pyarrow.StructType#
- class pyarrow.StructType#
Bases:
DataType
Concrete class for struct data types.
StructType
supports direct indexing using[...]
(implemented via__getitem__
) to access its fields. It will return the struct field with the given index or name.Examples
>>> import pyarrow as pa
Accessing fields using direct indexing:
>>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct_type[0] pyarrow.Field<x: int32> >>> struct_type['y'] pyarrow.Field<y: string>
Accessing fields using
field()
:>>> struct_type.field(1) pyarrow.Field<y: string> >>> struct_type.field('x') pyarrow.Field<x: int32>
# Creating a schema from the struct type’s fields: >>> pa.schema(list(struct_type)) x: int32 y: string
- __init__(*args, **kwargs)#
Methods
__init__
(*args, **kwargs)equals
(self, other, *[, check_metadata])Return true if type is equivalent to passed value.
field
(self, i)Select a field by its column name or numeric index.
get_all_field_indices
(self, name)Return sorted list of indices for the fields with the given name.
get_field_index
(self, name)Return index of the unique field with the given name.
to_pandas_dtype
(self)Return the equivalent NumPy / Pandas dtype.
Attributes
Bit width for fixed width type.
Number of data buffers required to construct Array type excluding children.
The number of child fields.
- bit_width#
Bit width for fixed width type.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().bit_width 64
- equals(self, other, *, check_metadata=False)#
Return true if type is equivalent to passed value.
- Parameters:
- Returns:
- is_equalbool
Examples
>>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) True
- field(self, i) Field #
Select a field by its column name or numeric index.
- Parameters:
- Returns:
Examples
>>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()})
Select the second field:
>>> struct_type.field(1) pyarrow.Field<y: string>
Select the field named ‘x’:
>>> struct_type.field('x') pyarrow.Field<x: int32>
- get_all_field_indices(self, name)#
Return sorted list of indices for the fields with the given name.
Examples
>>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct_type.get_all_field_indices('x') [0]
- get_field_index(self, name)#
Return index of the unique field with the given name.
- Parameters:
- name
str
The name of the field to look up.
- name
- Returns:
- index
int
The index of the field with the given name; -1 if the name isn’t found or there are several fields with the given name.
- index
Examples
>>> import pyarrow as pa >>> struct_type = pa.struct({'x': pa.int32(), 'y': pa.string()})
Index of the field with a name ‘y’:
>>> struct_type.get_field_index('y') 1
Index of the field that does not exist:
>>> struct_type.get_field_index('z') -1
- id#
- num_buffers#
Number of data buffers required to construct Array type excluding children.
Examples
>>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3
- num_fields#
The number of child fields.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list<item: string>) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2
- to_pandas_dtype(self)#
Return the equivalent NumPy / Pandas dtype.
Examples
>>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() <class 'numpy.int64'>