Changelog
Source:NEWS.md
arrow 12.0.0
CRAN release: 2023-05-05
New features
- The
read_parquet()
andread_feather()
functions can now accept URL arguments (#33287, #34708). - The
json_credentials
argument inGcsFileSystem$create()
now accepts a file path containing the appropriate authentication token (@amoeba, #34421, #34524). - The
$options
member ofGcsFileSystem
objects can now be inspected (@amoeba, #34422, #34477). - The
read_csv_arrow()
andread_json_arrow()
functions now accept literal text input wrapped inI()
to improve compatability withreadr::read_csv()
(@eitsupi, #18487, #33968). - Nested fields can now be accessed using
$
and[[
in dplyr expressions (#18818, #19706).
Minor improvements and fixes
- Fix crash that occurred at process exit related to finalizing the S3 filesystem component (#15054, #33858).
- Implement the Arrow C++
FetchNode
andOrderByNode
to improve performance and simplify building query plans from dplyr expressions (#34437, #34685). - Fix a bug where different R metadata were written depending on subtle argument passing semantics in
arrow_table()
(#35038, #35039). - Improve error message when attempting to convert a
data.frame
withNULL
column names to aTable
(#15247, #34798). - Vignettes were updated to reflect improvements in the
open_csv_dataset()
family of functions (#33998, #34710). - Fixed a crash that occurred when arrow ALTREP vectors were materialized and converted back to arrow Arrays (#34211, #34489).
- Improved conda install instructions (#32512, #34398).
- Improved documentation URL configurations (@eitsupi, #34276).
- Updated links to JIRA issues that were migrated to GitHub (@eitsupi, #33631, #34260).
- The
dplyr::n()
function is now mapped to thecount_all
kernel to improve performance and simplify the R implementation (#33892, #33917). - Improved the experience of using the
s3_bucket()
filesystem helper withendpoint_override
and fixed surprising behaviour that occurred when passing some combinations of arguments (@cboettig, #33904, #34009). - Do not raise error if
schema
is supplied andcol_names = TRUE
inopen_csv_dataset()
(#34217, #34092).
arrow 11.0.0.3
CRAN release: 2023-03-08
Minor improvements and fixes
-
open_csv_dataset()
allows a schema to be specified. (#34217) - To ensure compatibility with an upcoming dplyr release, we no longer call
dplyr:::check_names()
(#34369)
arrow 11.0.0.2
CRAN release: 2023-02-12
Breaking changes
-
map_batches()
is lazy by default; it now returns aRecordBatchReader
instead of a list ofRecordBatch
objects unlesslazy = FALSE
. (#14521)
New features
Docs
- A substantial reorganisation, rewrite of and addition to, many of the vignettes and README. (@djnavarro, #14514)
Reading/writing data
- New functions
open_csv_dataset()
,open_tsv_dataset()
, andopen_delim_dataset()
all wrapopen_dataset()
- they don’t provide new functionality, but allow for readr-style options to be supplied, making it simpler to switch between individual file-reading and dataset functionality. (#33614) - User-defined null values can be set when writing CSVs both as datasets and as individual files. (@wjones127, #14679)
- The new
col_names
parameter allows specification of column names when opening a CSV dataset. (@wjones127, #14705) - The
parse_options
,read_options
, andconvert_options
parameters for reading individual files (read_*_arrow()
functions) and datasets (open_dataset()
and the newopen_*_dataset()
functions) can be passed in as lists. (#15270) - File paths containing accents can be read by
read_csv_arrow()
. (#14930)
dplyr compatibility
- New dplyr (1.1.0) function
join_by()
has been implemented for dplyr joins on Arrow objects (equality conditions only). (#33664) - Output is accurate when multiple
dplyr::group_by()
/dplyr::summarise()
calls are used. (#14905) -
dplyr::summarize()
works with division when divisor is a variable. (#14933) -
dplyr::right_join()
correctly coalesces keys. (#15077) - Multiple changes to ensure compatibility with dplyr 1.1.0. (@lionel-, #14948)
Minor improvements and fixes
- Calling
lubridate::as_datetime()
on Arrow objects can handle time in sub-seconds. (@eitsupi, #13890) -
head()
can be called afteras_record_batch_reader()
. (#14518) -
as.Date()
can go fromtimestamp[us]
totimestamp[s]
. (#14935) - curl timeout policy can be configured for S3. (#15166)
- rlang dependency must be at least version 1.0.0 because of
check_dots_empty()
. (@daattali, #14744)
arrow 10.0.1
CRAN release: 2022-12-06
Minor improvements and fixes:
- Fixes for failing test after lubridate 1.9 release (#14615)
- Update to ensure compatibility with changes in dev purrr (#14581)
- Fix to correctly handle
.data
pronoun indplyr::group_by()
(#14484)
arrow 10.0.0
CRAN release: 2022-10-26
Arrow dplyr queries
Several new functions can be used in queries:
-
dplyr::across()
can be used to apply the same computation across multiple columns, and thewhere()
selection helper is supported inacross()
; -
add_filename()
can be used to get the filename a row came from (only available when querying?Dataset
); - Added five functions in the
slice_*
family:dplyr::slice_min()
,dplyr::slice_max()
,dplyr::slice_head()
,dplyr::slice_tail()
, anddplyr::slice_sample()
.
The package now has documentation that lists all dplyr
methods and R function mappings that are supported on Arrow data, along with notes about any differences in functionality between queries evaluated in R versus in Acero, the Arrow query engine. See ?acero
.
A few new features and bugfixes were implemented for joins:
- Extension arrays are now supported in joins, allowing, for example, joining datasets that contain geoarrow data.
- The
keep
argument is now supported, allowing separate columns for the left and right hand side join keys in join output. Full joins now coalesce the join keys (whenkeep = FALSE
), avoiding the issue where the join keys would be allNA
for rows in the right hand side without any matches on the left.
Some changes to improve the consistency of the API:
- In a future release, calling
dplyr::pull()
will return a?ChunkedArray
instead of an R vector by default. The current default behavior is deprecated. To update to the new behavior now, specifypull(as_vector = FALSE)
or setoptions(arrow.pull_as_vector = FALSE)
globally. - Calling
dplyr::compute()
on a query that is grouped returns a?Table
instead of a query object.
Finally, long-running queries can now be cancelled and will abort their computation immediately.
Arrays and tables
as_arrow_array()
can now take blob::blob
and ?vctrs::list_of
, which convert to binary and list arrays, respectively. Also fixed an issue where as_arrow_array()
ignored type argument when passed a StructArray
.
The unique()
function works on ?Table
, ?RecordBatch
, ?Dataset
, and ?RecordBatchReader
.
Reading and writing
write_feather()
can take compression = FALSE
to choose writing uncompressed files.
