parquet/arrow/
mod.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! API for reading/writing Arrow [`RecordBatch`]es and [`Array`]s to/from
19//! Parquet Files.
20//!
21//! See the [crate-level documentation](crate) for more details on other APIs
22//!
23//! # Schema Conversion
24//!
25//! These APIs ensure that data in Arrow [`RecordBatch`]es written to Parquet are
26//! read back as [`RecordBatch`]es with the exact same types and values.
27//!
28//! Parquet and Arrow have different type systems, and there is not
29//! always a one to one mapping between the systems. For example, data
30//! stored as a Parquet [`BYTE_ARRAY`] can be read as either an Arrow
31//! [`BinaryViewArray`] or [`BinaryArray`].
32//!
33//! To recover the original Arrow types, the writers in this module add a "hint" to
34//! the metadata in the [`ARROW_SCHEMA_META_KEY`] key which records the original Arrow
35//! schema. The metadata hint follows the same convention as arrow-cpp based
36//! implementations such as `pyarrow`. The reader looks for the schema hint in the
37//! metadata to determine Arrow types, and if it is not present, infers the Arrow schema
38//! from the Parquet schema.
39//!
40//! In situations where the embedded Arrow schema is not compatible with the Parquet
41//! schema, the Parquet schema takes precedence and no error is raised.
42//! See [#1663](https://github.com/apache/arrow-rs/issues/1663)
43//!
44//! You can also control the type conversion process in more detail using:
45//!
46//! * [`ArrowSchemaConverter`] control the conversion of Arrow types to Parquet
47//!   types.
48//!
49//! * [`ArrowReaderOptions::with_schema`] to explicitly specify your own Arrow schema hint
50//!   to use when reading Parquet, overriding any metadata that may be present.
51//!
52//! [`RecordBatch`]: arrow_array::RecordBatch
53//! [`Array`]: arrow_array::Array
54//! [`BYTE_ARRAY`]: crate::basic::Type::BYTE_ARRAY
55//! [`BinaryViewArray`]: arrow_array::BinaryViewArray
56//! [`BinaryArray`]: arrow_array::BinaryArray
57//! [`ArrowReaderOptions::with_schema`]: arrow_reader::ArrowReaderOptions::with_schema
58//!
59//! # Example: Writing Arrow `RecordBatch` to Parquet file
60//!
61//!```rust
62//! # use arrow_array::{Int32Array, ArrayRef};
63//! # use arrow_array::RecordBatch;
64//! # use parquet::arrow::arrow_writer::ArrowWriter;
65//! # use parquet::file::properties::WriterProperties;
66//! # use tempfile::tempfile;
67//! # use std::sync::Arc;
68//! # use parquet::basic::Compression;
69//! let ids = Int32Array::from(vec![1, 2, 3, 4]);
70//! let vals = Int32Array::from(vec![5, 6, 7, 8]);
71//! let batch = RecordBatch::try_from_iter(vec![
72//!   ("id", Arc::new(ids) as ArrayRef),
73//!   ("val", Arc::new(vals) as ArrayRef),
74//! ]).unwrap();
75//!
76//! let file = tempfile().unwrap();
77//!
78//! // WriterProperties can be used to set Parquet file options
79//! let props = WriterProperties::builder()
80//!     .set_compression(Compression::SNAPPY)
81//!     .build();
82//!
83//! let mut writer = ArrowWriter::try_new(file, batch.schema(), Some(props)).unwrap();
84//!
85//! writer.write(&batch).expect("Writing batch");
86//!
87//! // writer must be closed to write footer
88//! writer.close().unwrap();
89//! ```
90//!
91//! # Example: Reading Parquet file into Arrow `RecordBatch`
92//!
93//! ```rust
94//! # use std::fs::File;
95//! # use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
96//! # use std::sync::Arc;
97//! # use arrow_array::Int32Array;
98//! # use arrow::datatypes::{DataType, Field, Schema};
99//! # use arrow_array::RecordBatch;
100//! # use parquet::arrow::arrow_writer::ArrowWriter;
101//! #
102//! # let ids = Int32Array::from(vec![1, 2, 3, 4]);
103//! # let schema = Arc::new(Schema::new(vec![
104//! #     Field::new("id", DataType::Int32, false),
105//! # ]));
106//! #
107//! # let file = File::create("data.parquet").unwrap();
108//! #
109//! # let batch = RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(ids)]).unwrap();
110//! # let batches = vec![batch];
111//! #
112//! # let mut writer = ArrowWriter::try_new(file, Arc::clone(&schema), None).unwrap();
113//! #
114//! # for batch in batches {
115//! #     writer.write(&batch).expect("Writing batch");
116//! # }
117//! # writer.close().unwrap();
118//! #
119//! let file = File::open("data.parquet").unwrap();
120//!
