Developing on Windows

Like Linux and macOS, we have worked to enable builds to work “out of the box” with CMake for a reasonably large subset of the project.

System Setup

Microsoft provides the free Visual Studio Community edition. When doing development in the shell, you must initialize the development environment.

For Visual Studio 2015, execute the following batch script:

"C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" amd64

For Visual Studio 2017, the script is:

"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\Common7\Tools\VsDevCmd.bat" -arch=amd64

One can configure a console emulator like cmder to automatically launch this when starting a new development console.

Using conda-forge for build dependencies

Miniconda is a minimal Python distribution including the conda package manager. Some memers of the Apache Arrow community participate in the maintenance of conda-forge, a community-maintained cross-platform package repository for conda.

To use conda-forge for your C++ build dependencies on Windows, first download and install a 64-bit distribution from the Miniconda homepage

To configure conda to use the conda-forge channel by default, launch a command prompt (cmd.exe) and run the command:

conda config --add channels conda-forge

Now, you can bootstrap a build environment (call from the root directory of the Arrow codebase):

conda create -y -n arrow-dev --file=ci\conda_env_cpp.yml

Then “activate” this conda environment with:

activate arrow-dev

If the environment has been activated, the Arrow build system will automatically see the %CONDA_PREFIX% environment variable and use that for resolving the build dependencies. This is equivalent to setting

-DARROW_DEPENDENCY_SOURCE=SYSTEM ^
-DARROW_PACKAGE_PREFIX=%CONDA_PREFIX%\Library

Note that these packages are only supported for release builds. If you intend to use -DCMAKE_BUILD_TYPE=debug then you must build the packages from source.

Note

If you run into any problems using conda packages for dependencies, a very common problem is mixing packages from the defaults channel with those from conda-forge. You can examine the installed packages in your environment (and their origin) with conda list

Building using Visual Studio (MSVC) Solution Files

Change working directory in cmd.exe to the root directory of Arrow and do an out of source build by generating a MSVC solution:

cd cpp
mkdir build
cd build
cmake .. -G "Visual Studio 14 2015 Win64" ^
      -DARROW_BUILD_TESTS=ON
cmake --build . --config Release

Building with Ninja and clcache

The Ninja build system offsets better build parallelization, and the optional clcache compiler cache which keeps track of past compilations to avoid running them over and over again (in a way similar to the Unix-specific ccache).

Activate your conda build environment to first install those utilities:

activate arrow-dev
conda install -c conda-forge ninja
pip install git+https://github.com/frerich/clcache.git

Change working directory in cmd.exe to the root directory of Arrow and do an out of source build by generating Ninja files:

cd cpp
mkdir build
cd build
cmake -G "Ninja" ^
      -DCMAKE_C_COMPILER=clcache ^
      -DCMAKE_CXX_COMPILER=clcache ^
      -DARROW_BUILD_TESTS=ON ^
      -DGTest_SOURCE=BUNDLED ..
cmake --build . --config Release

Setting CMAKE_C_COMPILER and CMAKE_CXX_COMPILER in the command line of cmake is the preferred method of using clcache. Alternatively, you can set CC and CXX environment variables before calling cmake:

...
set CC=clcache
set CXX=clcache
cmake -G "Ninja" ^
...

Building with NMake

Change working directory in cmd.exe to the root directory of Arrow and do an out of source build using nmake:

cd cpp
mkdir build
cd build
cmake -G "NMake Makefiles" ..
nmake

Building on MSYS2

You can build on MSYS2 terminal, cmd.exe or PowerShell terminal.

On MSYS2 terminal:

cd cpp
mkdir build
cd build
cmake -G "MSYS Makefiles" ..
make

On cmd.exe or PowerShell terminal, you can use the following batch file:

setlocal

REM For 64bit
set MINGW_PACKAGE_PREFIX=mingw-w64-x86_64
set MINGW_PREFIX=c:\msys64\mingw64
set MSYSTEM=MINGW64

set PATH=%MINGW_PREFIX%\bin;c:\msys64\usr\bin;%PATH%

rmdir /S /Q cpp\build
mkdir cpp\build
pushd cpp\build
cmake -G "MSYS Makefiles" .. || exit /B
make || exit /B
popd

