Acero: A C++ streaming execution engine¶
Warning
Acero is experimental and a stable API is not yet guaranteed.
Motivation¶
For many complex computations, successive direct invocation of compute functions is not feasible in either memory or computation time. Doing so causes all intermediate data to be fully materialized. To facilitate arbitrarily large inputs and more efficient resource usage, the Arrow C++ implementation also provides Acero, a streaming query engine with which computations can be formulated and executed.
Acero allows computation to be expressed as an “execution plan”
(ExecPlan
) which is a directed graph of operators. Each operator
(ExecNode
) provides, transforms, or consumes the data passing
through it. Batches of data (ExecBatch
) flow along edges of
the graph from node to node. Structuring the API around streams of batches
allows the working set for each node to be tuned for optimal performance
independent of any other nodes in the graph. Each ExecNode
processes batches as they are pushed to it along an edge of the graph by
upstream nodes (its inputs), and pushes batches along an edge of the graph
to downstream nodes (its outputs) as they are finalized.
Substrait¶
In order to use Acero you will need to create an execution plan. This is the model that describes the computation you want to apply to your data. Acero has its own internal representation for execution plans but most users should not interact with this directly as it will couple their code to Acero.
Substrait is an open standard for execution plans. Acero implements the Substrait “consumer” interface. This means that Acero can accept a Substrait plan and fulfill the plan, loading the requested data and applying the desired computation. By using Substrait plans users can easily switch out to a different execution engine at a later time.
Substrait Conformance¶
Substrait defines a broad set of operators and functions for many different situations and it is unlikely that Acero will ever completely satisfy all defined Substrait operators and functions. To help understand what features are available the following sections define which features have been currently implemented in Acero and any caveats that apply.
Plans¶
A plan should have a single top-level relation.
The consumer is currently based on a custom build of Substrait that is older than 0.1.0. Any features added that are newer than 0.1.0 will not be supported.
Extensions¶
If a plan contains any extension type variations it will be rejected.
If a plan contains any advanced extensions it will be rejected.
Relations (in general)¶
The
emit
property (to customize output order of a node or to drop columns) is not supported and plans containing this property will be rejected.The
hint
property is not supported and plans containing this property will be rejected.Any advanced extensions will cause a plan to be rejected.
Any relation not explicitly listed below will not be supported and will cause the plan to be rejected.
Read Relations¶
The
projection
property is not supported and plans containing this property will be rejected.The only supported read type is
LocalFiles
. Plans with any other type will be rejected.Only the parquet file format is currently supported.
All URIs must use the
file
scheme
partition_index
,start
, andlength
are not supported. Plans containing these properties will be rejected.The Substrait spec requires that a
filter
be completely satisfied by a read relation. However, Acero only uses a read filter for pushdown projection and it may not be fully satisfied. Users should generally attach an additional filter relation with the same filter expression after the read relation.
Filter Relations¶
No known caveats
Project Relations¶
No known caveats
Join Relations¶
The join type
JOIN_TYPE_SINGLE
is not supported and plans containing this will be rejected.The join expression must be a call to either the
equal
oris_not_distinct_from
functions. Both arguments to the call must be direct references. Only a single join key is supported.The
post_join_filter
property is not supported and will be ignored.
Aggregate Relations¶
At most one grouping set is supported.
Each grouping expression must be a direct reference.
Each measure’s arguments must be direct references.
A measure may not have a filter
A measure may not have sorts
A measure’s invocation must be AGGREGATION_INVOCATION_ALL
A measure’s phase must be AGGREGATION_PHASE_INITIAL_TO_RESULT
Expressions (general)¶
Various places in the Substrait spec allow for expressions to be used outside of a filter or project relation. For example, a join expression or an aggregate grouping set. Acero typically expects these expressions to be direct references. Planners should extract the implicit projection into a formal project relation before delivering the plan to Acero.
Older versions of Isthmus would omit optional arguments instead of including them as unspecified enums. Acero will not support these plans.
Literals¶
A literal with non-default nullability will cause a plan to be rejected.
Types¶
Acero does not have full support for non-nullable types and may allow input to have nulls without rejecting it.
The table below shows the mapping between Arrow types and Substrait type classes that are currently supported
Substrait Type |
Arrow Type |
Caveat |
---|---|---|
boolean |
boolean |
|
i8 |
int8 |
|
i16 |
int16 |
|
i32 |
int32 |
|
i64 |
int64 |
|
fp32 |
float32 |
|
fp64 |
float64 |
|
string |
string |
|
binary |
binary |
|
timestamp |
timestamp<MICRO,””> |
|
timestamp_tz |
timestamp<MICRO,”UTC”> |
|
date |
date32<DAY> |
|
time |
time64<MICRO> |
|
interval_year |
Not currently supported |
|
interval_day |
Not currently supported |
|
uuid |
Not currently supported |
|
FIXEDCHAR<L> |
Not currently supported |
|
VARCHAR<L> |
Not currently supported |
|
FIXEDBINARY<L> |
fixed_size_binary<L> |
|
DECIMAL<P,S> |
decimal128<P,S> |
|
STRUCT<T1…TN> |
struct<T1…TN> |
Arrow struct fields will have no name (empty string) |
NSTRUCT<N:T1…N:Tn> |
Not currently supported |
|
LIST<T> |
list<T> |
|
MAP<K,V> |
map<K,V> |
K must not be nullable |
Functions¶
Acero does not support the legacy
args
style of declaring argumentsThe following functions have caveats or are not supported at all. Note that this is not a comprehensive list. Functions are being added to Substrait at a rapid pace and new functions may be missing.
Acero does not support the SATURATE option for overflow
Acero does not support kernels that take more than two arguments for the functions
and
,or
,xor
Acero does not support temporal arithmetic
Acero does not support the following standard functions:
is_not_distinct_from
like
substring
starts_with
ends_with
contains
count
count_distinct
approx_count_distinct
The functions above must be referenced using the URI
https://github.com/apache/arrow/blob/master/format/substrait/extension_types.yaml
Architecture Overview¶
ExecNode
Each node in the graph is an implementation of the
ExecNode
interface.ExecPlan
A set of
ExecNode
is contained and (to an extent) coordinated by anExecPlan
.ExecFactoryRegistry
Instances of
ExecNode
are constructed by factory functions held in aExecFactoryRegistry
.ExecNodeOptions
Heterogenous parameters for factories of
ExecNode
are bundled in anExecNodeOptions
.Declaration
dplyr
-inspired helper for efficient construction of anExecPlan
.ExecBatch
A lightweight container for a single chunk of data in the Arrow format. In contrast to
RecordBatch
,ExecBatch
is intended for use exclusively in a streaming execution context (for example, it doesn’t have a corresponding Python binding). Furthermore columns which happen to have a constant value may be represented by aScalar
instead of anArray
. In addition,ExecBatch
may carry execution-relevant properties including a guaranteed-true-filter forExpression
simplification.
An example ExecNode
implementation which simply passes all input batches
through unchanged:
class PassthruNode : public ExecNode {
public:
// InputReceived is the main entry point for ExecNodes. It is invoked
// by an input of this node to push a batch here for processing.
void InputReceived(ExecNode* input, ExecBatch batch) override {
// Since this is a passthru node we simply push the batch to our
// only output here.
outputs_[0]->InputReceived(this, batch);
}
// ErrorReceived is called by an input of this node to report an error.
// ExecNodes should always forward errors to their outputs unless they
// are able to fully handle the error (this is rare).
void ErrorReceived(ExecNode* input, Status error) override {
outputs_[0]->ErrorReceived(this, error);
}
// InputFinished is used to signal how many batches will ultimately arrive.
// It may be called with any ordering relative to InputReceived/ErrorReceived.
void InputFinished(ExecNode* input, int total_batches) override {
outputs_[0]->InputFinished(this, total_batches);
}
// ExecNodes may request that their inputs throttle production of batches
// until they are ready for more, or stop production if no further batches
// are required. These signals should typically be forwarded to the inputs
// of the ExecNode.
void ResumeProducing(ExecNode* output) override { inputs_[0]->ResumeProducing(this); }
void PauseProducing(ExecNode* output) override { inputs_[0]->PauseProducing(this); }
void StopProducing(ExecNode* output) override { inputs_[0]->StopProducing(this); }
// An ExecNode has a single output schema to which all its batches conform.
using ExecNode::output_schema;
// ExecNodes carry basic introspection for debugging purposes
const char* kind_name() const override { return "PassthruNode"; }
using ExecNode::label;
using ExecNode::SetLabel;
using ExecNode::ToString;
// An ExecNode holds references to its inputs and outputs, so it is possible
// to walk the graph of execution if necessary.
using ExecNode::inputs;
using ExecNode::outputs;
// StartProducing() and StopProducing() are invoked by an ExecPlan to
// coordinate the graph-wide execution state. These do not need to be
// forwarded to inputs or outputs.
Status StartProducing() override { return Status::OK(); }
void StopProducing() override {}
Future<> finished() override { return inputs_[0]->finished(); }
};
Note that each method which is associated with an edge of the graph must be invoked
with an ExecNode*
to identify the node which invoked it. For example, in an
ExecNode
which implements JOIN
this tagging might be used to differentiate
between batches from the left or right inputs.
InputReceived
, ErrorReceived
, InputFinished
may only be invoked by
the inputs of a node, while ResumeProducing
, PauseProducing
, StopProducing
may only be invoked by outputs of a node.
ExecPlan
contains the associated instances of ExecNode
and is used to start and stop execution of all nodes and for querying/awaiting
their completion:
// construct an ExecPlan first to hold your nodes
ARROW_ASSIGN_OR_RAISE(auto plan, ExecPlan::Make(default_exec_context()));
// ... add nodes to your ExecPlan
// start all nodes in the graph
ARROW_RETURN_NOT_OK(plan->StartProducing());
SetUserCancellationCallback([plan] {
// stop all nodes in the graph
plan->StopProducing();
});
// Complete will be marked finished when all nodes have run to completion
// or acknowledged a StopProducing() signal. The ExecPlan should be kept
// alive until this future is marked finished.