Also, a breaking change for IPC files in write_dataset()
: passing "ipc"
or "feather"
to format
will now write files with .arrow
extension instead of .ipc
or .feather
.
Installation
As of version 10.0.0, arrow
requires C++17 to build. This means that:
- On Windows, you need
R >= 4.0
. Version 9.0.0 was the last version to support R 3.6. - On CentOS 7, you can build the latest version of
arrow
, but you first need to install a newer compiler than the default system compiler, gcc 4.8. Seevignette("install", package = "arrow")
for guidance. Note that you only need the newer compiler to buildarrow
: installing a binary package, as from RStudio Package Manager, or loading a package you’ve already installed works fine with the system defaults.
arrow 9.0.0
CRAN release: 2022-08-10
Arrow dplyr queries
- New dplyr verbs:
-
dplyr::union
anddplyr::union_all
(#13090) -
dplyr::glimpse
(#13563) -
show_exec_plan()
can be added to the end of a dplyr pipeline to show the underlying plan, similar todplyr::show_query()
.dplyr::show_query()
anddplyr::explain()
also work and show the same output, but may change in the future. (#13541)
-
- User-defined functions are supported in queries. Use
register_scalar_function()
to create them. (#13397) -
map_batches()
returns aRecordBatchReader
and requires that the function it maps returns something coercible to aRecordBatch
through theas_record_batch()
S3 function. It can also run in streaming fashion if passed.lazy = TRUE
. (#13170, #13650) - Functions can be called with package namespace prefixes (e.g.
stringr::
,lubridate::
) within queries. For example,stringr::str_length
will now dispatch to the same kernel asstr_length
. (#13160) - Support for new functions:
-
lubridate::parse_date_time()
datetime parser: (#12589, #13196, #13506)-
orders
with year, month, day, hours, minutes, and seconds components are supported. - the
orders
argument in the Arrow binding works as follows:orders
are transformed intoformats
which subsequently get applied in turn. There is noselect_formats
parameter and no inference takes place (like is the case inlubridate::parse_date_time()
).
-
-
lubridate
date and datetime parsers such aslubridate::ymd()
,lubridate::yq()
, andlubridate::ymd_hms()
(#13118, #13163, #13627) -
lubridate::fast_strptime()
(#13174) -
lubridate::floor_date()
,lubridate::ceiling_date()
, andlubridate::round_date()
(#12154) -
strptime()
supports thetz
argument to pass timezones. (#13190) -
lubridate::qday()
(day of quarter) -
exp()
andsqrt()
. (#13517)
-
- Bugfixes:
Reading and writing
- New functions
read_ipc_file()
andwrite_ipc_file()
are added. These functions are almost the same asread_feather()
andwrite_feather()
, but differ in that they only target IPC files (Feather V2 files), not Feather V1 files. -
read_arrow()
andwrite_arrow()
, deprecated since 1.0.0 (July 2020), have been removed. Instead of these, use theread_ipc_file()
andwrite_ipc_file()
for IPC files, or,read_ipc_stream()
andwrite_ipc_stream()
for IPC streams. (#13550) -
write_parquet()
now defaults to writing Parquet format version 2.4 (was 1.0). Previously deprecated argumentsproperties
andarrow_properties
have been removed; if you need to deal with these lower-level properties objects directly, useParquetFileWriter
, whichwrite_parquet()
wraps. (#13555) - UnionDatasets can unify schemas of multiple InMemoryDatasets with varying schemas. (#13088)
-
write_dataset()
preserves all schema metadata again. In 8.0.0, it would drop most metadata, breaking packages such as sfarrow. (#13105) - Reading and writing functions (such as
write_csv_arrow()
) will automatically (de-)compress data if the file path contains a compression extension (e.g."data.csv.gz"
). This works locally as well as on remote filesystems like S3 and GCS. (#13183) -
FileSystemFactoryOptions
can be provided toopen_dataset()
, allowing you to pass options such as which file prefixes to ignore. (#13171) - By default,
S3FileSystem
will not create or delete buckets. To enable that, pass the configuration optionallow_bucket_creation
orallow_bucket_deletion
. (#13206) -
GcsFileSystem
andgs_bucket()
allow connecting to Google Cloud Storage. (#10999, #13601)
Packaging
- The
arrow.dev_repo
for nightly builds of the R package and prebuilt libarrow binaries is now https://nightlies.apache.org/arrow/r/. - Brotli and BZ2 are shipped with MacOS binaries. BZ2 is shipped with Windows binaries. (#13484)
arrow 8.0.0
CRAN release: 2022-05-09
Enhancements to dplyr and datasets
-
open_dataset()
:- correctly supports the
skip
argument for skipping header rows in CSV datasets. - can take a list of datasets with differing schemas and attempt to unify the schemas to produce a
UnionDataset
.
- correctly supports the
- Arrow dplyr queries:
- are supported on
RecordBatchReader
. This allows, for example, results from DuckDB to be streamed back into Arrow rather than materialized before continuing the pipeline. - no longer need to materialize the entire result table before writing to a dataset if the query contains aggregations or joins.
- supports
dplyr::rename_with()
. -
dplyr::count()
returns an ungrouped dataframe.
- are supported on
-
write_dataset()
has more options for controlling row group and file sizes when writing partitioned datasets, such asmax_open_files
,max_rows_per_file
,min_rows_per_group
, andmax_rows_per_group
. -
write_csv_arrow()
accepts aDataset
or an Arrow dplyr query. - Joining one or more datasets while
option(use_threads = FALSE)
no longer crashes R. That option is set by default on Windows. -
dplyr
joins support thesuffix
argument to handle overlap in column names. - Filtering a Parquet dataset with
is.na()
no longer misses any rows. -
map_batches()
correctly acceptsDataset
objects.
Enhancements to date and time support
-
read_csv_arrow()
’s readr-style typeT
is mapped totimestamp(unit = "ns")
instead oftimestamp(unit = "s")
. - For Arrow dplyr queries, added additional lubridate features and fixes:
- New component extraction functions:
-
lubridate::tz()
(timezone), -
lubridate::semester()
, -
lubridate::dst()
(daylight savings time boolean), -
lubridate::date()
, -
lubridate::epiyear()
(year according to epidemiological week calendar),
-
-
lubridate::month()
works with integer inputs. -
lubridate::make_date()
&lubridate::make_datetime()
+base::ISOdatetime()
&base::ISOdate()
to create date-times from numeric representations. -
lubridate::decimal_date()
andlubridate::date_decimal()
-
lubridate::make_difftime()
(duration constructor) -
?lubridate::duration
helper functions, such aslubridate::dyears()
,lubridate::dhours()
,lubridate::dseconds()
. lubridate::leap_year()
-
lubridate::as_date()
andlubridate::as_datetime()
- New component extraction functions:
- Also for Arrow dplyr queries, added support and fixes for base date and time functions:
-
base::difftime
andbase::as.difftime()
-
base::as.Date()
to convert to date - Arrow timestamp and date arrays support
base::format()
-
strptime()
returnsNA
instead of erroring in case of format mismatch, just likebase::strptime()
.
