pyarrow.parquet.ParquetFile#
- class pyarrow.parquet.ParquetFile(source, *, metadata=None, common_metadata=None, read_dictionary=None, memory_map=False, buffer_size=0, pre_buffer=False, coerce_int96_timestamp_unit=None, decryption_properties=None, thrift_string_size_limit=None, thrift_container_size_limit=None, filesystem=None)[source]#
Bases:
object
Reader interface for a single Parquet file.
- Parameters:
- source
str
,pathlib.Path
,pyarrow.NativeFile
, or file-like object Readable source. For passing bytes or buffer-like file containing a Parquet file, use pyarrow.BufferReader.
- metadata
FileMetaData
, defaultNone
Use existing metadata object, rather than reading from file.
- common_metadata
FileMetaData
, defaultNone
Will be used in reads for pandas schema metadata if not found in the main file’s metadata, no other uses at the moment.
- read_dictionary
list
List of column names to read directly as DictionaryArray.
- memory_mapbool, default
False
If the source is a file path, use a memory map to read file, which can improve performance in some environments.
- buffer_size
int
, default 0 If positive, perform read buffering when deserializing individual column chunks. Otherwise IO calls are unbuffered.
- pre_bufferbool, default
False
Coalesce and issue file reads in parallel to improve performance on high-latency filesystems (e.g. S3). If True, Arrow will use a background I/O thread pool.
- coerce_int96_timestamp_unit
str
, defaultNone
Cast timestamps that are stored in INT96 format to a particular resolution (e.g. ‘ms’). Setting to None is equivalent to ‘ns’ and therefore INT96 timestamps will be inferred as timestamps in nanoseconds.
- decryption_properties
FileDecryptionProperties
, defaultNone
File decryption properties for Parquet Modular Encryption.
- thrift_string_size_limit
int
, defaultNone
If not None, override the maximum total string size allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files.
- thrift_container_size_limit
int
, defaultNone
If not None, override the maximum total size of containers allocated when decoding Thrift structures. The default limit should be sufficient for most Parquet files.
- filesystem
FileSystem
, defaultNone
If nothing passed, will be inferred based on path. Path will try to be found in the local on-disk filesystem otherwise it will be parsed as an URI to determine the filesystem.
- source
Examples
Generate an example PyArrow Table and write it to Parquet file:
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]})
>>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet')
Create a
ParquetFile
object from the Parquet file:>>> parquet_file = pq.ParquetFile('example.parquet')
Read the data:
>>> parquet_file.read() pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[2,2,4,4,5,100]] animal: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]]
Create a ParquetFile object with “animal” column as DictionaryArray:
>>> parquet_file = pq.ParquetFile('example.parquet', ... read_dictionary=["animal"]) >>> parquet_file.read() pyarrow.Table n_legs: int64 animal: dictionary<values=string, indices=int32, ordered=0> ---- n_legs: [[2,2,4,4,5,100]] animal: [ -- dictionary: ["Flamingo","Parrot",...,"Brittle stars","Centipede"] -- indices: [0,1,2,3,4,5]]
- __init__(source, *, metadata=None, common_metadata=None, read_dictionary=None, memory_map=False, buffer_size=0, pre_buffer=False, coerce_int96_timestamp_unit=None, decryption_properties=None, thrift_string_size_limit=None, thrift_container_size_limit=None, filesystem=None)[source]#
Methods
__init__
(source, *[, metadata, ...])close
([force])iter_batches
([batch_size, row_groups, ...])Read streaming batches from a Parquet file.
read
([columns, use_threads, use_pandas_metadata])Read a Table from Parquet format.
read_row_group
(i[, columns, use_threads, ...])Read a single row group from a Parquet file.
read_row_groups
(row_groups[, columns, ...])Read a multiple row groups from a Parquet file.
scan_contents
([columns, batch_size])Read contents of file for the given columns and batch size.
Attributes
Return the Parquet metadata.
Return the number of row groups of the Parquet file.
Return the Parquet schema, unconverted to Arrow types
Return the inferred Arrow schema, converted from the whole Parquet file's schema
- iter_batches(batch_size=65536, row_groups=None, columns=None, use_threads=True, use_pandas_metadata=False)[source]#
Read streaming batches from a Parquet file.
- Parameters:
- batch_size
int
, default 64K Maximum number of records to yield per batch. Batches may be smaller if there aren’t enough rows in the file.
