Skip to contents

The arrow package provides functions for reading single data files into memory, in several common formats. By default, calling any of these functions returns an R data frame. To return an Arrow Table, set argument as_data_frame = FALSE.

For writing data to single files, the arrow package provides the following functions, which can be used with both R data frames and Arrow Tables:

All these functions can read and write files in the local filesystem or to cloud storage. For more on cloud storage support in arrow, see the cloud storage article.

The arrow package also supports reading larger-than-memory single data files, and reading and writing multi-file data sets. This enables analysis and processing of larger-than-memory data, and provides the ability to partition data into smaller chunks without loading the full data into memory. For more information on this topic, see the dataset article.

Parquet format

Apache Parquet is a popular choice for storing analytics data; it is a binary format that is optimized for reduced file sizes and fast read performance, especially for column-based access patterns. The simplest way to read and write Parquet data using arrow is with the read_parquet() and write_parquet() functions. To illustrate this, we’ll write the starwars data included in dplyr to a Parquet file, then read it back in. First load the arrow and dplyr packages:

library(arrow, warn.conflicts = FALSE)
## Some features are not enabled in this build of Arrow. Run `arrow_info()` for more information.
library(dplyr, warn.conflicts = FALSE)

Next we’ll write the data frame to a Parquet file located at file_path:

file_path <- tempfile()
write_parquet(starwars, file_path)

The size of a Parquet file is typically much smaller than the corresponding CSV file would have been. This is in part due to the use of file compression: by default, Parquet files written with the arrow package use Snappy compression but other options such as gzip are also supported. See help("write_parquet", package = "arrow") for more information.

Having written the Parquet file, we now can read it with read_parquet():

read_parquet(file_path)
## # A tibble: 87 × 14
##    name     height  mass hair_color skin_color eye_color birth_year sex   gender
##    <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
##  1 Luke Sk…    172    77 blond      fair       blue            19   male  mascu…
##  2 C-3PO       167    75 NA         gold       yellow         112   none  mascu…
##  3 R2-D2        96    32 NA         white, bl… red             33   none  mascu…
##  4 Darth V…    202   136 none       white      yellow          41.9 male  mascu…
##  5 Leia Or…    150    49 brown      light      brown           19   fema… femin…
##  6 Owen La…    178   120 brown, gr… light      blue            52   male  mascu…
##  7 Beru Wh…    165    75 brown      light      blue            47   fema… femin…
##  8 R5-D4        97    32 NA         white, red red             NA   none  mascu…
##  9 Biggs D…    183    84 black      light      brown           24   male  mascu…
## 10 Obi-Wan…    182    77 auburn, w… fair       blue-gray       57   male  mascu…
## # ℹ 77 more rows
## # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list<character>>,
## #   vehicles <list<character>>, starships <list<character>>

The default is to return a data frame or tibble. If we want an Arrow Table instead, we would set as_data_frame = FALSE:

read_parquet(file_path, as_data_frame = FALSE)
## Table
## 87 rows x 14 columns
## $name <string>
## $height <int32>
## $mass <double>
## $hair_color <string>
## $skin_color <string>
## $eye_color <string>
## $birth_year <double>
## $sex <string>
## $gender <string>
## $homeworld <string>
## $species <string>
## $films: list<element <string>>
## $vehicles: list<element <string>>
## $starships: list<element <string>>

One useful feature of Parquet files is that they store data column-wise, and contain metadata that allow file readers to skip to the relevant sections of the file. That means it is possible to load only a subset of the columns without reading the complete file. The col_select argument to read_parquet() supports this functionality:

read_parquet(file_path, col_select = c("name", "height", "mass"))
## # A tibble: 87 × 3
##    name               height  mass
##    <chr>               <int> <dbl>
##  1 Luke Skywalker        172    77
##  2 C-3PO                 167    75
##  3 R2-D2                  96    32
##  4 Darth Vader           202   136
##  5 Leia Organa           150    49
##  6 Owen Lars             178   120
##  7 Beru Whitesun Lars    165    75
##  8 R5-D4                  97    32
##  9 Biggs Darklighter     183    84
## 10 Obi-Wan Kenobi        182    77
## # ℹ 77 more rows

Fine-grained control over the Parquet reader is possible with the props argument. See help("ParquetArrowReaderProperties", package = "arrow") for details.