Future<> complete = plan->finished();
Constructing ExecPlan
objects¶
Warning
The following will be superceded by construction from Compute IR, see ARROW-14074.
None of the concrete implementations of ExecNode
are exposed
in headers, so they can’t be constructed directly outside the
translation unit where they are defined. Instead, factories to
create them are provided in an extensible registry. This structure
provides a number of benefits:
This enforces consistent construction.
It decouples implementations from consumers of the interface (for example: we have two classes for scalar and grouped aggregate, we can choose which to construct within the single factory by checking whether grouping keys are provided)
This expedites integration with out-of-library extensions. For example “scan” nodes are implemented in the separate
libarrow_dataset.so
library.Since the class is not referencable outside the translation unit in which it is defined, compilers can optimize more aggressively.
Factories of ExecNode
can be retrieved by name from the registry.
The default registry is available through
arrow::compute::default_exec_factory_registry()
and can be queried for the built-in factories:
// get the factory for "filter" nodes:
ARROW_ASSIGN_OR_RAISE(auto make_filter,
default_exec_factory_registry()->GetFactory("filter"));
// factories take three arguments:
ARROW_ASSIGN_OR_RAISE(ExecNode* filter_node, *make_filter(
// the ExecPlan which should own this node
plan.get(),
// nodes which will send batches to this node (inputs)
{scan_node},
// parameters unique to "filter" nodes
FilterNodeOptions{filter_expression}));
// alternative shorthand:
ARROW_ASSIGN_OR_RAISE(filter_node, MakeExecNode("filter",
plan.get(), {scan_node}, FilterNodeOptions{filter_expression});
Factories can also be added to the default registry as long as they are
convertible to std::function<Result<ExecNode*>(
ExecPlan*, std::vector<ExecNode*>, const ExecNodeOptions&)>
.
To build an ExecPlan
representing a simple pipeline which
reads from a RecordBatchReader
then filters, projects, and
writes to disk:
std::shared_ptr<RecordBatchReader> reader = GetStreamOfBatches();
ExecNode* source_node = *MakeExecNode("source", plan.get(), {},
SourceNodeOptions::FromReader(
reader,
GetCpuThreadPool()));
ExecNode* filter_node = *MakeExecNode("filter", plan.get(), {source_node},
FilterNodeOptions{
greater(field_ref("score"), literal(3))
});
ExecNode* project_node = *MakeExecNode("project", plan.get(), {filter_node},
ProjectNodeOptions{
{add(field_ref("score"), literal(1))},
{"score + 1"}
});
arrow::dataset::internal::Initialize();
MakeExecNode("write", plan.get(), {project_node},
WriteNodeOptions{/*base_dir=*/"/dat", /*...*/});
Declaration
is a dplyr-inspired
helper which further decreases the boilerplate associated with populating
an ExecPlan
from C++:
arrow::dataset::internal::Initialize();
std::shared_ptr<RecordBatchReader> reader = GetStreamOfBatches();
ASSERT_OK(Declaration::Sequence(
{
{"source", SourceNodeOptions::FromReader(
reader,
GetCpuThreadPool())},
{"filter", FilterNodeOptions{
greater(field_ref("score"), literal(3))}},
{"project", ProjectNodeOptions{
{add(field_ref("score"), literal(1))},
{"score + 1"}}},
{"write", WriteNodeOptions{/*base_dir=*/"/dat", /*...*/}},
})
.AddToPlan(plan.get()));
Note that a source node can wrap anything which resembles a stream of batches.
For example, PR#11032 adds
support for use of a DuckDB query as a source node.
Similarly, a sink node can wrap anything which absorbs a stream of batches.
In the example above we’re writing completed
batches to disk. However we can also collect these in memory into a Table
or forward them to a RecordBatchReader
as an out-of-graph stream.
This flexibility allows an ExecPlan
to be used as streaming middleware
between any endpoints which support Arrow formatted batches.
An arrow::dataset::Dataset
can also be wrapped as a source node which
pushes all the dataset’s batches into an ExecPlan
. This factory is added
to the default registry with the name "scan"
by calling
arrow::dataset::internal::Initialize()
:
arrow::dataset::internal::Initialize();
std::shared_ptr<Dataset> dataset = GetDataset();
ASSERT_OK(Declaration::Sequence(
{
{"scan", ScanNodeOptions{dataset,
/* push down predicate, projection, ... */}},
{"filter", FilterNodeOptions{/* ... */}},
// ...
})
.AddToPlan(plan.get()));
Datasets may be scanned multiple times; just make multiple scan nodes from that dataset. (Useful for a self-join, for example.) Note that producing two scan nodes like this will perform all reads and decodes twice.
Constructing ExecNode
using Options¶
ExecNode
is the component we use as a building block
containing in-built operations with various functionalities.
This is the list of operations associated with the execution plan:
Operation |
Options |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N/A |
|
source
¶
A source
operation can be considered as an entry point to create a streaming execution plan.
arrow::compute::SourceNodeOptions
are used to create the source
operation. The
source
operation is the most generic and flexible type of source currently available but it can
be quite tricky to configure. To process data from files the scan operation is likely a simpler choice.
The source node requires some kind of function that can be called to poll for more data. This
function should take no arguments and should return an
arrow::Future<std::optional<arrow::ExecBatch>>
.
This function might be reading a file, iterating through an in memory structure, or receiving data
from a network connection. The arrow library refers to these functions as arrow::AsyncGenerator
and there are a number of utilities for working with these functions. For this example we use
a vector of record batches that we’ve already stored in memory.
In addition, the schema of the data must be known up front. Acero must know the schema of the data
at each stage of the execution graph before any processing has begun. This means we must supply the
schema for a source node separately from the data itself.
Here we define a struct to hold the data generator definition. This includes in-memory batches, schema and a function that serves as a data generator :
155struct BatchesWithSchema {
156 std::vector<cp::ExecBatch> batches;
157 std::shared_ptr<arrow::Schema> schema;
158 // This method uses internal arrow utilities to
159 // convert a vector of record batches to an AsyncGenerator of optional batches
160 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> gen() const {
161 auto opt_batches = ::arrow::internal::MapVector(
162 [](cp::ExecBatch batch) { return std::make_optional(std::move(batch)); },
163 batches);
164 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> gen;
165 gen = arrow::MakeVectorGenerator(std::move(opt_batches));
166 return gen;
167 }
168};
Generating sample batches for computation:
172arrow::Result<BatchesWithSchema> MakeBasicBatches() {
173 BatchesWithSchema out;
174 auto field_vector = {arrow::field("a", arrow::int32()),
175 arrow::field("b", arrow::boolean())};
176 ARROW_ASSIGN_OR_RAISE(auto b1_int, GetArrayDataSample<arrow::Int32Type>({0, 4}));
177 ARROW_ASSIGN_OR_RAISE(auto b2_int, GetArrayDataSample<arrow::Int32Type>({5, 6, 7}));
178 ARROW_ASSIGN_OR_RAISE(auto b3_int, GetArrayDataSample<arrow::Int32Type>({8, 9, 10}));
179
180 ARROW_ASSIGN_OR_RAISE(auto b1_bool,
181 GetArrayDataSample<arrow::BooleanType>({false, true}));
182 ARROW_ASSIGN_OR_RAISE(auto b2_bool,
183 GetArrayDataSample<arrow::BooleanType>({true, false, true}));
184 ARROW_ASSIGN_OR_RAISE(auto b3_bool,
185 GetArrayDataSample<arrow::BooleanType>({false, true, false}));
186
187 ARROW_ASSIGN_OR_RAISE(auto b1,
188 GetExecBatchFromVectors(field_vector, {b1_int, b1_bool}));
189 ARROW_ASSIGN_OR_RAISE(auto b2,
190 GetExecBatchFromVectors(field_vector, {b2_int, b2_bool}));
191 ARROW_ASSIGN_OR_RAISE(auto b3,
192 GetExecBatchFromVectors(field_vector, {b3_int, b3_bool}));
193
194 out.batches = {b1, b2, b3};
195 out.schema = arrow::schema(field_vector);
196 return out;
197}
Example of using source
(usage of sink is explained in detail in sink):
293/// \brief An example demonstrating a source and sink node
294///
295/// Source-Table Example
296/// This example shows how a custom source can be used
297/// in an execution plan. This includes source node using pregenerated
298/// data and collecting it into a table.
299///
300/// This sort of custom souce is often not needed. In most cases you can
301/// use a scan (for a dataset source) or a source like table_source, array_vector_source,
302/// exec_batch_source, or record_batch_source (for in-memory data)
303arrow::Status SourceSinkExample() {
304 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
305
306 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
307
308 cp::Declaration source{"source", std::move(source_node_options)};
309
310 return ExecutePlanAndCollectAsTable(std::move(source));
311}
table_source
¶
In the previous example, source node, a source node
was used to input the data. But when developing an application, if the data is already in memory
as a table, it is much easier, and more performant to use arrow::compute::TableSourceNodeOptions
.
Here the input data can be passed as a std::shared_ptr<arrow::Table>
along with a max_batch_size
.
The max_batch_size
is to break up large record batches so that they can be processed in parallel.
It is important to note that the table batches will not get merged to form larger batches when the source
table has a smaller batch size.
Example of using table_source
316/// \brief An example showing a table source node
317///
318/// TableSource-Table Example
319/// This example shows how a table_source can be used
320/// in an execution plan. This includes a table source node
321/// receiving data from a table. This plan simply collects the
322/// data back into a table but nodes could be added that modify
323/// or transform the data as well (as is shown in later examples)
324arrow::Status TableSourceSinkExample() {
325 ARROW_ASSIGN_OR_RAISE(auto table, GetTable());
326
327 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
328 int max_batch_size = 2;
329 auto table_source_options = cp::TableSourceNodeOptions{table, max_batch_size};
330
331 cp::Declaration source{"table_source", std::move(table_source_options)};
332
333 return ExecutePlanAndCollectAsTable(std::move(source));
334}
filter
¶
filter
operation, as the name suggests, provides an option to define data filtering
criteria. It selects rows matching a given expression. Filters can be written using
arrow::compute::Expression
. For example, if we wish to keep rows where the value
of column b
is greater than 3, then we can use the following expression.