-
- Timezone operations are supported on Windows if the tzdb package is also installed.
Extensibility
- Added S3 generic conversion functions such as
as_arrow_array()
andas_arrow_table()
for main Arrow objects. This includes, Arrow tables, record batches, arrays, chunked arrays, record batch readers, schemas, and data types. This allows other packages to define custom conversions from their types to Arrow objects, including extension arrays. - Custom extension types and arrays can be created and registered, allowing other packages to define their own array types. Extension arrays wrap regular Arrow array types and provide customized behavior and/or storage. See description and an example with
?new_extension_type
. - Implemented a generic extension type and as_arrow_array() methods for all objects where
vctrs::vec_is()
returns TRUE (i.e., any object that can be used as a column in atibble::tibble()
), provided that the underlyingvctrs::vec_data()
can be converted to an Arrow Array.
Concatenation Support
Arrow arrays and tables can be easily concatenated:
- Arrays can be concatenated with
concat_arrays()
or, if zero-copy is desired and chunking is acceptable, usingChunkedArray$create()
. - ChunkedArrays can be concatenated with
c()
. - RecordBatches and Tables support
cbind()
. - Tables support
rbind()
.concat_tables()
is also provided to concatenate tables while unifying schemas.
Other improvements and fixes
- Dictionary arrays support using ALTREP when converting to R factors.
- Math group generics are implemented for ArrowDatum. This means you can use base functions like
sqrt()
,log()
, andexp()
with Arrow arrays and scalars. -
read_*
andwrite_*
functions support R Connection objects for reading and writing files. - Parquet improvements:
- Parquet writer supports Duration type columns.
- The dataset Parquet reader consumes less memory.
-
median()
andquantile()
will warn only once about approximate calculations regardless of interactivity. -
Array$cast()
can cast StructArrays into another struct type with the same field names and structure (or a subset of fields) but different field types. - Removed special handling for Solaris.
- The CSV writer is much faster when writing string columns.
- Fixed an issue where
set_io_thread_count()
would set the CPU count instead of the IO thread count. -
RandomAccessFile
has a$ReadMetadata()
method that provides useful metadata provided by the filesystem. -
grepl
binding returnsFALSE
forNA
inputs (previously it returnedNA
), to match the behavior ofbase::grepl()
. -
create_package_with_all_dependencies()
works on Windows and Mac OS, instead of only Linux.
arrow 7.0.0
CRAN release: 2022-02-10
Enhancements to dplyr and datasets
- Additional lubridate features:
week()
, more of theis.*()
functions, and the label argument tomonth()
have been implemented. - More complex expressions inside
summarize()
, such asifelse(n() > 1, mean(y), mean(z))
, are supported. - When adding columns in a dplyr pipeline, one can now use
tibble
anddata.frame
to create columns of tibbles or data.frames respectively (e.g.... %>% mutate(df_col = tibble(a, b)) %>% ...
). - Dictionary columns (R
factor
type) are supported inside ofcoalesce()
. -
open_dataset()
accepts thepartitioning
argument when reading Hive-style partitioned files, even though it is not required. - The experimental
map_batches()
function for custom operations on dataset has been restored.
CSV
- Delimited files (including CSVs) with encodings other than UTF can now be read (using the
encoding
argument when reading). -
open_dataset()
correctly ignores byte-order marks (BOM
s) in CSVs, as already was true for reading single files - Reading a dataset internally uses an asynchronous scanner by default, which resolves a potential deadlock when reading in large CSV datasets.
-
head()
no longer hangs on large CSV datasets. - There is an improved error message when there is a conflict between a header in the file and schema/column names provided as arguments.
-
write_csv_arrow()
now follows the signature ofreadr::write_csv()
.
Other improvements and fixes
- Many of the vignettes have been reorganized, restructured and expanded to improve their usefulness and clarity.
- Code to generate schemas (and individual data type specficiations) are accessible with the
$code()
method on aschema
ortype
. This allows you to easily get the code needed to create a schema from an object that already has one. - Arrow
Duration
type has been mapped to R’sdifftime
class. - The
decimal256()
type is supported. Thedecimal()
function has been revised to call eitherdecimal256()
ordecimal128()
based on the value of theprecision
argument. -
write_parquet()
uses a reasonable guess atchunk_size
instead of always writing a single chunk. This improves the speed of reading and writing large Parquet files. -
write_parquet()
no longer drops attributes for grouped data.frames. - Chunked arrays are now supported using ALTREP.
- ALTREP vectors backed by Arrow arrays are no longer unexpectedly mutated by sorting or negation.
- S3 file systems can be created with
proxy_options
. - A segfault when creating S3 file systems has been fixed.
- Integer division in Arrow more closely matches R’s behavior.
Installation
- Source builds now by default use
pkg-config
to search for system dependencies (such aslibz
) and link to them if present. This new default will make building Arrow from source quicker on systems that have these dependencies installed already. To retain the previous behavior of downloading and building all dependencies, setARROW_DEPENDENCY_SOURCE=BUNDLED
. - Snappy and lz4 compression libraries are enabled by default in Linux builds. This means that the default build of Arrow, without setting any environment variables, will be able to read and write snappy encoded Parquet files.
- Windows binary packages include brotli compression support.
- Building Arrow on Windows can find a locally built libarrow library.
- The package compiles and installs on Raspberry Pi OS.
Under-the-hood changes
- The pointers used to pass data between R and Python have been made more reliable. Backwards compatibility with older versions of pyarrow has been maintained.
- The internal method of registering new bindings for use in dplyr queries has changed. See the new vignette about writing bindings for more information about how that works.
- R 3.3 is no longer supported.
glue
, whicharrow
depends on transitively, has dropped support for it.
arrow 6.0.1
CRAN release: 2021-11-20
- Joins now support inclusion of dictionary columns, and multiple crashes have been fixed
- Grouped aggregation no longer crashes when working on data that has been filtered down to 0 rows
- Bindings added for
str_count()
in dplyr queries - Work around a critical bug in the AWS SDK for C++ that could affect S3 multipart upload
- A UBSAN warning in the round kernel has been resolved
- Fixes for build failures on Solaris and on old versions of macOS
arrow 6.0.0
There are now two ways to query Arrow data:
1. Expanded Arrow-native queries: aggregation and joins
dplyr::summarize()
, both grouped and ungrouped, is now implemented for Arrow Datasets, Tables, and RecordBatches. Because data is scanned in chunks, you can aggregate over larger-than-memory datasets backed by many files. Supported aggregation functions include n()
, n_distinct()
, min(),
max()
, sum()
, mean()
, var()
, sd()
, any()
, and all()
. median()
and quantile()
with one probability are also supported and currently return approximate results using the t-digest algorithm.