Debug builds

To build a Debug version of Arrow, you should have pre-installed a Debug version of Boost. It’s recommended to configure cmake build with the following variables for Debug build:

  • -DARROW_BOOST_USE_SHARED=OFF: enables static linking with boost debug libs and simplifies run-time loading of 3rd parties

  • -DBOOST_ROOT: sets the root directory of boost libs. (Optional)

  • -DBOOST_LIBRARYDIR: sets the directory with boost lib files. (Optional)

The command line to build Arrow in Debug mode will look something like this:

cd cpp
mkdir build
cd build
cmake .. -G "Visual Studio 14 2015 Win64" ^
      -DARROW_BOOST_USE_SHARED=OFF ^
      -DCMAKE_BUILD_TYPE=Debug ^
      -DBOOST_ROOT=C:/local/boost_1_63_0  ^
      -DBOOST_LIBRARYDIR=C:/local/boost_1_63_0/lib64-msvc-14.0
cmake --build . --config Debug

Windows dependency resolution issues

Because Windows uses .lib files for both static and dynamic linking of dependencies, the static library sometimes may be named something different like %PACKAGE%_static.lib to distinguish itself. If you are statically linking some dependencies, we provide some options

  • -DBROTLI_MSVC_STATIC_LIB_SUFFIX=%BROTLI_SUFFIX%

  • -DSNAPPY_MSVC_STATIC_LIB_SUFFIX=%SNAPPY_SUFFIX%

  • -LZ4_MSVC_STATIC_LIB_SUFFIX=%LZ4_SUFFIX%

  • -ZSTD_MSVC_STATIC_LIB_SUFFIX=%ZSTD_SUFFIX%

To get the latest build instructions, you can reference ci/appveyor-built.bat, which is used by automated Appveyor builds.

Statically linking to Arrow on Windows

The Arrow headers on Windows static library builds (enabled by the CMake option ARROW_BUILD_STATIC) use the preprocessor macro ARROW_STATIC to suppress dllimport/dllexport marking of symbols. Projects that statically link against Arrow on Windows additionally need this definition. The Unix builds do not use the macro.

Replicating Appveyor Builds

For people more familiar with linux development but need to replicate a failing appveyor build, here are some rough notes from replicating the Static_Crt_Build (make unittest will probably still fail but many unit tests can be made with there individual make targets).

  1. Microsoft offers trial VMs for Windows with Microsoft Visual Studio. Download and install a version.

  2. Run the VM and install CMake and Miniconda or Anaconda (these instructions assume Anaconda).

  3. Download pre-built Boost debug binaries and install it (run from command prompt opened by “Developer Command Prompt for MSVC 2017”):

cd $EXTRACT_BOOST_DIRECTORY
.\bootstrap.bat
@rem This is for static libraries needed for static_crt_build in appveyor
.\b2 link=static -with-filesystem -with-regex -with-system install
@rem this should put libraries and headers in c:\Boost
  1. Activate anaconda/miniconda:

@rem this might differ for miniconda
C:\Users\User\Anaconda3\Scripts\activate
  1. Clone and change directories to the arrow source code (you might need to install git).

  2. Setup environment variables:

@rem Change the build type based on which appveyor job you want.
SET JOB=Static_Crt_Build
SET GENERATOR=Ninja
SET APPVEYOR_BUILD_WORKER_IMAGE=Visual Studio 2017
SET USE_CLCACHE=false
SET ARROW_BUILD_GANDIVA=OFF
SET ARROW_LLVM_VERSION=7.0.*
SET PYTHON=3.6
SET ARCH=64
SET PATH=C:\Users\User\Anaconda3;C:\Users\User\Anaconda3\Scripts;C:\Users\User\Anaconda3\Library\bin;%PATH%
SET BOOST_LIBRARYDIR=C:\Boost\lib
SET BOOST_ROOT=C:\Boost
  1. Run appveyor scripts:

.\ci\appveyor-install.bat
@rem this might fail but at this point most unit tests should be buildable by there individual targets
@rem see next line for example.
.\ci\appveyor-build.bat
cmake --build . --config Release --target arrow-compute-hash-test