121//! let builder = ParquetRecordBatchReaderBuilder::try_new(file).unwrap();
122//! println!("Converted arrow schema is: {}", builder.schema());
123//!
124//! let mut reader = builder.build().unwrap();
125//!
126//! let record_batch = reader.next().unwrap().unwrap();
127//!
128//! println!("Read {} records.", record_batch.num_rows());
129//! ```
130//!
131//! # Example: Reading non-uniformly encrypted parquet file into arrow record batch
132//!
133//! Note: This requires the experimental `encryption` feature to be enabled at compile time.
134//!
135#![cfg_attr(feature = "encryption", doc = "```rust")]
136#![cfg_attr(not(feature = "encryption"), doc = "```ignore")]
137//! # use arrow_array::{Int32Array, ArrayRef};
138//! # use arrow_array::{types, RecordBatch};
139//! # use parquet::arrow::arrow_reader::{
140//! #     ArrowReaderMetadata, ArrowReaderOptions, ParquetRecordBatchReaderBuilder,
141//! # };
142//! # use arrow_array::cast::AsArray;
143//! # use parquet::file::metadata::ParquetMetaData;
144//! # use tempfile::tempfile;
145//! # use std::fs::File;
146//! # use parquet::encryption::decrypt::FileDecryptionProperties;
147//! # let test_data = arrow::util::test_util::parquet_test_data();
148//! # let path = format!("{test_data}/encrypt_columns_and_footer.parquet.encrypted");
149//! #
150//! let file = File::open(path).unwrap();
151//!
152//! // Define the AES encryption keys required required for decrypting the footer metadata
153//! // and column-specific data. If only a footer key is used then it is assumed that the
154//! // file uses uniform encryption and all columns are encrypted with the footer key.
155//! // If any column keys are specified, other columns without a key provided are assumed
156//! // to be unencrypted
157//! let footer_key = "0123456789012345".as_bytes(); // Keys are 128 bits (16 bytes)
158//! let column_1_key = "1234567890123450".as_bytes();
159//! let column_2_key = "1234567890123451".as_bytes();
160//!
161//! let decryption_properties = FileDecryptionProperties::builder(footer_key.to_vec())
162//!     .with_column_key("double_field", column_1_key.to_vec())
163//!     .with_column_key("float_field", column_2_key.to_vec())
164//!     .build()
165//!     .unwrap();
166//!
167//! let options = ArrowReaderOptions::default()
168//!  .with_file_decryption_properties(decryption_properties);
169//! let reader_metadata = ArrowReaderMetadata::load(&file, options.clone()).unwrap();
170//! let file_metadata = reader_metadata.metadata().file_metadata();
171//! assert_eq!(50, file_metadata.num_rows());
172//!
173//! let mut reader = ParquetRecordBatchReaderBuilder::try_new_with_options(file, options)
174//!   .unwrap()
175//!   .build()
176//!   .unwrap();
177//!
178//! let record_batch = reader.next().unwrap().unwrap();
179//! assert_eq!(50, record_batch.num_rows());
180//! ```
181
182experimental!(mod array_reader);
183pub mod arrow_reader;
184pub mod arrow_writer;
185mod buffer;
186mod decoder;
187
188#[cfg(feature = "async")]
189pub mod async_reader;
190#[cfg(feature = "async")]
191pub mod async_writer;
192
193pub mod push_decoder;
194
195mod in_memory_row_group;
196mod record_reader;
197
198experimental!(mod schema);
199
200use std::fmt::Debug;
201
202pub use self::arrow_writer::ArrowWriter;
203#[cfg(feature = "async")]
204pub use self::async_reader::ParquetRecordBatchStreamBuilder;
205#[cfg(feature = "async")]
206pub use self::async_writer::AsyncArrowWriter;
207use crate::schema::types::SchemaDescriptor;
208use arrow_schema::{FieldRef, Schema};
209
210pub use self::schema::{
211    ArrowSchemaConverter, FieldLevels, add_encoded_arrow_schema_to_metadata, encode_arrow_schema,
212    parquet_to_arrow_field_levels, parquet_to_arrow_field_levels_with_virtual,
213    parquet_to_arrow_schema, parquet_to_arrow_schema_by_columns, virtual_type::*,
214};
215
216/// Schema metadata key used to store serialized Arrow schema
217///
218/// The Arrow schema is encoded using the Arrow IPC format, and then base64
219/// encoded. This is the same format used by arrow-cpp systems, such as pyarrow.