Along with summarize()
, you can also call count()
, tally()
, and distinct()
, which effectively wrap summarize()
.
This enhancement does change the behavior of summarize()
and collect()
in some cases: see “Breaking changes” below for details.
In addition to summarize()
, mutating and filtering equality joins (inner_join()
, left_join()
, right_join()
, full_join()
, semi_join()
, and anti_join()
) with are also supported natively in Arrow.
Grouped aggregation and (especially) joins should be considered somewhat experimental in this release. We expect them to work, but they may not be well optimized for all workloads. To help us focus our efforts on improving them in the next release, please let us know if you encounter unexpected behavior or poor performance.
New non-aggregating compute functions include string functions like str_to_title()
and strftime()
as well as compute functions for extracting date parts (e.g. year()
, month()
) from dates. This is not a complete list of additional compute functions; for an exhaustive list of available compute functions see list_compute_functions()
.
We’ve also worked to fill in support for all data types, such as Decimal
, for functions added in previous releases. All type limitations mentioned in previous release notes should be no longer valid, and if you find a function that is not implemented for a certain data type, please report an issue.
2. DuckDB integration
If you have the duckdb package installed, you can hand off an Arrow Dataset or query object to DuckDB for further querying using the to_duckdb()
function. This allows you to use duckdb’s dbplyr
methods, as well as its SQL interface, to aggregate data. Filtering and column projection done before to_duckdb()
is evaluated in Arrow, and duckdb can push down some predicates to Arrow as well. This handoff does not copy the data, instead it uses Arrow’s C-interface (just like passing arrow data between R and Python). This means there is no serialization or data copying costs are incurred.
You can also take a duckdb tbl
and call to_arrow()
to stream data to Arrow’s query engine. This means that in a single dplyr pipeline, you could start with an Arrow Dataset, evaluate some steps in DuckDB, then evaluate the rest in Arrow.
Breaking changes
- Row order of data from a Dataset query is no longer deterministic. If you need a stable sort order, you should explicitly
arrange()
the query result. For calls tosummarize()
, you can setoptions(arrow.summarise.sort = TRUE)
to match the currentdplyr
behavior of sorting on the grouping columns. -
dplyr::summarize()
on an in-memory Arrow Table or RecordBatch no longer eagerly evaluates. Callcompute()
orcollect()
to evaluate the query. -
head()
andtail()
also no longer eagerly evaluate, both for in-memory data and for Datasets. Also, because row order is no longer deterministic, they will effectively give you a random slice of data from somewhere in the dataset unless youarrange()
to specify sorting. - Simple Feature (SF) columns no longer save all of their metadata when converting to Arrow tables (and thus when saving to Parquet or Feather). This also includes any dataframe column that has attributes on each element (in other words: row-level metadata). Our previous approach to saving this metadata is both (computationally) inefficient and unreliable with Arrow queries + datasets. This will most impact saving SF columns. For saving these columns we recommend either converting the columns to well-known binary representations (using
sf::st_as_binary(col)
) or using the sfarrow package which handles some of the intricacies of this conversion process. We have plans to improve this and re-enable custom metadata like this in the future when we can implement the saving in a safe and efficient way. If you need to preserve the pre-6.0.0 behavior of saving this metadata, you can setoptions(arrow.preserve_row_level_metadata = TRUE)
. We will be removing this option in a coming release. We strongly recommend avoiding using this workaround if possible since the results will not be supported in the future and can lead to surprising and inaccurate results. If you run into a custom class besides sf columns that are impacted by this please report an issue. - Datasets are officially no longer supported on 32-bit Windows on R < 4.0 (Rtools 3.5). 32-bit Windows users should upgrade to a newer version of R in order to use datasets.
Installation on Linux
- Package installation now fails if the Arrow C++ library does not compile. In previous versions, if the C++ library failed to compile, you would get a successful R package installation that wouldn’t do much useful.
- You can disable all optional C++ components when building from source by setting the environment variable
LIBARROW_MINIMAL=true
. This will have the core Arrow/Feather components but excludes Parquet, Datasets, compression libraries, and other optional features. - Source packages now bundle the Arrow C++ source code, so it does not have to be downloaded in order to build the package. Because the source is included, it is now possible to build the package on an offline/airgapped system. By default, the offline build will be minimal because it cannot download third-party C++ dependencies required to support all features. To allow a fully featured offline build, the included
create_package_with_all_dependencies()
function (also available on GitHub without installing the arrow package) will download all third-party C++ dependencies and bundle them inside the R source package. Run this function on a system connected to the network to produce the “fat” source package, then copy that .tar.gz package to your offline machine and install. Special thanks to @karldw for the huge amount of work on this. - Source builds can make use of system dependencies (such as
libz
) by settingARROW_DEPENDENCY_SOURCE=AUTO
. This is not the default in this release (BUNDLED
, i.e. download and build all dependencies) but may become the default in the future. - The JSON library components (
read_json_arrow()
) are now optional and still on by default; setARROW_JSON=OFF
before building to disable them.
Other enhancements and fixes
- More Arrow data types use ALTREP when converting to and from R. This speeds up some workflows significantly, while for others it merely delays conversion from Arrow to R. ALTREP is used by default, but to disable it, set
options(arrow.use_altrep = FALSE)
-
Field
objects can now be created as non-nullable, andschema()
now optionally accepts a list ofField
s - Numeric division by zero now matches R’s behavior and no longer raises an error
-
write_parquet()
no longer errors when used with a grouped data.frame -
case_when()
now errors cleanly if an expression is not supported in Arrow -
open_dataset()
now works on CSVs without header rows - Fixed a minor issue where the short readr-style types
T
andt
were reversed inread_csv_arrow()
- Bindings for
log(..., base = b)
where b is something other than 2, e, or 10 - A number of updates and expansions to our vignettes
- Fix segfaults in converting length-0 ChunkedArrays to R vectors
-
Table$create()
now has aliasarrow_table()
arrow 5.0.0.2
CRAN release: 2021-09-05
This patch version contains fixes for some sanitizer and compiler warnings.
arrow 5.0.0
CRAN release: 2021-07-29
More dplyr
-
There are now more than 250 compute functions available for use in
dplyr::filter()
,mutate()
, etc. Additions in this release include:- String operations:
strsplit()
andstr_split()
;strptime()
;paste()
,paste0()
, andstr_c()
;substr()
andstr_sub()
;str_like()
;str_pad()
;stri_reverse()
- Date/time operations:
lubridate
methods such asyear()
,month()
,wday()
, and so on - Math: logarithms (
log()
et al.); trigonometry (sin()
,cos()
, et al.);abs()
;sign()
;pmin()
andpmax()
;ceiling()
,floor()
, andtrunc()
- Conditional functions, with some limitations on input type in this release:
ifelse()
andif_else()
for all butDecimal
types;case_when()
for logical, numeric, and temporal types only;coalesce()
for all but lists/structs. Note also that in this release, factors/dictionaries are converted to strings in these functions. -
is.*
functions are supported and can be used insiderelocate()
- String operations:
- The print method for
arrow_dplyr_query
now includes the expression and the resulting type of columns derived bymutate()
. transmute()
now errors if passed arguments.keep
,.before
, or.after
, for consistency with the behavior ofdplyr
ondata.frame
s.