Filter example:
339/// \brief An example showing a filter node
340///
341/// Source-Filter-Table
342/// This example shows how a filter can be used in an execution plan,
343/// to filter data from a source. The output from the exeuction plan
344/// is collected into a table.
345arrow::Status ScanFilterSinkExample() {
346 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
347
348 auto options = std::make_shared<arrow::dataset::ScanOptions>();
349 // specify the filter. This filter removes all rows where the
350 // value of the "a" column is greater than 3.
351 cp::Expression filter_expr = cp::greater(cp::field_ref("a"), cp::literal(3));
352 // set filter for scanner : on-disk / push-down filtering.
353 // This step can be skipped if you are not reading from disk.
354 options->filter = filter_expr;
355 // empty projection
356 options->projection = cp::project({}, {});
357
358 // construct the scan node
359 std::cout << "Initialized Scanning Options" << std::endl;
360
361 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
362 std::cout << "Scan node options created" << std::endl;
363
364 cp::Declaration scan{"scan", std::move(scan_node_options)};
365
366 // pipe the scan node into the filter node
367 // Need to set the filter in scan node options and filter node options.
368 // At scan node it is used for on-disk / push-down filtering.
369 // At filter node it is used for in-memory filtering.
370 cp::Declaration filter{
371 "filter", {std::move(scan)}, cp::FilterNodeOptions(std::move(filter_expr))};
372
373 return ExecutePlanAndCollectAsTable(std::move(filter));
374}
project
¶
project
operation rearranges, deletes, transforms, and creates columns.
Each output column is computed by evaluating an expression
against the source record batch. This is exposed via
arrow::compute::ProjectNodeOptions
which requires,
an arrow::compute::Expression
and name for each of the output columns (if names are not
provided, the string representations of exprs will be used).
Project example:
380/// \brief An example showing a project node
381///
382/// Scan-Project-Table
383/// This example shows how a Scan operation can be used to load the data
384/// into the execution plan, how a project operation can be applied on the
385/// data stream and how the output is collected into a table
386arrow::Status ScanProjectSinkExample() {
387 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
388
389 auto options = std::make_shared<arrow::dataset::ScanOptions>();
390 // projection
391 cp::Expression a_times_2 = cp::call("multiply", {cp::field_ref("a"), cp::literal(2)});
392 options->projection = cp::project({}, {});
393
394 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
395
396 cp::Declaration scan{"scan", std::move(scan_node_options)};
397 cp::Declaration project{
398 "project", {std::move(scan)}, cp::ProjectNodeOptions({a_times_2})};
399
400 return ExecutePlanAndCollectAsTable(std::move(project));
401}
aggregate
¶
The aggregate
node computes various types of aggregates over data.
Arrow supports two types of aggregates: “scalar” aggregates, and
“hash” aggregates. Scalar aggregates reduce an array or scalar input
to a single scalar output (e.g. computing the mean of a column). Hash
aggregates act like GROUP BY
in SQL and first partition data based
on one or more key columns, then reduce the data in each
partition. The aggregate
node supports both types of computation,
and can compute any number of aggregations at once.
arrow::compute::AggregateNodeOptions
is used to define the
aggregation criteria. It takes a list of aggregation functions and
their options; a list of target fields to aggregate, one per function;
and a list of names for the output fields, one per function.
Optionally, it takes a list of columns that are used to partition the
data, in the case of a hash aggregation. The aggregation functions
can be selected from this list of aggregation functions.
Note
This node is a “pipeline breaker” and will fully materialize the dataset in memory. In the future, spillover mechanisms will be added which should alleviate this constraint.
The aggregation can provide results as a group or scalar. For instances, an operation like hash_count provides the counts per each unique record as a grouped result while an operation like sum provides a single record.
Scalar Aggregation example:
407/// \brief An example showing an aggregation node to aggregate an entire table
408///
409/// Source-Aggregation-Table
410/// This example shows how an aggregation operation can be applied on a
411/// execution plan resulting in a scalar output. The source node loads the
412/// data and the aggregation (counting unique types in column 'a')
413/// is applied on this data. The output is collected into a table (that will
414/// have exactly one row)
415arrow::Status SourceScalarAggregateSinkExample() {
416 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
417
418 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
419
420 cp::Declaration source{"source", std::move(source_node_options)};
421 auto aggregate_options =
422 cp::AggregateNodeOptions{/*aggregates=*/{{"sum", nullptr, "a", "sum(a)"}}};
423 cp::Declaration aggregate{
424 "aggregate", {std::move(source)}, std::move(aggregate_options)};
425
426 return ExecutePlanAndCollectAsTable(std::move(aggregate));
427}
Group Aggregation example:
432/// \brief An example showing an aggregation node to perform a group-by operation
433///
434/// Source-Aggregation-Table
435/// This example shows how an aggregation operation can be applied on a
436/// execution plan resulting in grouped output. The source node loads the
437/// data and the aggregation (counting unique types in column 'a') is
438/// applied on this data. The output is collected into a table that will contain
439/// one row for each unique combination of group keys.
440arrow::Status SourceGroupAggregateSinkExample() {
441 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
442
443 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
444
445 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
446
447 cp::Declaration source{"source", std::move(source_node_options)};
448 auto options = std::make_shared<cp::CountOptions>(cp::CountOptions::ONLY_VALID);
449 auto aggregate_options =
450 cp::AggregateNodeOptions{/*aggregates=*/{{"hash_count", options, "a", "count(a)"}},
451 /*keys=*/{"b"}};
452 cp::Declaration aggregate{
453 "aggregate", {std::move(source)}, std::move(aggregate_options)};
454
455 return ExecutePlanAndCollectAsTable(std::move(aggregate));
456}
sink
¶
sink
operation provides output and is the final node of a streaming
execution definition. arrow::compute::SinkNodeOptions
interface is used to pass
the required options. Similar to the source operator the sink operator exposes the output
with a function that returns a record batch future each time it is called. It is expected the
caller will repeatedly call this function until the generator function is exhausted (returns
std::optional::nullopt
). If this function is not called often enough then record batches
will accumulate in memory. An execution plan should only have one
“terminal” node (one sink node). An ExecPlan
can terminate early due to cancellation or
an error, before the output is fully consumed. However, the plan can be safely destroyed independently
of the sink, which will hold the unconsumed batches by exec_plan->finished().
As a part of the Source Example, the Sink operation is also included;
293/// \brief An example demonstrating a source and sink node
294///
295/// Source-Table Example
296/// This example shows how a custom source can be used
297/// in an execution plan. This includes source node using pregenerated
298/// data and collecting it into a table.
299///
300/// This sort of custom souce is often not needed. In most cases you can
301/// use a scan (for a dataset source) or a source like table_source, array_vector_source,
302/// exec_batch_source, or record_batch_source (for in-memory data)
303arrow::Status SourceSinkExample() {
304 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
305
306 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
307
308 cp::Declaration source{"source", std::move(source_node_options)};
309
310 return ExecutePlanAndCollectAsTable(std::move(source));
311}
consuming_sink
¶
consuming_sink
operator is a sink operation containing consuming operation within the
execution plan (i.e. the exec plan should not complete until the consumption has completed).
Unlike the sink
node this node takes in a callback function that is expected to consume the
batch. Once this callback has finished the execution plan will no longer hold any reference to
the batch.
The consuming function may be called before a previous invocation has completed. If the consuming
function does not run quickly enough then many concurrent executions could pile up, blocking the
CPU thread pool. The execution plan will not be marked finished until all consuming function callbacks
have been completed.
Once all batches have been delivered the execution plan will wait for the finish future to complete
before marking the execution plan finished. This allows for workflows where the consumption function
converts batches into async tasks (this is currently done internally for the dataset write node).
Example:
// define a Custom SinkNodeConsumer
std::atomic<uint32_t> batches_seen{0};
arrow::Future<> finish = arrow::Future<>::Make();
struct CustomSinkNodeConsumer : public cp::SinkNodeConsumer {
CustomSinkNodeConsumer(std::atomic<uint32_t> *batches_seen, arrow::Future<>finish):
batches_seen(batches_seen), finish(std::move(finish)) {}
// Consumption logic can be written here
arrow::Status Consume(cp::ExecBatch batch) override {
// data can be consumed in the expected way
// transfer to another system or just do some work
// and write to disk
(*batches_seen)++;
return arrow::Status::OK();
}
arrow::Future<> Finish() override { return finish; }
std::atomic<uint32_t> *batches_seen;
arrow::Future<> finish;
};
std::shared_ptr<CustomSinkNodeConsumer> consumer =
std::make_shared<CustomSinkNodeConsumer>(&batches_seen, finish);
arrow::compute::ExecNode *consuming_sink;
ARROW_ASSIGN_OR_RAISE(consuming_sink, MakeExecNode("consuming_sink", plan.get(),
{source}, cp::ConsumingSinkNodeOptions(consumer)));
Consuming-Sink example:
461/// \brief An example showing a consuming sink node
462///
463/// Source-Consuming-Sink
464/// This example shows how the data can be consumed within the execution plan
465/// by using a ConsumingSink node. There is no data output from this execution plan.
466arrow::Status SourceConsumingSinkExample() {
467 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
468
469 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
470
471 cp::Declaration source{"source", std::move(source_node_options)};
472
473 std::atomic<uint32_t> batches_seen{0};
474 arrow::Future<> finish = arrow::Future<>::Make();
475 struct CustomSinkNodeConsumer : public cp::SinkNodeConsumer {
476 CustomSinkNodeConsumer(std::atomic<uint32_t>* batches_seen, arrow::Future<> finish)
477 : batches_seen(batches_seen), finish(std::move(finish)) {}
478
479 arrow::Status Init(const std::shared_ptr<arrow::Schema>& schema,
480 cp::BackpressureControl* backpressure_control,
481 cp::ExecPlan* plan) override {
482 // This will be called as the plan is started (before the first call to Consume)
483 // and provides the schema of the data coming into the node, controls for pausing /
484 // resuming input, and a pointer to the plan itself which can be used to access
485 // other utilities such as the thread indexer or async task scheduler.