R object attributes are preserved when writing data to Parquet or Arrow/Feather files and when reading those files back into R. This enables round-trip writing and reading of sf::sf objects, R data frames with with haven::labelled columns, and data frame with other custom attributes. To learn more about how metadata are handled in arrow, the metadata article.

Arrow/Feather format

The Arrow file format was developed to provide binary columnar serialization for data frames, to make reading and writing data frames efficient, and to make sharing data across data analysis languages easy. This file format is sometimes referred to as Feather because it is an outgrowth of the original Feather project that has now been moved into the Arrow project itself. You can find the detailed specification of version 2 of the Arrow format – officially referred to as the Arrow IPC file format – on the Arrow specification page.

The write_feather() function writes version 2 Arrow/Feather files by default, and supports multiple kinds of file compression. Basic use is shown below:

file_path <- tempfile()
write_feather(starwars, file_path)

The read_feather() function provides a familiar interface for reading feather files:

read_feather(file_path)
## # A tibble: 87 × 14
##    name     height  mass hair_color skin_color eye_color birth_year sex   gender
##    <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
##  1 Luke Sk…    172    77 blond      fair       blue            19   male  mascu…
##  2 C-3PO       167    75 NA         gold       yellow         112   none  mascu…
##  3 R2-D2        96    32 NA         white, bl… red             33   none  mascu…
##  4 Darth V…    202   136 none       white      yellow          41.9 male  mascu…
##  5 Leia Or…    150    49 brown      light      brown           19   fema… femin…
##  6 Owen La…    178   120 brown, gr… light      blue            52   male  mascu…
##  7 Beru Wh…    165    75 brown      light      blue            47   fema… femin…
##  8 R5-D4        97    32 NA         white, red red             NA   none  mascu…
##  9 Biggs D…    183    84 black      light      brown           24   male  mascu…
## 10 Obi-Wan…    182    77 auburn, w… fair       blue-gray       57   male  mascu…
## # ℹ 77 more rows
## # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list<character>>,
## #   vehicles <list<character>>, starships <list<character>>

Like the Parquet reader, this reader supports reading a only subset of columns, and can produce Arrow Table output:

read_feather(
  file = file_path,
  col_select = c("name", "height", "mass"),
  as_data_frame = FALSE
)
## Table
## 87 rows x 3 columns
## $name <string>
## $height <int32>
## $mass <double>

CSV format

The read/write capabilities of the arrow package also include support for CSV and other text-delimited files. The read_csv_arrow(), read_tsv_arrow(), and read_delim_arrow() functions all use the Arrow C++ CSV reader to read data files, where the Arrow C++ options have been mapped to arguments in a way that mirrors the conventions used in readr::read_delim(), with a col_select argument inspired by vroom::vroom().

A simple example of writing and reading a CSV file with arrow is shown below:

file_path <- tempfile()
write_csv_arrow(mtcars, file_path)
read_csv_arrow(file_path, col_select = starts_with("d"))
## # A tibble: 32 × 2
##     disp  drat
##    <dbl> <dbl>
##  1  160   3.9 
##  2  160   3.9 
##  3  108   3.85
##  4  258   3.08
##  5  360   3.15
##  6  225   2.76
##  7  360   3.21
##  8  147.  3.69
##  9  141.  3.92
## 10  168.  3.92
## # ℹ 22 more rows

In addition to the options provided by the readr-style arguments (delim, quote, escape_double, escape_backslash, etc), you can use the schema argument to specify column types: see schema() help for details. There is also the option of using parse_options, convert_options, and read_options to exercise fine-grained control over the arrow csv reader: see help("CsvReadOptions", package = "arrow") for details.

JSON format

The arrow package supports reading (but not writing) of tabular data from line-delimited JSON, using the read_json_arrow() function. A minimal example is shown below:

file_path <- tempfile()
writeLines('
    { "hello": 3.5, "world": false, "yo": "thing" }
    { "hello": 3.25, "world": null }
    { "hello": 0.0, "world": true, "yo": null }
  ', file_path, useBytes = TRUE)
read_json_arrow(file_path)
## # A tibble: 3 × 3
##   hello world yo   
##   <dbl> <lgl> <chr>
## 1  3.5  FALSE thing
## 2  3.25 NA    NA   
## 3  0    TRUE  NA

Further reading