CSV writing
-
write_csv_arrow()
to use Arrow to write a data.frame to a single CSV file -
write_dataset(format = "csv", ...)
to write a Dataset to CSVs, including with partitioning
C interface
- Added bindings for the remainder of C data interface: Type, Field, and RecordBatchReader (from the experimental C stream interface). These also have
reticulate::py_to_r()
andr_to_py()
methods. Along with the addition of theScanner$ToRecordBatchReader()
method, you can now build up a Dataset query in R and pass the resulting stream of batches to another tool in process. - C interface methods are exposed on Arrow objects (e.g.
Array$export_to_c()
,RecordBatch$import_from_c()
), similar to how they are inpyarrow
. This facilitates their use in other packages. See thepy_to_r()
andr_to_py()
methods for usage examples.
Other enhancements
- Converting an R
data.frame
to an ArrowTable
uses multithreading across columns - Some Arrow array types now use ALTREP when converting to R. To disable this, set
options(arrow.use_altrep = FALSE)
-
is.na()
now evaluates toTRUE
onNaN
values in floating point number fields, for consistency with base R. -
is.nan()
now evaluates toFALSE
onNA
values in floating point number fields andFALSE
on all values in non-floating point fields, for consistency with base R. - Additional methods for
Array
,ChunkedArray
,RecordBatch
, andTable
:na.omit()
and friends,any()
/all()
- Scalar inputs to
RecordBatch$create()
andTable$create()
are recycled -
arrow_info()
includes details on the C++ build, such as compiler version -
match_arrow()
now convertsx
into anArray
if it is not aScalar
,Array
orChunkedArray
and no longer dispatchesbase::match()
. - Row-level metadata is now restricted to reading/writing single parquet or feather files. Row-level metadata with datasets is ignored (with a warning) if the dataset contains row-level metadata. Writing a dataset with row-level metadata will also be ignored (with a warning). We are working on a more robust implementation to support row-level metadata (and other complex types) — stay tuned. For working with {sf} objects, {sfarrow} is helpful for serializing sf columns and sharing them with geopandas.
arrow 4.0.0.1
CRAN release: 2021-05-10
- The mimalloc memory allocator is the default memory allocator when using a static source build of the package on Linux. This is because it has better behavior under valgrind than jemalloc does. A full-featured build (installed with
LIBARROW_MINIMAL=false
) includes both jemalloc and mimalloc, and it has still has jemalloc as default, though this is configurable at runtime with theARROW_DEFAULT_MEMORY_POOL
environment variable. - Environment variables
LIBARROW_MINIMAL
,LIBARROW_DOWNLOAD
, andNOT_CRAN
are now case-insensitive in the Linux build script. - A build configuration issue in the macOS binary package has been resolved.
arrow 4.0.0
CRAN release: 2021-04-27
dplyr methods
Many more dplyr
verbs are supported on Arrow objects:
-
dplyr::mutate()
is now supported in Arrow for many applications. For queries onTable
andRecordBatch
that are not yet supported in Arrow, the implementation falls back to pulling data into an in-memory Rdata.frame
first, as in the previous release. For queries onDataset
(which can be larger than memory), it raises an error if the function is not implemented. The mainmutate()
features that cannot yet be called on Arrow objects are (1)mutate()
aftergroup_by()
(which is typically used in combination with aggregation) and (2) queries that usedplyr::across()
. -
dplyr::transmute()
(which callsmutate()
) -
dplyr::group_by()
now preserves the.drop
argument and supports on-the-fly definition of columns -
dplyr::relocate()
to reorder columns -
dplyr::arrange()
to sort rows -
dplyr::compute()
to evaluate the lazy expressions and return an Arrow Table. This is equivalent todplyr::collect(as_data_frame = FALSE)
, which was added in 2.0.0.
Over 100 functions can now be called on Arrow objects inside a dplyr
verb:
- String functions
nchar()
,tolower()
, andtoupper()
, along with theirstringr
spellingsstr_length()
,str_to_lower()
, andstr_to_upper()
, are supported in Arrowdplyr
calls.str_trim()
is also supported. - Regular expression functions
sub()
,gsub()
, andgrepl()
, along withstr_replace()
,str_replace_all()
, andstr_detect()
, are supported. -
cast(x, type)
anddictionary_encode()
allow changing the type of columns in Arrow objects;as.numeric()
,as.character()
, etc. are exposed as similar type-altering conveniences -
dplyr::between()
; the Arrow version also allows theleft
andright
arguments to be columns in the data and not just scalars - Additionally, any Arrow C++ compute function can be called inside a
dplyr
verb. This enables you to access Arrow functions that don’t have a direct R mapping. Seelist_compute_functions()
for all available functions, which are available indplyr
prefixed byarrow_
. - Arrow C++ compute functions now do more systematic type promotion when called on data with different types (e.g. int32 and float64). Previously, Scalars in an expressions were always cast to match the type of the corresponding Array, so this new type promotion enables, among other things, operations on two columns (Arrays) in a dataset. As a side effect, some comparisons that worked in prior versions are no longer supported: for example,
dplyr::filter(arrow_dataset, string_column == 3)
will error with a message about the type mismatch between the numeric3
and the string type ofstring_column
.
Datasets
-
open_dataset()
now accepts a vector of file paths (or even a single file path). Among other things, this enables you to open a single very large file and usewrite_dataset()
to partition it without having to read the whole file into memory. - Datasets can now detect and read a directory of compressed CSVs
-
write_dataset()
now defaults toformat = "parquet"
and better validates theformat
argument - Invalid input for
schema
inopen_dataset()
is now correctly handled - Collecting 0 columns from a Dataset now no longer returns all of the columns
- The
Scanner$Scan()
method has been removed; useScanner$ScanBatches()
Other improvements
-
value_counts()
to tabulate values in anArray
orChunkedArray
, similar tobase::table()
. -
StructArray
objects gain data.frame-like methods, includingnames()
,$
,[[
, anddim()
. - RecordBatch columns can now be added, replaced, or removed by assigning (
<-
) with either$
or[[
- Similarly,
Schema
can now be edited by assigning in new types. This enables using the CSV reader to detect the schema of a file, modify theSchema
object for any columns that you want to read in as a different type, and then use thatSchema
to read the data. - Better validation when creating a
Table
with a schema, with columns of different lengths, and with scalar value recycling - Reading Parquet files in Japanese or other multi-byte locales on Windows no longer hangs (workaround for a bug in libstdc++; thanks @yutannihilation for the persistence in discovering this!)