486 return arrow::Status::OK();
487 }
488
489 arrow::Status Consume(cp::ExecBatch batch) override {
490 (*batches_seen)++;
491 return arrow::Status::OK();
492 }
493
494 arrow::Future<> Finish() override {
495 // Here you can perform whatever (possibly async) cleanup is needed, e.g. closing
496 // output file handles and flushing remaining work
497 return arrow::Future<>::MakeFinished();
498 }
499
500 std::atomic<uint32_t>* batches_seen;
501 arrow::Future<> finish;
502 };
503 std::shared_ptr<CustomSinkNodeConsumer> consumer =
504 std::make_shared<CustomSinkNodeConsumer>(&batches_seen, finish);
505
506 cp::Declaration consuming_sink{"consuming_sink",
507 {std::move(source)},
508 cp::ConsumingSinkNodeOptions(std::move(consumer))};
509
510 // Since we are consuming the data within the plan there is no output and we simply
511 // run the plan to completion instead of collecting into a table.
512 ARROW_RETURN_NOT_OK(cp::DeclarationToStatus(std::move(consuming_sink)));
513
514 std::cout << "The consuming sink node saw " << batches_seen.load() << " batches"
515 << std::endl;
516 return arrow::Status::OK();
517}
order_by_sink
¶
order_by_sink
operation is an extension to the sink
operation.
This operation provides the ability to guarantee the ordering of the
stream by providing the arrow::compute::OrderBySinkNodeOptions
.
Here the arrow::compute::SortOptions
are provided to define which columns
are used for sorting and whether to sort by ascending or descending values.
Note
This node is a “pipeline breaker” and will fully materialize the dataset in memory. In the future, spillover mechanisms will be added which should alleviate this constraint.
Order-By-Sink example:
522arrow::Status ExecutePlanAndCollectAsTableWithCustomSink(
523 std::shared_ptr<cp::ExecPlan> plan, std::shared_ptr<arrow::Schema> schema,
524 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen) {
525 // translate sink_gen (async) to sink_reader (sync)
526 std::shared_ptr<arrow::RecordBatchReader> sink_reader =
527 cp::MakeGeneratorReader(schema, std::move(sink_gen), arrow::default_memory_pool());
528
529 // validate the ExecPlan
530 ARROW_RETURN_NOT_OK(plan->Validate());
531 std::cout << "ExecPlan created : " << plan->ToString() << std::endl;
532 // start the ExecPlan
533 ARROW_RETURN_NOT_OK(plan->StartProducing());
534
535 // collect sink_reader into a Table
536 std::shared_ptr<arrow::Table> response_table;
537
538 ARROW_ASSIGN_OR_RAISE(response_table,
539 arrow::Table::FromRecordBatchReader(sink_reader.get()));
540
541 std::cout << "Results : " << response_table->ToString() << std::endl;
542
543 // stop producing
544 plan->StopProducing();
545 // plan mark finished
546 auto future = plan->finished();
547 return future.status();
548}
549
550/// \brief An example showing an order-by node
551///
552/// Source-OrderBy-Sink
553/// In this example, the data enters through the source node
554/// and the data is ordered in the sink node. The order can be
555/// ASCENDING or DESCENDING and it is configurable. The output
556/// is obtained as a table from the sink node.
557arrow::Status SourceOrderBySinkExample() {
558 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<cp::ExecPlan> plan,
559 cp::ExecPlan::Make(*cp::threaded_exec_context()));
560
561 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeSortTestBasicBatches());
562
563 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
564
565 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
566 ARROW_ASSIGN_OR_RAISE(cp::ExecNode * source,
567 cp::MakeExecNode("source", plan.get(), {}, source_node_options));
568
569 ARROW_RETURN_NOT_OK(cp::MakeExecNode(
570 "order_by_sink", plan.get(), {source},
571 cp::OrderBySinkNodeOptions{
572 cp::SortOptions{{cp::SortKey{"a", cp::SortOrder::Descending}}}, &sink_gen}));
573
574 return ExecutePlanAndCollectAsTableWithCustomSink(plan, basic_data.schema, sink_gen);
575}
select_k_sink
¶
select_k_sink
option enables selecting the top/bottom K elements,
similar to a SQL ORDER BY ... LIMIT K
clause.
arrow::compute::SelectKOptions
which is a defined by
using OrderBySinkNode
definition. This option returns a sink node that receives
inputs and then compute top_k/bottom_k.
Note
This node is a “pipeline breaker” and will fully materialize the input in memory. In the future, spillover mechanisms will be added which should alleviate this constraint.
SelectK example:
608/// \brief An example showing a select-k node
609///
610/// Source-KSelect
611/// This example shows how K number of elements can be selected
612/// either from the top or bottom. The output node is a modified
613/// sink node where output can be obtained as a table.
614arrow::Status SourceKSelectExample() {
615 ARROW_ASSIGN_OR_RAISE(auto input, MakeGroupableBatches());
616 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<cp::ExecPlan> plan,
617 cp::ExecPlan::Make(*cp::threaded_exec_context()));
618 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
619
620 ARROW_ASSIGN_OR_RAISE(
621 cp::ExecNode * source,
622 cp::MakeExecNode("source", plan.get(), {},
623 cp::SourceNodeOptions{input.schema, input.gen()}));
624
625 cp::SelectKOptions options = cp::SelectKOptions::TopKDefault(/*k=*/2, {"i32"});
626
627 ARROW_RETURN_NOT_OK(cp::MakeExecNode("select_k_sink", plan.get(), {source},
628 cp::SelectKSinkNodeOptions{options, &sink_gen}));
629
630 auto schema = arrow::schema(
631 {arrow::field("i32", arrow::int32()), arrow::field("str", arrow::utf8())});
632
633 return ExecutePlanAndCollectAsTableWithCustomSink(plan, schema, sink_gen);
634}
table_sink
¶
The table_sink
node provides the ability to receive the output as an in-memory table.
This is simpler to use than the other sink nodes provided by the streaming execution engine
but it only makes sense when the output fits comfortably in memory.
The node is created using arrow::compute::TableSinkNodeOptions
.
Example of using table_sink
726/// \brief An example showing a table sink node
727///
728/// TableSink Example
729/// This example shows how a table_sink can be used
730/// in an execution plan. This includes a source node
731/// receiving data as batches and the table sink node
732/// which emits the output as a table.
733arrow::Status TableSinkExample() {
734 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<cp::ExecPlan> plan,
735 cp::ExecPlan::Make(*cp::threaded_exec_context()));
736
737 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
738
739 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
740
741 ARROW_ASSIGN_OR_RAISE(cp::ExecNode * source,
742 cp::MakeExecNode("source", plan.get(), {}, source_node_options));
743
744 std::shared_ptr<arrow::Table> output_table;
745 auto table_sink_options = cp::TableSinkNodeOptions{&output_table};
746
747 ARROW_RETURN_NOT_OK(
748 cp::MakeExecNode("table_sink", plan.get(), {source}, table_sink_options));
749 // validate the ExecPlan
750 ARROW_RETURN_NOT_OK(plan->Validate());
751 std::cout << "ExecPlan created : " << plan->ToString() << std::endl;
752 // start the ExecPlan
753 ARROW_RETURN_NOT_OK(plan->StartProducing());
754
755 // Wait for the plan to finish
756 auto finished = plan->finished();
757 RETURN_NOT_OK(finished.status());
758 std::cout << "Results : " << output_table->ToString() << std::endl;
759 return arrow::Status::OK();
760}
scan
¶
scan
is an operation used to load and process datasets. It should be preferred over the
more generic source
node when your input is a dataset. The behavior is defined using
arrow::dataset::ScanNodeOptions
. More information on datasets and the various
scan options can be found in Tabular Datasets.
This node is capable of applying pushdown filters to the file readers which reduce the amount of data that needs to be read. This means you may supply the same filter expression to the scan node that you also supply to the FilterNode because the filtering is done in two different places.
Scan example:
270/// \brief An example demonstrating a scan and sink node
271///
272/// Scan-Table
273/// This example shows how scan operation can be applied on a dataset.
274/// There are operations that can be applied on the scan (project, filter)
275/// and the input data can be processed. The output is obtained as a table
276arrow::Status ScanSinkExample() {
277 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
278
279 auto options = std::make_shared<arrow::dataset::ScanOptions>();
280 options->projection = cp::project({}, {}); // create empty projection
281
282 // construct the scan node
283 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
284
285 cp::Declaration scan{"scan", std::move(scan_node_options)};
286
287 return ExecutePlanAndCollectAsTable(std::move(scan));
288}
write
¶
The write
node saves query results as a dataset of files in a
format like Parquet, Feather, CSV, etc. using the Tabular Datasets
functionality in Arrow. The write options are provided via the
arrow::dataset::WriteNodeOptions
which in turn contains
arrow::dataset::FileSystemDatasetWriteOptions
.
arrow::dataset::FileSystemDatasetWriteOptions
provides
control over the written dataset, including options like the output
directory, file naming scheme, and so on.
Write example:
640/// \brief An example showing a write node
641/// \param file_path The destination to write to
642///
643/// Scan-Filter-Write
644/// This example shows how scan node can be used to load the data
645/// and after processing how it can be written to disk.
646arrow::Status ScanFilterWriteExample(const std::string& file_path) {
647 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
648
649 auto options = std::make_shared<arrow::dataset::ScanOptions>();
650 // empty projection
651 options->projection = cp::project({}, {});
652
653 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
654
655 cp::Declaration scan{"scan", std::move(scan_node_options)};
656
657 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
658
659 std::string root_path = "";
660 std::string uri = "file://" + file_path;
661 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::fs::FileSystem> filesystem,
662 arrow::fs::FileSystemFromUri(uri, &root_path));
663
664 auto base_path = root_path + "/parquet_dataset";
665 // Uncomment the following line, if run repeatedly
666 // ARROW_RETURN_NOT_OK(filesystem->DeleteDirContents(base_path));
667 ARROW_RETURN_NOT_OK(filesystem->CreateDir(base_path));
668
669 // The partition schema determines which fields are part of the partitioning.
