arrow natively, so you can pass the Dataset or query object to DuckDB without paying a performance penalty using the helper function to_duckdb() and pass the object back to Arrow with to_arrow():

sw %>%
  select(1:4) %>%
  filter(!is.na(hair_color)) %>%
  to_duckdb() %>%
  group_by(hair_color) %>%
  filter(height < mean(height, na.rm = TRUE)) %>%
  to_arrow() %>%
  # perform other arrow operations...
  collect()
## # A tibble: 28 x 4
##    name         height  mass hair_color
##    <chr>         <int> <dbl> <chr>     
##  1 R4-P17           96    NA none      
##  2 Lobot           175    79 none      
##  3 Ackbar          180    83 none      
##  4 Nien Nunb       160    68 none      
##  5 Darth Maul      175    80 none      
##  6 Bib Fortuna     180    NA none      
##  7 Ayla Secura     178    55 none      
##  8 Ratts Tyerel     79    15 none      
##  9 Dud Bolt         94    45 none      
## 10 Gasgano         122    NA none      
## # i 18 more rows

Further reading