- If you attempt to read string data that has embedded nul (
\0
) characters, the error message now informs you that you can setoptions(arrow.skip_nul = TRUE)
to strip them out. It is not recommended to set this option by default since this code path is significantly slower, and most string data does not contain nuls. -
read_json_arrow()
now accepts a schema:read_json_arrow("file.json", schema = schema(col_a = float64(), col_b = string()))
Installation and configuration
- The R package can now support working with an Arrow C++ library that has additional features (such as dataset, parquet, string libraries) disabled, and the bundled build script enables setting environment variables to disable them. See
vignette("install", package = "arrow")
for details. This allows a faster, smaller package build in cases where that is useful, and it enables a minimal, functioning R package build on Solaris. - On macOS, it is now possible to use the same bundled C++ build that is used by default on Linux, along with all of its customization parameters, by setting the environment variable
FORCE_BUNDLED_BUILD=true
. -
arrow
now uses themimalloc
memory allocator by default on macOS, if available (as it is in CRAN binaries), instead ofjemalloc
. There are configuration issues withjemalloc
on macOS, and benchmark analysis shows that this has negative effects on performance, especially on memory-intensive workflows.jemalloc
remains the default on Linux;mimalloc
is default on Windows. - Setting the
ARROW_DEFAULT_MEMORY_POOL
environment variable to switch memory allocators now works correctly when the Arrow C++ library has been statically linked (as is usually the case when installing from CRAN). - The
arrow_info()
function now reports on the additional optional features, as well as the detected SIMD level. If key features or compression libraries are not enabled in the build,arrow_info()
will refer to the installation vignette for guidance on how to install a more complete build, if desired. - If you attempt to read a file that was compressed with a codec that your Arrow build does not contain support for, the error message now will tell you how to reinstall Arrow with that feature enabled.
- A new vignette about developer environment setup
vignette("developing", package = "arrow")
. - When building from source, you can use the environment variable
ARROW_HOME
to point to a specific directory where the Arrow libraries are. This is similar to passingINCLUDE_DIR
andLIB_DIR
.
arrow 3.0.0
CRAN release: 2021-01-27
Python and Flight
- Flight methods
flight_get()
andflight_put()
(renamed frompush_data()
in this release) can handle both Tables and RecordBatches -
flight_put()
gains anoverwrite
argument to optionally check for the existence of a resource with the same name -
list_flights()
andflight_path_exists()
enable you to see available resources on a Flight server -
Schema
objects now haver_to_py
andpy_to_r
methods - Schema metadata is correctly preserved when converting Tables to/from Python
Enhancements
- Arithmetic operations (
+
,*
, etc.) are supported on Arrays and ChunkedArrays and can be used in filter expressions in Arrowdplyr
pipelines - Table columns can now be added, replaced, or removed by assigning (
<-
) with either$
or[[
- Column names of Tables and RecordBatches can be renamed by assigning
names()
- Large string types can now be written to Parquet files
- The
rlang
pronouns.data
and.env
are now fully supported in Arrowdplyr
pipelines. - Option
arrow.skip_nul
(defaultFALSE
, as inbase::scan()
) allows conversion of Arrow string (utf8()
) type data containing embedded nul\0
characters to R. If set toTRUE
, nuls will be stripped and a warning is emitted if any are found. -
arrow_info()
for an overview of various run-time and build-time Arrow configurations, useful for debugging - Set environment variable
ARROW_DEFAULT_MEMORY_POOL
before loading the Arrow package to change memory allocators. Windows packages are built withmimalloc
; most others are built with bothjemalloc
(used by default) andmimalloc
. These alternative memory allocators are generally much faster than the system memory allocator, so they are used by default when available, but sometimes it is useful to turn them off for debugging purposes. To disable them, setARROW_DEFAULT_MEMORY_POOL=system
. - List columns that have attributes on each element are now also included with the metadata that is saved when creating Arrow tables. This allows
sf
tibbles to faithfully preserved and roundtripped (#8549). - R metadata that exceeds 100Kb is now compressed before being written to a table; see
schema()
for more details.
Bug fixes
- Fixed a performance regression in converting Arrow string types to R that was present in the 2.0.0 release
- C++ functions now trigger garbage collection when needed
-
write_parquet()
can now write RecordBatches - Reading a Table from a RecordBatchStreamReader containing 0 batches no longer crashes
-
readr
’sproblems
attribute is removed when converting to Arrow RecordBatch and table to prevent large amounts of metadata from accumulating inadvertently (#9092) - Fixed reading of compressed Feather files written with Arrow 0.17 (#9128)
-
SubTreeFileSystem
gains a useful print method and no longer errors when printing
Packaging and installation
- Nightly development versions of the conda
r-arrow
package are available withconda install -c arrow-nightlies -c conda-forge --strict-channel-priority r-arrow
- Linux installation now safely supports older
cmake
versions - Compiler version checking for enabling S3 support correctly identifies the active compiler
- Updated guidance and troubleshooting in
vignette("install", package = "arrow")
, especially for known CentOS issues - Operating system detection on Linux uses the
distro
package. If your OS isn’t correctly identified, please report an issue there.
arrow 2.0.0
CRAN release: 2020-10-20
Datasets
-
write_dataset()
to Feather or Parquet files with partitioning. See the end ofvignette("dataset", package = "arrow")
for discussion and examples. - Datasets now have
head()
,tail()
, and take ([
) methods.head()
is optimized but the others may not be performant. -
collect()
gains anas_data_frame
argument, defaultTRUE
but whenFALSE
allows you to evaluate the accumulatedselect
andfilter
query but keep the result in Arrow, not an Rdata.frame
-
read_csv_arrow()
supports specifying column types, both with aSchema
and with the compact string representation for types used in thereadr
package. It also has gained atimestamp_parsers
argument that lets you express a set ofstrptime
parse strings that will be tried to convert columns designated asTimestamp
type.
AWS S3 support
- S3 support is now enabled in binary macOS and Windows (Rtools40 only, i.e. R >= 4.0) packages. To enable it on Linux, you need the additional system dependencies
libcurl
andopenssl
, as well as a sufficiently modern compiler. Seevignette("install", package = "arrow")
for details. - File readers and writers (
read_parquet()
,write_feather()
, et al.), as well asopen_dataset()
andwrite_dataset()
, allow you to access resources on S3 (or on file systems that emulate S3) either by providing ans3://
URI or by providing aFileSystem$path()
. Seevignette("fs", package = "arrow")
for examples. -
copy_files()
allows you to recursively copy directories of files from one file system to another, such as from S3 to your local machine.
