pyarrow.ChunkedArray¶
- class pyarrow.ChunkedArray¶
Bases:
pyarrow.lib._PandasConvertible
An array-like composed from a (possibly empty) collection of pyarrow.Arrays
Warning
Do not call this class’s constructor directly.
- __init__(*args, **kwargs)¶
Methods
__init__
(*args, **kwargs)cast
(self, target_type[, safe])Cast array values to another data type
chunk
(self, i)Select a chunk by its index
combine_chunks
(self, MemoryPool memory_pool=None)Flatten this ChunkedArray into a single non-chunked array.
dictionary_encode
(self[, null_encoding])Compute dictionary-encoded representation of array
drop_null
(self)Remove missing values from a chunked array.
equals
(self, ChunkedArray other)Return whether the contents of two chunked arrays are equal.
fill_null
(self, fill_value)See pyarrow.compute.fill_null docstring for usage.
filter
(self, mask[, null_selection_behavior])Select values from a chunked array.
flatten
(self, MemoryPool memory_pool=None)Flatten this ChunkedArray.
format
(self, **kwargs)get_total_buffer_size
(self)The sum of bytes in each buffer referenced by the chunked array.
index
(self, value[, start, end, memory_pool])Find the first index of a value.
is_null
(self, *[, nan_is_null])Return boolean array indicating the null values.
is_valid
(self)Return boolean array indicating the non-null values.
iterchunks
(self)length
(self)slice
(self[, offset, length])Compute zero-copy slice of this ChunkedArray
take
(self, indices)Select values from a chunked array.
to_numpy
(self)Return a NumPy copy of this array (experimental).
to_pandas
(self[, memory_pool, categories, ...])Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
to_pylist
(self)Convert to a list of native Python objects.
to_string
(self, *, int indent=0, ...)Render a "pretty-printed" string representation of the ChunkedArray
unify_dictionaries
(self, ...)Unify dictionaries across all chunks.
unique
(self)Compute distinct elements in array
validate
(self, *[, full])Perform validation checks.
value_counts
(self)Compute counts of unique elements in array.
Attributes
Total number of bytes consumed by the elements of the chunked array.
Number of null entries
Number of underlying chunks
- cast(self, target_type, safe=True)¶
Cast array values to another data type
See pyarrow.compute.cast for usage
- chunks¶
- combine_chunks(self, MemoryPool memory_pool=None)¶
Flatten this ChunkedArray into a single non-chunked array.
- Parameters
- memory_pool
MemoryPool
, defaultNone
For memory allocations, if required, otherwise use default pool
- memory_pool
- Returns
- result
Array
- result
- data¶
- dictionary_encode(self, null_encoding='mask')¶
Compute dictionary-encoded representation of array
- Returns
pyarrow.ChunkedArray
Same chunking as the input, all chunks share a common dictionary.
- drop_null(self)¶
Remove missing values from a chunked array. See pyarrow.compute.drop_null for full description.
- equals(self, ChunkedArray other)¶
Return whether the contents of two chunked arrays are equal.
- Parameters
- other
pyarrow.ChunkedArray
Chunked array to compare against.
- other
- Returns
- are_equalbool
- fill_null(self, fill_value)¶
See pyarrow.compute.fill_null docstring for usage.
- filter(self, mask, null_selection_behavior='drop')¶
Select values from a chunked array. See pyarrow.compute.filter for full usage.
- flatten(self, MemoryPool memory_pool=None)¶
Flatten this ChunkedArray. If it has a struct type, the column is flattened into one array per struct field.
- Parameters
- memory_pool
MemoryPool
, defaultNone
For memory allocations, if required, otherwise use default pool
- memory_pool
- Returns
- result
list
ofChunkedArray
- result
- format(self, **kwargs)¶
- get_total_buffer_size(self)¶
The sum of bytes in each buffer referenced by the chunked array.
An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer.
If a buffer is referenced multiple times then it will only be counted once.
- index(self, value, start=None, end=None, *, memory_pool=None)¶
Find the first index of a value.
See pyarrow.compute.index for full usage.
- is_null(self, *, nan_is_null=False)¶
Return boolean array indicating the null values.
- Parameters
- Returns
- arraybool
Array
orChunkedArray
- arraybool
- is_valid(self)¶
Return boolean array indicating the non-null values.
- iterchunks(self)¶
- length(self)¶
- nbytes¶
Total number of bytes consumed by the elements of the chunked array.