- row_groups
list
Only these row groups will be read from the file.
- columns
list
If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. ‘a’ will select ‘a.b’, ‘a.c’, and ‘a.d.e’.
- use_threadsbool, default
True
Perform multi-threaded column reads.
- use_pandas_metadatabool, default
False
If True and file has custom pandas schema metadata, ensure that index columns are also loaded.
- batch_size
- Yields:
pyarrow.RecordBatch
Contents of each batch as a record batch
Examples
Generate an example Parquet file:
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet') >>> for i in parquet_file.iter_batches(): ... print("RecordBatch") ... print(i.to_pandas()) ... RecordBatch n_legs animal 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede
- property metadata#
Return the Parquet metadata.
- property num_row_groups#
Return the number of row groups of the Parquet file.
Examples
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet')
>>> parquet_file.num_row_groups 1
- read(columns=None, use_threads=True, use_pandas_metadata=False)[source]#
Read a Table from Parquet format.
- Parameters:
- columns
list
If not None, only these columns will be read from the file. A column name may be a prefix of a nested field, e.g. ‘a’ will select ‘a.b’, ‘a.c’, and ‘a.d.e’.
- use_threadsbool, default
True
Perform multi-threaded column reads.
- use_pandas_metadatabool, default
False
If True and file has custom pandas schema metadata, ensure that index columns are also loaded.
- columns
- Returns:
pyarrow.table.Table
Content of the file as a table (of columns).
Examples
Generate an example Parquet file:
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet')
Read a Table:
>>> parquet_file.read(columns=["animal"]) pyarrow.Table animal: string ---- animal: [["Flamingo","Parrot",...,"Brittle stars","Centipede"]]
- read_row_group(i, columns=None, use_threads=True, use_pandas_metadata=False)[source]#
Read a single row group from a Parquet file.
- Parameters:
- i
int
Index of the individual row group that we want to read.
- columns
list
If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. ‘a’ will select ‘a.b’, ‘a.c’, and ‘a.d.e’.
- use_threadsbool, default
True
Perform multi-threaded column reads.
- use_pandas_metadatabool, default
False
If True and file has custom pandas schema metadata, ensure that index columns are also loaded.
- i
- Returns:
pyarrow.table.Table
Content of the row group as a table (of columns)
Examples
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet')
>>> parquet_file.read_row_group(0) pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[2,2,4,4,5,100]] animal: [["Flamingo","Parrot",...,"Brittle stars","Centipede"]]
- read_row_groups(row_groups, columns=None, use_threads=True, use_pandas_metadata=False)[source]#
Read a multiple row groups from a Parquet file.
- Parameters:
- row_groups
list
Only these row groups will be read from the file.
- columns
list
If not None, only these columns will be read from the row group. A column name may be a prefix of a nested field, e.g. ‘a’ will select ‘a.b’, ‘a.c’, and ‘a.d.e’.
- use_threadsbool, default
True
Perform multi-threaded column reads.
- use_pandas_metadatabool, default
False
If True and file has custom pandas schema metadata, ensure that index columns are also loaded.
- row_groups
- Returns:
pyarrow.table.Table
Content of the row groups as a table (of columns).
Examples
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet')
>>> parquet_file.read_row_groups([0,0]) pyarrow.Table n_legs: int64 animal: string ---- n_legs: [[2,2,4,4,5,...,2,4,4,5,100]] animal: [["Flamingo","Parrot","Dog",...,"Brittle stars","Centipede"]]
- scan_contents(columns=None, batch_size=65536)[source]#
Read contents of file for the given columns and batch size.
- Parameters:
- Returns:
- num_rows
int
Number of rows in file
- num_rows
Notes
This function’s primary purpose is benchmarking. The scan is executed on a single thread.
Examples
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet')
>>> parquet_file.scan_contents() 6
- property schema#
Return the Parquet schema, unconverted to Arrow types
- property schema_arrow#
Return the inferred Arrow schema, converted from the whole Parquet file’s schema
Examples
Generate an example Parquet file:
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> import pyarrow.parquet as pq >>> pq.write_table(table, 'example.parquet') >>> parquet_file = pq.ParquetFile('example.parquet')
Read the Arrow schema:
>>> parquet_file.schema_arrow n_legs: int64 animal: string