220pub const ARROW_SCHEMA_META_KEY: &str = "ARROW:schema";
221
222/// The value of this metadata key, if present on [`Field::metadata`], will be used
223/// to populate [`BasicTypeInfo::id`]
224///
225/// [`Field::metadata`]: arrow_schema::Field::metadata
226/// [`BasicTypeInfo::id`]: crate::schema::types::BasicTypeInfo::id
227pub const PARQUET_FIELD_ID_META_KEY: &str = "PARQUET:field_id";
228
229/// A [`ProjectionMask`] identifies a set of columns within a potentially nested schema to project
230///
231/// In particular, a [`ProjectionMask`] can be constructed from a list of leaf column indices
232/// or root column indices where:
233///
234/// * Root columns are the direct children of the root schema, enumerated in order
235/// * Leaf columns are the child-less leaves of the schema as enumerated by a depth-first search
236///
237/// For example, the schema
238///
239/// ```ignore
240/// message schema {
241///   REQUIRED boolean         leaf_1;
242///   REQUIRED GROUP group {
243///     OPTIONAL int32 leaf_2;
244///     OPTIONAL int64 leaf_3;
245///   }
246/// }
247/// ```
248///
249/// Has roots `["leaf_1", "group"]` and leaves `["leaf_1", "leaf_2", "leaf_3"]`
250///
251/// For non-nested schemas, i.e. those containing only primitive columns, the root
252/// and leaves are the same
253///
254#[derive(Debug, Clone, PartialEq, Eq)]
255pub struct ProjectionMask {
256    /// If `Some`, a leaf column should be included if the value at
257    /// the corresponding index is true
258    ///
259    /// If `None`, all columns should be included
260    ///
261    /// # Examples
262    ///
263    /// Given the original parquet schema with leaf columns is `[a, b, c, d]`
264    ///
265    /// A mask of `[true, false, true, false]` will result in a schema 2
266    /// elements long:
267    /// * `fields[0]`: `a`
268    /// * `fields[1]`: `c`
269    ///
270    /// A mask of `None` will result in a schema 4 elements long:
271    /// * `fields[0]`: `a`
272    /// * `fields[1]`: `b`
273    /// * `fields[2]`: `c`
274    /// * `fields[3]`: `d`
275    mask: Option<Vec<bool>>,
276}
277
278impl ProjectionMask {
279    /// Create a [`ProjectionMask`] which selects all columns
280    pub fn all() -> Self {
281        Self { mask: None }
282    }
283
284    /// Create a [`ProjectionMask`] which selects no columns
285    pub fn none(len: usize) -> Self {
286        Self {
287            mask: Some(vec![false; len]),
288        }
289    }
290
291    /// Create a [`ProjectionMask`] which selects only the specified leaf columns
292    ///
293    /// Note: repeated or out of order indices will not impact the final mask
294    ///
295    /// i.e. `[0, 1, 2]` will construct the same mask as `[1, 0, 0, 2]`
296    pub fn leaves(schema: &SchemaDescriptor, indices: impl IntoIterator<Item = usize>) -> Self {
297        let mut mask = vec![false; schema.num_columns()];
298        for leaf_idx in indices {
299            mask[leaf_idx] = true;
300        }
301        Self { mask: Some(mask) }
302    }
303
304    /// Create a [`ProjectionMask`] which selects only the specified root columns
305    ///
306    /// Note: repeated or out of order indices will not impact the final mask
307    ///
308    /// i.e. `[0, 1, 2]` will construct the same mask as `[1, 0, 0, 2]`
309    pub fn roots(schema: &SchemaDescriptor, indices: impl IntoIterator<Item = usize>) -> Self {
310        let num_root_columns = schema.root_schema().get_fields().len();
311        let mut root_mask = vec![false; num_root_columns];
312        for root_idx in indices {
313            root_mask[root_idx] = true;
314        }
315
316        let mask = (0..schema.num_columns())
317            .map(|leaf_idx| {
318                let root_idx = schema.get_column_root_idx(leaf_idx);
319                root_mask[root_idx]
320            })
321            .collect();
322
323        Self { mask: Some(mask) }
324    }
325
326    /// Create a [`ProjectionMask`] which selects only the named columns
327    ///
328    /// All leaf columns that fall below a given name will be selected. For example, given
329    /// the schema
330    /// ```ignore
331    /// message schema {
332    ///   OPTIONAL group a (MAP) {
333    ///     REPEATED group key_value {
334    ///       REQUIRED BYTE_ARRAY key (UTF8);  // leaf index 0
335    ///       OPTIONAL group value (MAP) {
336    ///         REPEATED group key_value {
337    ///           REQUIRED INT32 key;          // leaf index 1
338    ///           REQUIRED BOOLEAN value;      // leaf index 2
339    ///         }
340    ///       }
341    ///     }
342    ///   }
343    ///   REQUIRED INT32 b;                    // leaf index 3
344    ///   REQUIRED DOUBLE c;                   // leaf index 4
345    /// }
346    /// ```
347    /// `["a.key_value.value", "c"]` would return leaf columns 1, 2, and 4. `["a"]` would return
348    /// columns 0, 1, and 2.