670 auto partition_schema = arrow::schema({arrow::field("a", arrow::int32())});
671 // We'll use Hive-style partitioning,
672 // which creates directories with "key=value" pairs.
673
674 auto partitioning =
675 std::make_shared<arrow::dataset::HivePartitioning>(partition_schema);
676 // We'll write Parquet files.
677 auto format = std::make_shared<arrow::dataset::ParquetFileFormat>();
678
679 arrow::dataset::FileSystemDatasetWriteOptions write_options;
680 write_options.file_write_options = format->DefaultWriteOptions();
681 write_options.filesystem = filesystem;
682 write_options.base_dir = base_path;
683 write_options.partitioning = partitioning;
684 write_options.basename_template = "part{i}.parquet";
685
686 arrow::dataset::WriteNodeOptions write_node_options{write_options};
687
688 cp::Declaration write{"write", {std::move(scan)}, std::move(write_node_options)};
689
690 // Since the write node has no output we simply run the plan to completion and the
691 // data should be written
692 ARROW_RETURN_NOT_OK(cp::DeclarationToStatus(std::move(write)));
693
694 std::cout << "Dataset written to " << base_path << std::endl;
695 return arrow::Status::OK();
696}
union
¶
union
merges multiple data streams with the same schema into one, similar to
a SQL UNION ALL
clause.
The following example demonstrates how this can be achieved using two data sources.
Union example:
702/// \brief An example showing a union node
703///
704/// Source-Union-Table
705/// This example shows how a union operation can be applied on two
706/// data sources. The output is collected into a table.
707arrow::Status SourceUnionSinkExample() {
708 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
709
710 cp::Declaration lhs{"source",
711 cp::SourceNodeOptions{basic_data.schema, basic_data.gen()}};
712 lhs.label = "lhs";
713 cp::Declaration rhs{"source",
714 cp::SourceNodeOptions{basic_data.schema, basic_data.gen()}};
715 rhs.label = "rhs";
716 cp::Declaration union_plan{
717 "union", {std::move(lhs), std::move(rhs)}, cp::ExecNodeOptions{}};
718
719 return ExecutePlanAndCollectAsTable(std::move(union_plan));
720}
hash_join
¶
hash_join
operation provides the relational algebra operation, join using hash-based
algorithm. arrow::compute::HashJoinNodeOptions
contains the options required in
defining a join. The hash_join supports
left/right/full semi/anti/outerjoins.
Also the join-key (i.e. the column(s) to join on), and suffixes (i.e a suffix term like “_x”
which can be appended as a suffix for column names duplicated in both left and right
relations.) can be set via the the join options.
Read more on hash-joins.
Hash-Join example:
581/// \brief An example showing a hash join node
582///
583/// Source-HashJoin-Table
584/// This example shows how source node gets the data and how a self-join
585/// is applied on the data. The join options are configurable. The output
586/// is collected into a table.
587arrow::Status SourceHashJoinSinkExample() {
588 ARROW_ASSIGN_OR_RAISE(auto input, MakeGroupableBatches());
589
590 cp::Declaration left{"source", cp::SourceNodeOptions{input.schema, input.gen()}};
591 cp::Declaration right{"source", cp::SourceNodeOptions{input.schema, input.gen()}};
592
593 cp::HashJoinNodeOptions join_opts{
594 cp::JoinType::INNER,
595 /*left_keys=*/{"str"},
596 /*right_keys=*/{"str"}, cp::literal(true), "l_", "r_"};
597
598 cp::Declaration hashjoin{
599 "hashjoin", {std::move(left), std::move(right)}, std::move(join_opts)};
600
601 return ExecutePlanAndCollectAsTable(std::move(hashjoin));
602}
Summary¶
There are examples of these nodes which can be found in
cpp/examples/arrow/execution_plan_documentation_examples.cc
in the Arrow source.
Complete Example:
19#include <arrow/array.h>
20#include <arrow/builder.h>
21
22#include <arrow/compute/api.h>
23#include <arrow/compute/api_vector.h>
24#include <arrow/compute/cast.h>
25#include <arrow/compute/exec/exec_plan.h>
26
27#include <arrow/csv/api.h>
28
29#include <arrow/dataset/dataset.h>
30#include <arrow/dataset/file_base.h>
31#include <arrow/dataset/file_parquet.h>
32#include <arrow/dataset/plan.h>
33#include <arrow/dataset/scanner.h>
34
35#include <arrow/io/interfaces.h>
36#include <arrow/io/memory.h>
37
38#include <arrow/result.h>
39#include <arrow/status.h>
40#include <arrow/table.h>
41
42#include <arrow/ipc/api.h>
43
44#include <arrow/util/future.h>
45#include <arrow/util/range.h>
46#include <arrow/util/thread_pool.h>
47#include <arrow/util/vector.h>
48
49#include <iostream>
50#include <memory>
51#include <utility>
52
53// Demonstrate various operators in Arrow Streaming Execution Engine
54
55namespace cp = ::arrow::compute;
56
57constexpr char kSep[] = "******";
58
59void PrintBlock(const std::string& msg) {
60 std::cout << "\n\t" << kSep << " " << msg << " " << kSep << "\n" << std::endl;
61}
62
63template <typename TYPE,
64 typename = typename std::enable_if<arrow::is_number_type<TYPE>::value |
65 arrow::is_boolean_type<TYPE>::value |
66 arrow::is_temporal_type<TYPE>::value>::type>
67arrow::Result<std::shared_ptr<arrow::Array>> GetArrayDataSample(
68 const std::vector<typename TYPE::c_type>& values) {
69 using ArrowBuilderType = typename arrow::TypeTraits<TYPE>::BuilderType;
70 ArrowBuilderType builder;
71 ARROW_RETURN_NOT_OK(builder.Reserve(values.size()));
72 ARROW_RETURN_NOT_OK(builder.AppendValues(values));
73 return builder.Finish();
74}
75
76template <class TYPE>
77arrow::Result<std::shared_ptr<arrow::Array>> GetBinaryArrayDataSample(
78 const std::vector<std::string>& values) {
79 using ArrowBuilderType = typename arrow::TypeTraits<TYPE>::BuilderType;
80 ArrowBuilderType builder;
81 ARROW_RETURN_NOT_OK(builder.Reserve(values.size()));
82 ARROW_RETURN_NOT_OK(builder.AppendValues(values));
83 return builder.Finish();
84}
85
86arrow::Result<std::shared_ptr<arrow::RecordBatch>> GetSampleRecordBatch(
87 const arrow::ArrayVector array_vector, const arrow::FieldVector& field_vector) {
88 std::shared_ptr<arrow::RecordBatch> record_batch;
89 ARROW_ASSIGN_OR_RAISE(auto struct_result,
90 arrow::StructArray::Make(array_vector, field_vector));
91 return record_batch->FromStructArray(struct_result);
92}
93
94/// \brief Create a sample table
95/// The table's contents will be:
96/// a,b
97/// 1,null
98/// 2,true
99/// null,true
100/// 3,false
101/// null,true
102/// 4,false
103/// 5,null
104/// 6,false
105/// 7,false
106/// 8,true
107/// \return The created table
108
109arrow::Result<std::shared_ptr<arrow::Table>> GetTable() {
110 auto null_long = std::numeric_limits<int64_t>::quiet_NaN();
111 ARROW_ASSIGN_OR_RAISE(auto int64_array,
112 GetArrayDataSample<arrow::Int64Type>(
113 {1, 2, null_long, 3, null_long, 4, 5, 6, 7, 8}));
114
115 arrow::BooleanBuilder boolean_builder;
116 std::shared_ptr<arrow::BooleanArray> bool_array;
117
118 std::vector<uint8_t> bool_values = {false, true, true, false, true,
119 false, false, false, false, true};
120 std::vector<bool> is_valid = {false, true, true, true, true,
121 true, false, true, true, true};
122
123 ARROW_RETURN_NOT_OK(boolean_builder.Reserve(10));
124
125 ARROW_RETURN_NOT_OK(boolean_builder.AppendValues(bool_values, is_valid));
126
127 ARROW_RETURN_NOT_OK(boolean_builder.Finish(&bool_array));
128
129 auto record_batch =
130 arrow::RecordBatch::Make(arrow::schema({arrow::field("a", arrow::int64()),
131 arrow::field("b", arrow::boolean())}),
132 10, {int64_array, bool_array});
133 ARROW_ASSIGN_OR_RAISE(auto table, arrow::Table::FromRecordBatches({record_batch}));
134 return table;
135}
136
137/// \brief Create a sample dataset
138/// \return An in-memory dataset based on GetTable()
139arrow::Result<std::shared_ptr<arrow::dataset::Dataset>> GetDataset() {
140 ARROW_ASSIGN_OR_RAISE(auto table, GetTable());
141 auto ds = std::make_shared<arrow::dataset::InMemoryDataset>(table);
142 return ds;
143}
144
145arrow::Result<cp::ExecBatch> GetExecBatchFromVectors(
146 const arrow::FieldVector& field_vector, const arrow::ArrayVector& array_vector) {
147 std::shared_ptr<arrow::RecordBatch> record_batch;
148 ARROW_ASSIGN_OR_RAISE(auto res_batch, GetSampleRecordBatch(array_vector, field_vector));
149 cp::ExecBatch batch{*res_batch};
150 return batch;
151}
152
153// (Doc section: BatchesWithSchema Definition)
154struct BatchesWithSchema {
155 std::vector<cp::ExecBatch> batches;
156 std::shared_ptr<arrow::Schema> schema;
157 // This method uses internal arrow utilities to
158 // convert a vector of record batches to an AsyncGenerator of optional batches
159 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> gen() const {
160 auto opt_batches = ::arrow::internal::MapVector(
161 [](cp::ExecBatch batch) { return std::make_optional(std::move(batch)); },
162 batches);
163 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> gen;