Flight RPC
Flight is a general-purpose client-server framework for high performance transport of large datasets over network interfaces. The arrow
R package now provides methods for connecting to Flight RPC servers to send and receive data. See vignette("flight", package = "arrow")
for an overview.
Computation
- Comparison (
==
,>
, etc.) and boolean (&
,|
,!
) operations, along withis.na
,%in%
andmatch
(calledmatch_arrow()
), on Arrow Arrays and ChunkedArrays are now implemented in the C++ library. - Aggregation methods
min()
,max()
, andunique()
are implemented for Arrays and ChunkedArrays. -
dplyr
filter expressions on Arrow Tables and RecordBatches are now evaluated in the C++ library, rather than by pulling data into R and evaluating. This yields significant performance improvements. -
dim()
(nrow
) for dplyr queries on Table/RecordBatch is now supported
Packaging and installation
-
arrow
now depends oncpp11
, which brings more robust UTF-8 handling and faster compilation - The Linux build script now succeeds on older versions of R
- MacOS binary packages now ship with zstandard compression enabled
Bug fixes and other enhancements
- Automatic conversion of Arrow
Int64
type when all values fit with an R 32-bit integer now correctly inspects all chunks in a ChunkedArray, and this conversion can be disabled (so thatInt64
always yields abit64::integer64
vector) by settingoptions(arrow.int64_downcast = FALSE)
. - In addition to the data.frame column metadata preserved in round trip, added in 1.0.0, now attributes of the data.frame itself are also preserved in Arrow schema metadata.
- File writers now respect the system umask setting
-
ParquetFileReader
has additional methods for accessing individual columns or row groups from the file - Various segfaults fixed: invalid input in
ParquetFileWriter
; invalidArrowObject
pointer from a saved R object; converting deeply nested structs from Arrow to R - The
properties
andarrow_properties
arguments towrite_parquet()
are deprecated
arrow 1.0.1
CRAN release: 2020-08-28
Bug fixes
- Filtering a Dataset that has multiple partition keys using an
%in%
expression now faithfully returns all relevant rows - Datasets can now have path segments in the root directory that start with
.
or_
; files and subdirectories starting with those prefixes are still ignored -
open_dataset("~/path")
now correctly expands the path - The
version
option towrite_parquet()
is now correctly implemented - An UBSAN failure in the
parquet-cpp
library has been fixed - For bundled Linux builds, the logic for finding
cmake
is more robust, and you can now specify a/path/to/cmake
by setting theCMAKE
environment variable
arrow 1.0.0
CRAN release: 2020-07-25
Arrow format conversion
-
vignette("arrow", package = "arrow")
includes tables that explain how R types are converted to Arrow types and vice versa. - Support added for converting to/from more Arrow types:
uint64
,binary
,fixed_size_binary
,large_binary
,large_utf8
,large_list
,list
ofstructs
. -
character
vectors that exceed 2GB are converted to Arrowlarge_utf8
type -
POSIXlt
objects can now be converted to Arrow (struct
) - R
attributes()
are preserved in Arrow metadata when converting to Arrow RecordBatch and table and are restored when converting from Arrow. This means that custom subclasses, such ashaven::labelled
, are preserved in round trip through Arrow. - Schema metadata is now exposed as a named list, and it can be modified by assignment like
batch$metadata$new_key <- "new value"
- Arrow types
int64
,uint32
, anduint64
now are converted to Rinteger
if all values fit in bounds - Arrow
date32
is now converted to RDate
withdouble
underlying storage. Even though the data values themselves are integers, this provides more strict round-trip fidelity - When converting to R
factor
,dictionary
ChunkedArrays that do not have identical dictionaries are properly unified - In the 1.0 release, the Arrow IPC metadata version is increased from V4 to V5. By default,
RecordBatch{File,Stream}Writer
will write V5, but you can specify an alternatemetadata_version
. For convenience, if you know the consumer you’re writing to cannot read V5, you can set the environment variableARROW_PRE_1_0_METADATA_VERSION=1
to write V4 without changing any other code.
Datasets
- CSV and other text-delimited datasets are now supported
- With a custom C++ build, it is possible to read datasets directly on S3 by passing a URL like
ds <- open_dataset("s3://...")
. Note that this currently requires a special C++ library build with additional dependencies–this is not yet available in CRAN releases or in nightly packages. - When reading individual CSV and JSON files, compression is automatically detected from the file extension
Other enhancements
- Initial support for C++ aggregation methods:
sum()
andmean()
are implemented forArray
andChunkedArray
- Tables and RecordBatches have additional data.frame-like methods, including
dimnames()
andas.list()
- Tables and ChunkedArrays can now be moved to/from Python via
reticulate
Bug fixes and deprecations
- Non-UTF-8 strings (common on Windows) are correctly coerced to UTF-8 when passing to Arrow memory and appropriately re-localized when converting to R
- The
coerce_timestamps
option towrite_parquet()
is now correctly implemented. - Creating a Dictionary array respects the
type
definition if provided by the user -
read_arrow
andwrite_arrow
are now deprecated; use theread/write_feather()
andread/write_ipc_stream()
functions depending on whether you’re working with the Arrow IPC file or stream format, respectively. - Previously deprecated
FileStats
,read_record_batch
, andread_table
have been removed.
Installation and packaging
- For improved performance in memory allocation, macOS and Linux binaries now have
jemalloc
included, and Windows packages usemimalloc
- Linux installation: some tweaks to OS detection for binaries, some updates to known installation issues in the vignette
- The bundled libarrow is built with the same
CC
andCXX
values that R uses - Failure to build the bundled libarrow yields a clear message
- Various streamlining efforts to reduce library size and compile time
arrow 0.17.1
CRAN release: 2020-05-19
- Updates for compatibility with
dplyr
1.0 -
reticulate::r_to_py()
conversion now correctly works automatically, without having to call the method yourself - Assorted bug fixes in the C++ library around Parquet reading
arrow 0.17.0
CRAN release: 2020-04-21
Feather v2
This release includes support for version 2 of the Feather file format. Feather v2 features full support for all Arrow data types, fixes the 2GB per-column limitation for large amounts of string data, and it allows files to be compressed using either lz4
or zstd
. write_feather()
can write either version 2 or version 1 Feather files, and read_feather()
automatically detects which file version it is reading.
Related to this change, several functions around reading and writing data have been reworked. read_ipc_stream()
and write_ipc_stream()
have been added to facilitate writing data to the Arrow IPC stream format, which is slightly different from the IPC file format (Feather v2 is the IPC file format).
Behavior has been standardized: all read_<format>()
return an R data.frame
(default) or a Table
if the argument as_data_frame = FALSE
; all write_<format>()
functions return the data object, invisibly. To facilitate some workflows, a special write_to_raw()
function is added to wrap write_ipc_stream()
and return the raw
vector containing the buffer that was written.