349    ///
350    /// Note: repeated or out of order indices will not impact the final mask.
351    ///
352    /// i.e. `["b", "c"]` will construct the same mask as `["c", "b", "c"]`.
353    ///
354    /// Also, this will not produce the desired results if a column contains a '.' in its name.
355    /// Use [`Self::leaves`] or [`Self::roots`] in that case.
356    pub fn columns<'a>(
357        schema: &SchemaDescriptor,
358        names: impl IntoIterator<Item = &'a str>,
359    ) -> Self {
360        let mut mask = vec![false; schema.num_columns()];
361        for name in names {
362            let name_path: Vec<&str> = name.split('.').collect();
363            for (idx, col) in schema.columns().iter().enumerate() {
364                let path = col.path().parts();
365                // searching for "a.b.c" cannot match "a.b"
366                if name_path.len() > path.len() {
367                    continue;
368                }
369                // now path >= name_path, so check that each element in name_path matches
370                if name_path.iter().zip(path.iter()).all(|(a, b)| a == b) {
371                    mask[idx] = true;
372                }
373            }
374        }
375
376        Self { mask: Some(mask) }
377    }
378
379    /// Returns true if the leaf column `leaf_idx` is included by the mask
380    pub fn leaf_included(&self, leaf_idx: usize) -> bool {
381        self.mask.as_ref().map(|m| m[leaf_idx]).unwrap_or(true)
382    }
383
384    /// Union two projection masks
385    ///
386    /// Example:
387    /// ```text
388    /// mask1 = [true, false, true]
389    /// mask2 = [false, true, true]
390    /// union(mask1, mask2) = [true, true, true]
391    /// ```
392    pub fn union(&mut self, other: &Self) {
393        match (self.mask.as_ref(), other.mask.as_ref()) {
394            (None, _) | (_, None) => self.mask = None,
395            (Some(a), Some(b)) => {
396                debug_assert_eq!(a.len(), b.len());
397                let mask = a.iter().zip(b.iter()).map(|(&a, &b)| a || b).collect();
398                self.mask = Some(mask);
399            }
400        }
401    }
402
403    /// Intersect two projection masks
404    ///
405    /// Example:
406    /// ```text
407    /// mask1 = [true, false, true]
408    /// mask2 = [false, true, true]
409    /// intersect(mask1, mask2) = [false, false, true]
410    /// ```
411    pub fn intersect(&mut self, other: &Self) {
412        match (self.mask.as_ref(), other.mask.as_ref()) {
413            (None, _) => self.mask = other.mask.clone(),
414            (_, None) => {}
415            (Some(a), Some(b)) => {
416                debug_assert_eq!(a.len(), b.len());
417                let mask = a.iter().zip(b.iter()).map(|(&a, &b)| a && b).collect();
418                self.mask = Some(mask);
419            }
420        }
421    }
422
423    /// Return a new [`ProjectionMask`] that excludes any leaf columns that are
424    /// part of a nested type, such as struct, list, or map
425    ///
426    /// If there are no non-nested columns in the mask, returns `None`
427    pub(crate) fn without_nested_types(&self, schema: &SchemaDescriptor) -> Option<Self> {
428        let num_leaves = schema.num_columns();
429
430        // Count how many leaves each root column has
431        let num_roots = schema.root_schema().get_fields().len();
432        let mut root_leaf_counts = vec![0usize; num_roots];
433        for leaf_idx in 0..num_leaves {
434            let root_idx = schema.get_column_root_idx(leaf_idx);
435            root_leaf_counts[root_idx] += 1;
436        }
437
438        // Keep only leaves whose root has exactly one leaf (non-nested) and is not a
439        // LIST. LIST is encoded as a wrapped logical type with a single leaf, e.g.