In other words, the sum of bytes from all buffer ranges referenced.
Unlike get_total_buffer_size this method will account for array offsets.
If buffers are shared between arrays then the shared portion will only be counted multiple times.
The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary.
- slice(self, offset=0, length=None)¶
Compute zero-copy slice of this ChunkedArray
- Parameters
- Returns
- sliced
ChunkedArray
- sliced
- take(self, indices)¶
Select values from a chunked array. See pyarrow.compute.take for full usage.
- to_numpy(self)¶
Return a NumPy copy of this array (experimental).
- Returns
- array
numpy.ndarray
- array
- to_pandas(self, memory_pool=None, categories=None, bool strings_to_categorical=False, bool zero_copy_only=False, bool integer_object_nulls=False, bool date_as_object=True, bool timestamp_as_object=False, bool use_threads=True, bool deduplicate_objects=True, bool ignore_metadata=False, bool safe=True, bool split_blocks=False, bool self_destruct=False, types_mapper=None)¶
Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
- Parameters
- memory_pool
MemoryPool
, defaultNone
Arrow MemoryPool to use for allocations. Uses the default memory pool is not passed.
- strings_to_categoricalbool, default
False
Encode string (UTF8) and binary types to pandas.Categorical.
- categories: list, default empty
List of fields that should be returned as pandas.Categorical. Only applies to table-like data structures.
- zero_copy_onlybool, default
False
Raise an ArrowException if this function call would require copying the underlying data.
- integer_object_nullsbool, default
False
Cast integers with nulls to objects
- date_as_objectbool, default
True
Cast dates to objects. If False, convert to datetime64[ns] dtype.
- timestamp_as_objectbool, default
False
Cast non-nanosecond timestamps (np.datetime64) to objects. This is useful if you have timestamps that don’t fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). If False, all timestamps are converted to datetime64[ns] dtype.
- use_threadsbool, default
True
Whether to parallelize the conversion using multiple threads.
- deduplicate_objectsbool, default
False
Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower.
- ignore_metadatabool, default
False
If True, do not use the ‘pandas’ metadata to reconstruct the DataFrame index, if present
- safebool, default
True
For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not.
- split_blocksbool, default
False
If True, generate one internal “block” for each column when creating a pandas.DataFrame from a RecordBatch or Table. While this can temporarily reduce memory note that various pandas operations can trigger “consolidation” which may balloon memory use.
- self_destructbool, default
False
EXPERIMENTAL: If True, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling to_pandas with this option it will crash your program.
Note that you may not see always memory usage improvements. For example, if multiple columns share an underlying allocation, memory can’t be freed until all columns are converted.
- types_mapperfunction, default
None
A function mapping a pyarrow DataType to a pandas ExtensionDtype. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas ExtensionDtype or
None
if the default conversion should be used for that type. If you have a dictionary mapping, you can passdict.get
as function.
- memory_pool
- Returns
pandas.Series
orpandas.DataFrame
depending ontype
of object
- to_pylist(self)¶
Convert to a list of native Python objects.
- to_string(self, *, int indent=0, int window=10, bool skip_new_lines=False)¶
Render a “pretty-printed” string representation of the ChunkedArray
- Parameters
- indent
int
How much to indent right the content of the array, by default
0
.- window
int
How many items to preview at the begin and end of the array when the arrays is bigger than the window. The other elements will be ellipsed.
- skip_new_linesbool
If the array should be rendered as a single line of text or if each element should be on its own line.
- indent
- type¶
- unify_dictionaries(self, MemoryPool memory_pool=None)¶
Unify dictionaries across all chunks.
This method returns an equivalent chunked array, but where all chunks share the same dictionary values. Dictionary indices are transposed accordingly.
If there are no dictionaries in the chunked array, it is returned unchanged.
- Parameters
- memory_pool
MemoryPool
, defaultNone
For memory allocations, if required, otherwise use default pool
- memory_pool
- Returns
- result
ChunkedArray
- result
- unique(self)¶
Compute distinct elements in array
- Returns
- validate(self, *, full=False)¶
Perform validation checks. An exception is raised if validation fails.
By default only cheap validation checks are run. Pass full=True for thorough validation checks (potentially O(n)).
- Parameters
- full: bool, default False
If True, run expensive checks, otherwise cheap checks only.
- Raises
ArrowInvalid