pyarrow.Tensor#
- class pyarrow.Tensor#
- Bases: - _Weakrefable- A n-dimensional array a.k.a Tensor. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) <pyarrow.Tensor> type: int32 shape: (2, 3) strides: (12, 4) - __init__(*args, **kwargs)#
 - Methods - __init__(*args, **kwargs)- dim_name(self, i)- Returns the name of the i-th tensor dimension. - equals(self, Tensor other)- Return true if the tensors contains exactly equal data. - from_numpy(obj[, dim_names])- Create a Tensor from a numpy array. - to_numpy(self)- Convert arrow::Tensor to numpy.ndarray with zero copy - Attributes - Names of this tensor dimensions. - Is this tensor contiguous in memory. - Is this tensor mutable or immutable. - The dimension (n) of this tensor. - The shape of this tensor. - The size of this tensor. - Strides of this tensor. - dim_name(self, i)#
- Returns the name of the i-th tensor dimension. - Parameters:
- iint
- The physical index of the tensor dimension. 
 
- i
 - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_name(0) 'dim1' >>> tensor.dim_name(1) 'dim2' 
 - dim_names#
- Names of this tensor dimensions. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_names ['dim1', 'dim2'] 
 - equals(self, Tensor other)#
- Return true if the tensors contains exactly equal data. - Parameters:
- otherTensor
- The other tensor to compare for equality. 
 
- other
 - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> y = np.array([[2, 2, 4], [4, 5, 10]], np.int32) >>> tensor2 = pa.Tensor.from_numpy(y, dim_names=["a","b"]) >>> tensor.equals(tensor) True >>> tensor.equals(tensor2) False 
 - static from_numpy(obj, dim_names=None)#
- Create a Tensor from a numpy array. - Parameters:
- objnumpy.ndarray
- The source numpy array 
- dim_nameslist, optional
- Names of each dimension of the Tensor. 
 
- obj
 - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) <pyarrow.Tensor> type: int32 shape: (2, 3) strides: (12, 4) 
 - is_contiguous#
- Is this tensor contiguous in memory. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_contiguous True 
 - is_mutable#
- Is this tensor mutable or immutable. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_mutable True 
 - ndim#
- The dimension (n) of this tensor. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.ndim 2 
 - shape#
- The shape of this tensor. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.shape (2, 3) 
 - size#
- The size of this tensor. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.size 6 
 - strides#
- Strides of this tensor. - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.strides (12, 4) 
 - to_numpy(self)#
- Convert arrow::Tensor to numpy.ndarray with zero copy - Examples - >>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.to_numpy() array([[ 2, 2, 4], [ 4, 5, 100]], dtype=int32) 
 - type#
 
 
    