440        // https://github.com/apache/parquet-format/blob/master/LogicalTypes.md#lists
441        //
442        // ```text
443        // // List<String> (list non-null, elements nullable)
444        // required group my_list (LIST) {
445        //   repeated group list {
446        //     optional binary element (STRING);
447        //   }
448        // }
449        // ```
450        let mut included_leaves = Vec::new();
451        for leaf_idx in 0..num_leaves {
452            if self.leaf_included(leaf_idx) {
453                let root = schema.get_column_root(leaf_idx);
454                let root_idx = schema.get_column_root_idx(leaf_idx);
455                if root_leaf_counts[root_idx] == 1 && !root.is_list() {
456                    included_leaves.push(leaf_idx);
457                }
458            }
459        }
460
461        if included_leaves.is_empty() {
462            None
463        } else {
464            Some(ProjectionMask::leaves(schema, included_leaves))
465        }
466    }
467}
468
469/// Lookups up the parquet column by name
470///
471/// Returns the parquet column index and the corresponding arrow field
472pub fn parquet_column<'a>(
473    parquet_schema: &SchemaDescriptor,
474    arrow_schema: &'a Schema,
475    name: &str,
476) -> Option<(usize, &'a FieldRef)> {
477    let (root_idx, field) = arrow_schema.fields.find(name)?;
478    if field.data_type().is_nested() {
479        // Nested fields are not supported and require non-trivial logic
480        // to correctly walk the parquet schema accounting for the
481        // logical type rules - <https://github.com/apache/parquet-format/blob/master/LogicalTypes.md>
482        //
483        // For example a ListArray could correspond to anything from 1 to 3 levels
484        // in the parquet schema
485        return None;
486    }
487
488    // This could be made more efficient (#TBD)
489    let parquet_idx = (0..parquet_schema.columns().len())
490        .find(|x| parquet_schema.get_column_root_idx(*x) == root_idx)?;
491    Some((parquet_idx, field))
492}
493
494#[cfg(test)]
495mod test {
496    use crate::arrow::ArrowWriter;
497    use crate::file::metadata::{ParquetMetaData, ParquetMetaDataReader, ParquetMetaDataWriter};
498    use crate::file::properties::{EnabledStatistics, WriterProperties};
499    use crate::schema::parser::parse_message_type;
500    use crate::schema::types::SchemaDescriptor;
501    use arrow_array::{ArrayRef, Int32Array, RecordBatch};
502    use bytes::Bytes;
503    use std::sync::Arc;
504
505    use super::ProjectionMask;
506
507    #[test]
508    #[allow(deprecated)]
509    // Reproducer for https://github.com/apache/arrow-rs/issues/6464
510    fn test_metadata_read_write_partial_offset() {
511        let parquet_bytes = create_parquet_file();
512
513        // read the metadata from the file WITHOUT the page index structures
514        let original_metadata = ParquetMetaDataReader::new()
515            .parse_and_finish(&parquet_bytes)
516            .unwrap();
517
518        // this should error because the page indexes are not present, but have offsets specified
519        let metadata_bytes = metadata_to_bytes(&original_metadata);
520        let err = ParquetMetaDataReader::new()
521            .with_page_indexes(true) // there are no page indexes in the metadata
522            .parse_and_finish(&metadata_bytes)
523            .err()
524            .unwrap();
525        assert_eq!(
526            err.to_string(),
527            "EOF: Parquet file too small. Page index range 82..115 overlaps with file metadata 0..357"
528        );
529    }
530
531    #[test]
532    fn test_metadata_read_write_roundtrip() {
533        let parquet_bytes = create_parquet_file();
534
535        // read the metadata from the file
536        let original_metadata = ParquetMetaDataReader::new()
537            .parse_and_finish(&parquet_bytes)
538            .unwrap();
539
540        // read metadata back from the serialized bytes and ensure it is the same
541        let metadata_bytes = metadata_to_bytes(&original_metadata);
542        assert_ne!(
543            metadata_bytes.len(),
544            parquet_bytes.len(),
545            "metadata is subset of parquet"
546        );
547
548        let roundtrip_metadata = ParquetMetaDataReader::new()
549            .parse_and_finish(&metadata_bytes)
550            .unwrap();
551
552        assert_eq!(original_metadata, roundtrip_metadata);