164 gen = arrow::MakeVectorGenerator(std::move(opt_batches));
165 return gen;
166 }
167};
168// (Doc section: BatchesWithSchema Definition)
169
170// (Doc section: MakeBasicBatches Definition)
171arrow::Result<BatchesWithSchema> MakeBasicBatches() {
172 BatchesWithSchema out;
173 auto field_vector = {arrow::field("a", arrow::int32()),
174 arrow::field("b", arrow::boolean())};
175 ARROW_ASSIGN_OR_RAISE(auto b1_int, GetArrayDataSample<arrow::Int32Type>({0, 4}));
176 ARROW_ASSIGN_OR_RAISE(auto b2_int, GetArrayDataSample<arrow::Int32Type>({5, 6, 7}));
177 ARROW_ASSIGN_OR_RAISE(auto b3_int, GetArrayDataSample<arrow::Int32Type>({8, 9, 10}));
178
179 ARROW_ASSIGN_OR_RAISE(auto b1_bool,
180 GetArrayDataSample<arrow::BooleanType>({false, true}));
181 ARROW_ASSIGN_OR_RAISE(auto b2_bool,
182 GetArrayDataSample<arrow::BooleanType>({true, false, true}));
183 ARROW_ASSIGN_OR_RAISE(auto b3_bool,
184 GetArrayDataSample<arrow::BooleanType>({false, true, false}));
185
186 ARROW_ASSIGN_OR_RAISE(auto b1,
187 GetExecBatchFromVectors(field_vector, {b1_int, b1_bool}));
188 ARROW_ASSIGN_OR_RAISE(auto b2,
189 GetExecBatchFromVectors(field_vector, {b2_int, b2_bool}));
190 ARROW_ASSIGN_OR_RAISE(auto b3,
191 GetExecBatchFromVectors(field_vector, {b3_int, b3_bool}));
192
193 out.batches = {b1, b2, b3};
194 out.schema = arrow::schema(field_vector);
195 return out;
196}
197// (Doc section: MakeBasicBatches Definition)
198
199arrow::Result<BatchesWithSchema> MakeSortTestBasicBatches() {
200 BatchesWithSchema out;
201 auto field = arrow::field("a", arrow::int32());
202 ARROW_ASSIGN_OR_RAISE(auto b1_int, GetArrayDataSample<arrow::Int32Type>({1, 3, 0, 2}));
203 ARROW_ASSIGN_OR_RAISE(auto b2_int,
204 GetArrayDataSample<arrow::Int32Type>({121, 101, 120, 12}));
205 ARROW_ASSIGN_OR_RAISE(auto b3_int,
206 GetArrayDataSample<arrow::Int32Type>({10, 110, 210, 121}));
207 ARROW_ASSIGN_OR_RAISE(auto b4_int,
208 GetArrayDataSample<arrow::Int32Type>({51, 101, 2, 34}));
209 ARROW_ASSIGN_OR_RAISE(auto b5_int,
210 GetArrayDataSample<arrow::Int32Type>({11, 31, 1, 12}));
211 ARROW_ASSIGN_OR_RAISE(auto b6_int,
212 GetArrayDataSample<arrow::Int32Type>({12, 101, 120, 12}));
213 ARROW_ASSIGN_OR_RAISE(auto b7_int,
214 GetArrayDataSample<arrow::Int32Type>({0, 110, 210, 11}));
215 ARROW_ASSIGN_OR_RAISE(auto b8_int,
216 GetArrayDataSample<arrow::Int32Type>({51, 10, 2, 3}));
217
218 ARROW_ASSIGN_OR_RAISE(auto b1, GetExecBatchFromVectors({field}, {b1_int}));
219 ARROW_ASSIGN_OR_RAISE(auto b2, GetExecBatchFromVectors({field}, {b2_int}));
220 ARROW_ASSIGN_OR_RAISE(auto b3,
221 GetExecBatchFromVectors({field, field}, {b3_int, b8_int}));
222 ARROW_ASSIGN_OR_RAISE(auto b4,
223 GetExecBatchFromVectors({field, field, field, field},
224 {b4_int, b5_int, b6_int, b7_int}));
225 out.batches = {b1, b2, b3, b4};
226 out.schema = arrow::schema({field});
227 return out;
228}
229
230arrow::Result<BatchesWithSchema> MakeGroupableBatches(int multiplicity = 1) {
231 BatchesWithSchema out;
232 auto fields = {arrow::field("i32", arrow::int32()), arrow::field("str", arrow::utf8())};
233 ARROW_ASSIGN_OR_RAISE(auto b1_int, GetArrayDataSample<arrow::Int32Type>({12, 7, 3}));
234 ARROW_ASSIGN_OR_RAISE(auto b2_int, GetArrayDataSample<arrow::Int32Type>({-2, -1, 3}));
235 ARROW_ASSIGN_OR_RAISE(auto b3_int, GetArrayDataSample<arrow::Int32Type>({5, 3, -8}));
236 ARROW_ASSIGN_OR_RAISE(auto b1_str, GetBinaryArrayDataSample<arrow::StringType>(
237 {"alpha", "beta", "alpha"}));
238 ARROW_ASSIGN_OR_RAISE(auto b2_str, GetBinaryArrayDataSample<arrow::StringType>(
239 {"alpha", "gamma", "alpha"}));
240 ARROW_ASSIGN_OR_RAISE(auto b3_str, GetBinaryArrayDataSample<arrow::StringType>(
241 {"gamma", "beta", "alpha"}));
242 ARROW_ASSIGN_OR_RAISE(auto b1, GetExecBatchFromVectors(fields, {b1_int, b1_str}));
243 ARROW_ASSIGN_OR_RAISE(auto b2, GetExecBatchFromVectors(fields, {b2_int, b2_str}));
244 ARROW_ASSIGN_OR_RAISE(auto b3, GetExecBatchFromVectors(fields, {b3_int, b3_str}));
245 out.batches = {b1, b2, b3};
246
247 size_t batch_count = out.batches.size();
248 for (int repeat = 1; repeat < multiplicity; ++repeat) {
249 for (size_t i = 0; i < batch_count; ++i) {
250 out.batches.push_back(out.batches[i]);
251 }
252 }
253
254 out.schema = arrow::schema(fields);
255 return out;
256}
257
258arrow::Status ExecutePlanAndCollectAsTable(cp::Declaration plan) {
259 // collect sink_reader into a Table
260 std::shared_ptr<arrow::Table> response_table;
261 ARROW_ASSIGN_OR_RAISE(response_table, cp::DeclarationToTable(std::move(plan)));
262
263 std::cout << "Results : " << response_table->ToString() << std::endl;
264
265 return arrow::Status::OK();
266}
267
268// (Doc section: Scan Example)
269
270/// \brief An example demonstrating a scan and sink node
271///
272/// Scan-Table
273/// This example shows how scan operation can be applied on a dataset.
274/// There are operations that can be applied on the scan (project, filter)
275/// and the input data can be processed. The output is obtained as a table
276arrow::Status ScanSinkExample() {
277 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
278
279 auto options = std::make_shared<arrow::dataset::ScanOptions>();
280 options->projection = cp::project({}, {}); // create empty projection
281
282 // construct the scan node
283 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
284
285 cp::Declaration scan{"scan", std::move(scan_node_options)};
286
287 return ExecutePlanAndCollectAsTable(std::move(scan));
288}
289// (Doc section: Scan Example)
290
291// (Doc section: Source Example)
292
293/// \brief An example demonstrating a source and sink node
294///
295/// Source-Table Example
296/// This example shows how a custom source can be used
297/// in an execution plan. This includes source node using pregenerated
298/// data and collecting it into a table.
299///
300/// This sort of custom souce is often not needed. In most cases you can
301/// use a scan (for a dataset source) or a source like table_source, array_vector_source,
302/// exec_batch_source, or record_batch_source (for in-memory data)
303arrow::Status SourceSinkExample() {
304 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
305
306 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
307
308 cp::Declaration source{"source", std::move(source_node_options)};
309
310 return ExecutePlanAndCollectAsTable(std::move(source));
311}
312// (Doc section: Source Example)
313
314// (Doc section: Table Source Example)
315
316/// \brief An example showing a table source node
317///
318/// TableSource-Table Example
319/// This example shows how a table_source can be used
320/// in an execution plan. This includes a table source node
321/// receiving data from a table. This plan simply collects the
322/// data back into a table but nodes could be added that modify
323/// or transform the data as well (as is shown in later examples)
324arrow::Status TableSourceSinkExample() {
325 ARROW_ASSIGN_OR_RAISE(auto table, GetTable());
326
327 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
328 int max_batch_size = 2;
329 auto table_source_options = cp::TableSourceNodeOptions{table, max_batch_size};
330
331 cp::Declaration source{"table_source", std::move(table_source_options)};
332
333 return ExecutePlanAndCollectAsTable(std::move(source));
334}
335// (Doc section: Table Source Example)
336
337// (Doc section: Filter Example)
338
339/// \brief An example showing a filter node
340///
341/// Source-Filter-Table
342/// This example shows how a filter can be used in an execution plan,
343/// to filter data from a source. The output from the exeuction plan
344/// is collected into a table.
345arrow::Status ScanFilterSinkExample() {
346 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
347
348 auto options = std::make_shared<arrow::dataset::ScanOptions>();
349 // specify the filter. This filter removes all rows where the
350 // value of the "a" column is greater than 3.
351 cp::Expression filter_expr = cp::greater(cp::field_ref("a"), cp::literal(3));
352 // set filter for scanner : on-disk / push-down filtering.
353 // This step can be skipped if you are not reading from disk.
354 options->filter = filter_expr;
355 // empty projection
356 options->projection = cp::project({}, {});
357
358 // construct the scan node
359 std::cout << "Initialized Scanning Options" << std::endl;
360
361 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
362 std::cout << "Scan node options created" << std::endl;
363
364 cp::Declaration scan{"scan", std::move(scan_node_options)};
365
366 // pipe the scan node into the filter node
367 // Need to set the filter in scan node options and filter node options.
368 // At scan node it is used for on-disk / push-down filtering.