To achieve this standardization, read_table()
, read_record_batch()
, read_arrow()
, and write_arrow()
have been deprecated.
Python interoperability
The 0.17 Apache Arrow release includes a C data interface that allows exchanging Arrow data in-process at the C level without copying and without libraries having a build or runtime dependency on each other. This enables us to use reticulate
to share data between R and Python (pyarrow
) efficiently.
See vignette("python", package = "arrow")
for details.
Datasets
- Dataset reading benefits from many speedups and fixes in the C++ library
- Datasets have a
dim()
method, which sums rows across all files (#6635, @boshek) - Combine multiple datasets into a single queryable
UnionDataset
with thec()
method - Dataset filtering now treats
NA
asFALSE
, consistent withdplyr::filter()
- Dataset filtering is now correctly supported for all Arrow date/time/timestamp column types
-
vignette("dataset", package = "arrow")
now has correct, executable code
Installation
- Installation on Linux now builds C++ the library from source by default, with some compression libraries disabled. For a faster, richer build, set the environment variable
NOT_CRAN=true
. Seevignette("install", package = "arrow")
for details and more options. - Source installation is faster and more reliable on more Linux distributions.
Other bug fixes and enhancements
-
unify_schemas()
to create aSchema
containing the union of fields in multiple schemas - Timezones are faithfully preserved in roundtrip between R and Arrow
-
read_feather()
and other reader functions close any file connections they open - Arrow R6 objects no longer have namespace collisions when the
R.oo
package is also loaded -
FileStats
is renamed toFileInfo
, and the original spelling has been deprecated
arrow 0.16.0.2
CRAN release: 2020-02-14
-
install_arrow()
now installs the latest release ofarrow
, including Linux dependencies, either for CRAN releases or for development builds (ifnightly = TRUE
) - Package installation on Linux no longer downloads C++ dependencies unless the
LIBARROW_DOWNLOAD
orNOT_CRAN
environment variable is set -
write_feather()
,write_arrow()
andwrite_parquet()
now return their input, similar to thewrite_*
functions in thereadr
package (#6387, @boshek) - Can now infer the type of an R
list
and create a ListArray when all list elements are the same type (#6275, @michaelchirico)
arrow 0.16.0
CRAN release: 2020-02-09
Multi-file datasets
This release includes a dplyr
interface to Arrow Datasets, which let you work efficiently with large, multi-file datasets as a single entity. Explore a directory of data files with open_dataset()
and then use dplyr
methods to select()
, filter()
, etc. Work will be done where possible in Arrow memory. When necessary, data is pulled into R for further computation. dplyr
methods are conditionally loaded if you have dplyr
available; it is not a hard dependency.
See vignette("dataset", package = "arrow")
for details.
Linux installation
A source package installation (as from CRAN) will now handle its C++ dependencies automatically. For common Linux distributions and versions, installation will retrieve a prebuilt static C++ library for inclusion in the package; where this binary is not available, the package executes a bundled script that should build the Arrow C++ library with no system dependencies beyond what R requires.
See vignette("install", package = "arrow")
for details.
Data exploration
-
Table
s andRecordBatch
es also havedplyr
methods. - For exploration without
dplyr
,[
methods for Tables, RecordBatches, Arrays, and ChunkedArrays now support natural row extraction operations. These use the C++Filter
,Slice
, andTake
methods for efficient access, depending on the type of selection vector. - An experimental, lazily evaluated
array_expression
class has also been added, enabling among other things the ability to filter a Table with some function of Arrays, such asarrow_table[arrow_table$var1 > 5, ]
without having to pull everything into R first.
Compression
-
write_parquet()
now supports compression -
codec_is_available()
returnsTRUE
orFALSE
whether the Arrow C++ library was built with support for a given compression library (e.g. gzip, lz4, snappy) - Windows builds now include support for zstd and lz4 compression (#5814, @gnguy)
Other fixes and improvements
- Arrow null type is now supported
- Factor types are now preserved in round trip through Parquet format (#6135, @yutannihilation)
- Reading an Arrow dictionary type coerces dictionary values to
character
(as Rfactor
levels are required to be) instead of raising an error - Many improvements to Parquet function documentation (@karldw, @khughitt)
arrow 0.15.1
CRAN release: 2019-11-04
- This patch release includes bugfixes in the C++ library around dictionary types and Parquet reading.
arrow 0.15.0
CRAN release: 2019-10-07
Breaking changes
- The R6 classes that wrap the C++ classes are now documented and exported and have been renamed to be more R-friendly. Users of the high-level R interface in this package are not affected. Those who want to interact with the Arrow C++ API more directly should work with these objects and methods. As part of this change, many functions that instantiated these R6 objects have been removed in favor of
Class$create()
methods. Notably,arrow::array()
andarrow::table()
have been removed in favor ofArray$create()
andTable$create()
, eliminating the package startup message about maskingbase
functions. For more information, see the newvignette("arrow")
. - Due to a subtle change in the Arrow message format, data written by the 0.15 version libraries may not be readable by older versions. If you need to send data to a process that uses an older version of Arrow (for example, an Apache Spark server that hasn’t yet updated to Arrow 0.15), you can set the environment variable
ARROW_PRE_0_15_IPC_FORMAT=1
. - The
as_tibble
argument in theread_*()
functions has been renamed toas_data_frame
(#5399, @jameslamb) - The
arrow::Column
class has been removed, as it was removed from the C++ library
New features
-
Table
andRecordBatch
objects have S3 methods that enable you to work with them more likedata.frame
s. Extract columns, subset, and so on. See?Table
and?RecordBatch
for examples. - Initial implementation of bindings for the C++ File System API. (#5223)
- Compressed streams are now supported on Windows (#5329), and you can also specify a compression level (#5450)
Other upgrades
- Parquet file reading is much, much faster, thanks to improvements in the Arrow C++ library.
-
read_csv_arrow()
supports more parsing options, includingcol_names
,na
,quoted_na
, andskip
-
read_parquet()
andread_feather()
can ingest data from araw
vector (#5141) - File readers now properly handle paths that need expanding, such as
~/file.parquet
(#5169) - Improved support for creating types in a schema: the types’ printed names (e.g. “double”) are guaranteed to be valid to use in instantiating a schema (e.g.
double()
), and time types can be created with human-friendly resolution strings (“ms”, “s”, etc.). (#5198, #5201)
arrow 0.14.1
CRAN release: 2019-08-05
Initial CRAN release of the arrow
package. Key features include:
- Read and write support for various file formats, including Parquet, Feather/Arrow, CSV, and JSON.
- API bindings to the C++ library for Arrow data types and objects, as well as mapping between Arrow types and R data types.
- Tools for helping with C++ library configuration and installation.