369 // At filter node it is used for in-memory filtering.
370 cp::Declaration filter{
371 "filter", {std::move(scan)}, cp::FilterNodeOptions(std::move(filter_expr))};
372
373 return ExecutePlanAndCollectAsTable(std::move(filter));
374}
375
376// (Doc section: Filter Example)
377
378// (Doc section: Project Example)
379
380/// \brief An example showing a project node
381///
382/// Scan-Project-Table
383/// This example shows how a Scan operation can be used to load the data
384/// into the execution plan, how a project operation can be applied on the
385/// data stream and how the output is collected into a table
386arrow::Status ScanProjectSinkExample() {
387 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
388
389 auto options = std::make_shared<arrow::dataset::ScanOptions>();
390 // projection
391 cp::Expression a_times_2 = cp::call("multiply", {cp::field_ref("a"), cp::literal(2)});
392 options->projection = cp::project({}, {});
393
394 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
395
396 cp::Declaration scan{"scan", std::move(scan_node_options)};
397 cp::Declaration project{
398 "project", {std::move(scan)}, cp::ProjectNodeOptions({a_times_2})};
399
400 return ExecutePlanAndCollectAsTable(std::move(project));
401}
402
403// (Doc section: Project Example)
404
405// (Doc section: Scalar Aggregate Example)
406
407/// \brief An example showing an aggregation node to aggregate an entire table
408///
409/// Source-Aggregation-Table
410/// This example shows how an aggregation operation can be applied on a
411/// execution plan resulting in a scalar output. The source node loads the
412/// data and the aggregation (counting unique types in column 'a')
413/// is applied on this data. The output is collected into a table (that will
414/// have exactly one row)
415arrow::Status SourceScalarAggregateSinkExample() {
416 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
417
418 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
419
420 cp::Declaration source{"source", std::move(source_node_options)};
421 auto aggregate_options =
422 cp::AggregateNodeOptions{/*aggregates=*/{{"sum", nullptr, "a", "sum(a)"}}};
423 cp::Declaration aggregate{
424 "aggregate", {std::move(source)}, std::move(aggregate_options)};
425
426 return ExecutePlanAndCollectAsTable(std::move(aggregate));
427}
428// (Doc section: Scalar Aggregate Example)
429
430// (Doc section: Group Aggregate Example)
431
432/// \brief An example showing an aggregation node to perform a group-by operation
433///
434/// Source-Aggregation-Table
435/// This example shows how an aggregation operation can be applied on a
436/// execution plan resulting in grouped output. The source node loads the
437/// data and the aggregation (counting unique types in column 'a') is
438/// applied on this data. The output is collected into a table that will contain
439/// one row for each unique combination of group keys.
440arrow::Status SourceGroupAggregateSinkExample() {
441 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
442
443 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
444
445 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
446
447 cp::Declaration source{"source", std::move(source_node_options)};
448 auto options = std::make_shared<cp::CountOptions>(cp::CountOptions::ONLY_VALID);
449 auto aggregate_options =
450 cp::AggregateNodeOptions{/*aggregates=*/{{"hash_count", options, "a", "count(a)"}},
451 /*keys=*/{"b"}};
452 cp::Declaration aggregate{
453 "aggregate", {std::move(source)}, std::move(aggregate_options)};
454
455 return ExecutePlanAndCollectAsTable(std::move(aggregate));
456}
457// (Doc section: Group Aggregate Example)
458
459// (Doc section: ConsumingSink Example)
460
461/// \brief An example showing a consuming sink node
462///
463/// Source-Consuming-Sink
464/// This example shows how the data can be consumed within the execution plan
465/// by using a ConsumingSink node. There is no data output from this execution plan.
466arrow::Status SourceConsumingSinkExample() {
467 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
468
469 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
470
471 cp::Declaration source{"source", std::move(source_node_options)};
472
473 std::atomic<uint32_t> batches_seen{0};
474 arrow::Future<> finish = arrow::Future<>::Make();
475 struct CustomSinkNodeConsumer : public cp::SinkNodeConsumer {
476 CustomSinkNodeConsumer(std::atomic<uint32_t>* batches_seen, arrow::Future<> finish)
477 : batches_seen(batches_seen), finish(std::move(finish)) {}
478
479 arrow::Status Init(const std::shared_ptr<arrow::Schema>& schema,
480 cp::BackpressureControl* backpressure_control,
481 cp::ExecPlan* plan) override {
482 // This will be called as the plan is started (before the first call to Consume)
483 // and provides the schema of the data coming into the node, controls for pausing /
484 // resuming input, and a pointer to the plan itself which can be used to access
485 // other utilities such as the thread indexer or async task scheduler.
486 return arrow::Status::OK();
487 }
488
489 arrow::Status Consume(cp::ExecBatch batch) override {
490 (*batches_seen)++;
491 return arrow::Status::OK();
492 }
493
494 arrow::Future<> Finish() override {
495 // Here you can perform whatever (possibly async) cleanup is needed, e.g. closing
496 // output file handles and flushing remaining work
497 return arrow::Future<>::MakeFinished();
498 }
499
500 std::atomic<uint32_t>* batches_seen;
501 arrow::Future<> finish;
502 };
503 std::shared_ptr<CustomSinkNodeConsumer> consumer =
504 std::make_shared<CustomSinkNodeConsumer>(&batches_seen, finish);
505
506 cp::Declaration consuming_sink{"consuming_sink",
507 {std::move(source)},
508 cp::ConsumingSinkNodeOptions(std::move(consumer))};
509
510 // Since we are consuming the data within the plan there is no output and we simply
511 // run the plan to completion instead of collecting into a table.
512 ARROW_RETURN_NOT_OK(cp::DeclarationToStatus(std::move(consuming_sink)));
513
514 std::cout << "The consuming sink node saw " << batches_seen.load() << " batches"
515 << std::endl;
516 return arrow::Status::OK();
517}
518// (Doc section: ConsumingSink Example)
519
520// (Doc section: OrderBySink Example)
521
522arrow::Status ExecutePlanAndCollectAsTableWithCustomSink(
523 std::shared_ptr<cp::ExecPlan> plan, std::shared_ptr<arrow::Schema> schema,
524 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen) {
525 // translate sink_gen (async) to sink_reader (sync)
526 std::shared_ptr<arrow::RecordBatchReader> sink_reader =
527 cp::MakeGeneratorReader(schema, std::move(sink_gen), arrow::default_memory_pool());
528
529 // validate the ExecPlan
530 ARROW_RETURN_NOT_OK(plan->Validate());
531 std::cout << "ExecPlan created : " << plan->ToString() << std::endl;
532 // start the ExecPlan
533 ARROW_RETURN_NOT_OK(plan->StartProducing());
534
535 // collect sink_reader into a Table
536 std::shared_ptr<arrow::Table> response_table;
537
538 ARROW_ASSIGN_OR_RAISE(response_table,
539 arrow::Table::FromRecordBatchReader(sink_reader.get()));
540
541 std::cout << "Results : " << response_table->ToString() << std::endl;
542
543 // stop producing
544 plan->StopProducing();
545 // plan mark finished
546 auto future = plan->finished();
547 return future.status();
548}
549
550/// \brief An example showing an order-by node
551///
552/// Source-OrderBy-Sink
553/// In this example, the data enters through the source node
554/// and the data is ordered in the sink node. The order can be
555/// ASCENDING or DESCENDING and it is configurable. The output
556/// is obtained as a table from the sink node.
557arrow::Status SourceOrderBySinkExample() {
558 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<cp::ExecPlan> plan,
559 cp::ExecPlan::Make(*cp::threaded_exec_context()));
560
561 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeSortTestBasicBatches());
562
563 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
564
565 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
566 ARROW_ASSIGN_OR_RAISE(cp::ExecNode * source,
567 cp::MakeExecNode("source", plan.get(), {}, source_node_options));
568
569 ARROW_RETURN_NOT_OK(cp::MakeExecNode(
570 "order_by_sink", plan.get(), {source},
571 cp::OrderBySinkNodeOptions{
572 cp::SortOptions{{cp::SortKey{"a", cp::SortOrder::Descending}}}, &sink_gen}));
573
574 return ExecutePlanAndCollectAsTableWithCustomSink(plan, basic_data.schema, sink_gen);
575}
576
577// (Doc section: OrderBySink Example)
578
579// (Doc section: HashJoin Example)
580
581/// \brief An example showing a hash join node
582///
583/// Source-HashJoin-Table
584/// This example shows how source node gets the data and how a self-join
585/// is applied on the data. The join options are configurable. The output
586/// is collected into a table.
587arrow::Status SourceHashJoinSinkExample() {
588 ARROW_ASSIGN_OR_RAISE(auto input, MakeGroupableBatches());
589
590 cp::Declaration left{"source", cp::SourceNodeOptions{input.schema, input.gen()}};
591 cp::Declaration right{"source", cp::SourceNodeOptions{input.schema, input.gen()}};
592
593 cp::HashJoinNodeOptions join_opts{
594 cp::JoinType::INNER,
595 /*left_keys=*/{"str"},
596 /*right_keys=*/{"str"}, cp::literal(true), "l_", "r_"};
597
598 cp::Declaration hashjoin{
599 "hashjoin", {std::move(left), std::move(right)}, std::move(join_opts)};
600
601 return ExecutePlanAndCollectAsTable(std::move(hashjoin));
602}
603
604// (Doc section: HashJoin Example)
605
606// (Doc section: KSelect Example)
607
608/// \brief An example showing a select-k node
609///
610/// Source-KSelect
611/// This example shows how K number of elements can be selected
612/// either from the top or bottom. The output node is a modified
613/// sink node where output can be obtained as a table.
614arrow::Status SourceKSelectExample() {
615 ARROW_ASSIGN_OR_RAISE(auto input, MakeGroupableBatches());
616 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<cp::ExecPlan> plan,
617 cp::ExecPlan::Make(*cp::threaded_exec_context()));
618 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
619
620 ARROW_ASSIGN_OR_RAISE(
621 cp::ExecNode * source,
622 cp::MakeExecNode("source", plan.get(), {},
623 cp::SourceNodeOptions{input.schema, input.gen()}));
624
625 cp::SelectKOptions options = cp::SelectKOptions::TopKDefault(/*k=*/2, {"i32"});
626
627 ARROW_RETURN_NOT_OK(cp::MakeExecNode("select_k_sink", plan.get(), {source},
628 cp::SelectKSinkNodeOptions{options, &sink_gen}));
629
630 auto schema = arrow::schema(
631 {arrow::field("i32", arrow::int32()), arrow::field("str", arrow::utf8())});
632
633 return ExecutePlanAndCollectAsTableWithCustomSink(plan, schema, sink_gen);
634}
635
636// (Doc section: KSelect Example)
637
638// (Doc section: Write Example)
639
640/// \brief An example showing a write node
641/// \param file_path The destination to write to
642///
643/// Scan-Filter-Write
644/// This example shows how scan node can be used to load the data
645/// and after processing how it can be written to disk.
646arrow::Status ScanFilterWriteExample(const std::string& file_path) {
647 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::dataset::Dataset> dataset, GetDataset());
648
649 auto options = std::make_shared<arrow::dataset::ScanOptions>();
650 // empty projection
651 options->projection = cp::project({}, {});
652
653 auto scan_node_options = arrow::dataset::ScanNodeOptions{dataset, options};
654
655 cp::Declaration scan{"scan", std::move(scan_node_options)};
656
657 arrow::AsyncGenerator<std::optional<cp::ExecBatch>> sink_gen;
658
659 std::string root_path = "";
660 std::string uri = "file://" + file_path;
661 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<arrow::fs::FileSystem> filesystem,
662 arrow::fs::FileSystemFromUri(uri, &root_path));
663
664 auto base_path = root_path + "/parquet_dataset";
665 // Uncomment the following line, if run repeatedly
666 // ARROW_RETURN_NOT_OK(filesystem->DeleteDirContents(base_path));
667 ARROW_RETURN_NOT_OK(filesystem->CreateDir(base_path));
668
669 // The partition schema determines which fields are part of the partitioning.
670 auto partition_schema = arrow::schema({arrow::field("a", arrow::int32())});
671 // We'll use Hive-style partitioning,
672 // which creates directories with "key=value" pairs.
673
674 auto partitioning =
675 std::make_shared<arrow::dataset::HivePartitioning>(partition_schema);
676 // We'll write Parquet files.
677 auto format = std::make_shared<arrow::dataset::ParquetFileFormat>();
678
679 arrow::dataset::FileSystemDatasetWriteOptions write_options;
680 write_options.file_write_options = format->DefaultWriteOptions();
681 write_options.filesystem = filesystem;
682 write_options.base_dir = base_path;
683 write_options.partitioning = partitioning;
684 write_options.basename_template = "part{i}.parquet";
685
686 arrow::dataset::WriteNodeOptions write_node_options{write_options};
687
688 cp::Declaration write{"write", {std::move(scan)}, std::move(write_node_options)};
689
690 // Since the write node has no output we simply run the plan to completion and the
691 // data should be written
692 ARROW_RETURN_NOT_OK(cp::DeclarationToStatus(std::move(write)));
693
694 std::cout << "Dataset written to " << base_path << std::endl;
695 return arrow::Status::OK();
696}
697
698// (Doc section: Write Example)
699
700// (Doc section: Union Example)
701
702/// \brief An example showing a union node
703///
704/// Source-Union-Table
705/// This example shows how a union operation can be applied on two
706/// data sources. The output is collected into a table.
707arrow::Status SourceUnionSinkExample() {
708 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
709
710 cp::Declaration lhs{"source",
711 cp::SourceNodeOptions{basic_data.schema, basic_data.gen()}};
712 lhs.label = "lhs";
713 cp::Declaration rhs{"source",
714 cp::SourceNodeOptions{basic_data.schema, basic_data.gen()}};
715 rhs.label = "rhs";
716 cp::Declaration union_plan{
717 "union", {std::move(lhs), std::move(rhs)}, cp::ExecNodeOptions{}};
718
719 return ExecutePlanAndCollectAsTable(std::move(union_plan));
720}
721
722// (Doc section: Union Example)
723
724// (Doc section: Table Sink Example)
725
726/// \brief An example showing a table sink node
727///
728/// TableSink Example
729/// This example shows how a table_sink can be used
730/// in an execution plan. This includes a source node
731/// receiving data as batches and the table sink node
732/// which emits the output as a table.
733arrow::Status TableSinkExample() {
734 ARROW_ASSIGN_OR_RAISE(std::shared_ptr<cp::ExecPlan> plan,
735 cp::ExecPlan::Make(*cp::threaded_exec_context()));
736
737 ARROW_ASSIGN_OR_RAISE(auto basic_data, MakeBasicBatches());
738
739 auto source_node_options = cp::SourceNodeOptions{basic_data.schema, basic_data.gen()};
740
741 ARROW_ASSIGN_OR_RAISE(cp::ExecNode * source,
742 cp::MakeExecNode("source", plan.get(), {}, source_node_options));
743
744 std::shared_ptr<arrow::Table> output_table;
745 auto table_sink_options = cp::TableSinkNodeOptions{&output_table};
746
747 ARROW_RETURN_NOT_OK(
748 cp::MakeExecNode("table_sink", plan.get(), {source}, table_sink_options));
749 // validate the ExecPlan
750 ARROW_RETURN_NOT_OK(plan->Validate());
751 std::cout << "ExecPlan created : " << plan->ToString() << std::endl;
752 // start the ExecPlan
753 ARROW_RETURN_NOT_OK(plan->StartProducing());
754
755 // Wait for the plan to finish
756 auto finished = plan->finished();
757 RETURN_NOT_OK(finished.status());
758 std::cout << "Results : " << output_table->ToString() << std::endl;
759 return arrow::Status::OK();
760}
761
762// (Doc section: Table Sink Example)
763
764// (Doc section: RecordBatchReaderSource Example)
765
766/// \brief An example showing the usage of a RecordBatchReader as the data source.
767///
768/// RecordBatchReaderSourceSink Example
769/// This example shows how a record_batch_reader_source can be used
770/// in an execution plan. This includes the source node
771/// receiving data from a TableRecordBatchReader.
772
773arrow::Status RecordBatchReaderSourceSinkExample() {
774 ARROW_ASSIGN_OR_RAISE(auto table, GetTable());
775 std::shared_ptr<arrow::RecordBatchReader> reader =
776 std::make_shared<arrow::TableBatchReader>(table);
777 cp::Declaration reader_source{"record_batch_reader_source",
778 cp::RecordBatchReaderSourceNodeOptions{reader}};
779 return ExecutePlanAndCollectAsTable(std::move(reader_source));
780}
781
782// (Doc section: RecordBatchReaderSource Example)
783
784enum ExampleMode {
785 SOURCE_SINK = 0,
786 TABLE_SOURCE_SINK = 1,
787 SCAN = 2,
788 FILTER = 3,
789 PROJECT = 4,
790 SCALAR_AGGREGATION = 5,
791 GROUP_AGGREGATION = 6,
792 CONSUMING_SINK = 7,
793 ORDER_BY_SINK = 8,
794 HASHJOIN = 9,
795 KSELECT = 10,
796 WRITE = 11,
797 UNION = 12,
798 TABLE_SOURCE_TABLE_SINK = 13,
799 RECORD_BATCH_READER_SOURCE = 14
800};
801
802int main(int argc, char** argv) {
803 if (argc < 3) {
804 // Fake success for CI purposes.
805 return EXIT_SUCCESS;
806 }
807
808 std::string base_save_path = argv[1];
809 int mode = std::atoi(argv[2]);
810 arrow::Status status;
811 // ensure arrow::dataset node factories are in the registry
812 arrow::dataset::internal::Initialize();
813 switch (mode) {
814 case SOURCE_SINK:
815 PrintBlock("Source Sink Example");
816 status = SourceSinkExample();
817 break;
818 case TABLE_SOURCE_SINK:
819 PrintBlock("Table Source Sink Example");
820 status = TableSourceSinkExample();
821 break;
822 case SCAN:
823 PrintBlock("Scan Example");
824 status = ScanSinkExample();
825 break;
826 case FILTER:
827 PrintBlock("Filter Example");
828 status = ScanFilterSinkExample();
829 break;
830 case PROJECT:
831 PrintBlock("Project Example");
832 status = ScanProjectSinkExample();
833 break;
834 case GROUP_AGGREGATION:
835 PrintBlock("Aggregate Example");
836 status = SourceGroupAggregateSinkExample();
837 break;
838 case SCALAR_AGGREGATION:
839 PrintBlock("Aggregate Example");
840 status = SourceScalarAggregateSinkExample();
841 break;
842 case CONSUMING_SINK:
843 PrintBlock("Consuming-Sink Example");
844 status = SourceConsumingSinkExample();
845 break;
846 case ORDER_BY_SINK:
847 PrintBlock("OrderBy Example");
848 status = SourceOrderBySinkExample();
849 break;
850 case HASHJOIN:
851 PrintBlock("HashJoin Example");
852 status = SourceHashJoinSinkExample();
853 break;
854 case KSELECT:
855 PrintBlock("KSelect Example");
856 status = SourceKSelectExample();
857 break;
858 case WRITE:
859 PrintBlock("Write Example");
860 status = ScanFilterWriteExample(base_save_path);
861 break;
862 case UNION:
863 PrintBlock("Union Example");
864 status = SourceUnionSinkExample();
865 break;
866 case TABLE_SOURCE_TABLE_SINK:
867 PrintBlock("TableSink Example");
868 status = TableSinkExample();
869 break;
870 case RECORD_BATCH_READER_SOURCE:
871 PrintBlock("RecordBatchReaderSource Example");
872 status = RecordBatchReaderSourceSinkExample();
873 break;
874 default:
875 break;
876 }
877
878 if (status.ok()) {
879 return EXIT_SUCCESS;
880 } else {
881 std::cout << "Error occurred: " << status.message() << std::endl;
882 return EXIT_FAILURE;
883 }
884}