553    }
554
555    #[test]
556    #[allow(deprecated)]
557    fn test_metadata_read_write_roundtrip_page_index() {
558        let parquet_bytes = create_parquet_file();
559
560        // read the metadata from the file including the page index structures
561        // (which are stored elsewhere in the footer)
562        let original_metadata = ParquetMetaDataReader::new()
563            .with_page_indexes(true)
564            .parse_and_finish(&parquet_bytes)
565            .unwrap();
566
567        // read metadata back from the serialized bytes and ensure it is the same
568        let metadata_bytes = metadata_to_bytes(&original_metadata);
569        let roundtrip_metadata = ParquetMetaDataReader::new()
570            .with_page_indexes(true)
571            .parse_and_finish(&metadata_bytes)
572            .unwrap();
573
574        // Need to normalize the metadata first to remove offsets in data
575        let original_metadata = normalize_locations(original_metadata);
576        let roundtrip_metadata = normalize_locations(roundtrip_metadata);
577        assert_eq!(
578            format!("{original_metadata:#?}"),
579            format!("{roundtrip_metadata:#?}")
580        );
581        assert_eq!(original_metadata, roundtrip_metadata);
582    }
583
584    /// Sets the page index offset locations in the metadata to `None`
585    ///
586    /// This is because the offsets are used to find the relative location of the index
587    /// structures, and thus differ depending on how the structures are stored.
588    fn normalize_locations(metadata: ParquetMetaData) -> ParquetMetaData {
589        let mut metadata_builder = metadata.into_builder();
590        for rg in metadata_builder.take_row_groups() {
591            let mut rg_builder = rg.into_builder();
592            for col in rg_builder.take_columns() {
593                rg_builder = rg_builder.add_column_metadata(
594                    col.into_builder()
595                        .set_offset_index_offset(None)
596                        .set_index_page_offset(None)
597                        .set_column_index_offset(None)
598                        .build()
599                        .unwrap(),
600                );
601            }
602            let rg = rg_builder.build().unwrap();
603            metadata_builder = metadata_builder.add_row_group(rg);
604        }
605        metadata_builder.build()
606    }
607
608    /// Write a parquet filed into an in memory buffer
609    fn create_parquet_file() -> Bytes {
610        let mut buf = vec![];
611        let data = vec![100, 200, 201, 300, 102, 33];
612        let array: ArrayRef = Arc::new(Int32Array::from(data));
613        let batch = RecordBatch::try_from_iter(vec![("id", array)]).unwrap();
614        let props = WriterProperties::builder()
615            .set_statistics_enabled(EnabledStatistics::Page)
616            .set_write_page_header_statistics(true)
617            .build();
618
619        let mut writer = ArrowWriter::try_new(&mut buf, batch.schema(), Some(props)).unwrap();
620        writer.write(&batch).unwrap();
621        writer.finish().unwrap();
622        drop(writer);
623
624        Bytes::from(buf)
625    }
626
627    /// Serializes `ParquetMetaData` into a memory buffer, using `ParquetMetadataWriter
628    fn metadata_to_bytes(metadata: &ParquetMetaData) -> Bytes {
629        let mut buf = vec![];
630        ParquetMetaDataWriter::new(&mut buf, metadata)
631            .finish()
632            .unwrap();
633        Bytes::from(buf)
634    }
635
636    #[test]
637    fn test_mask_from_column_names() {
638        let schema = parse_schema(
639            "
640            message test_schema {
641                OPTIONAL group a (MAP) {
642                    REPEATED group key_value {
643                        REQUIRED BYTE_ARRAY key (UTF8);
644                        OPTIONAL group value (MAP) {
645                            REPEATED group key_value {
646                                REQUIRED INT32 key;
647                                REQUIRED BOOLEAN value;
648                            }
649                        }
650                    }
651                }
652                REQUIRED INT32 b;
653                REQUIRED DOUBLE c;
654            }
655            ",
656        );
657
658        let mask = ProjectionMask::columns(&schema, ["foo", "bar"]);
659        assert_eq!(mask.mask.unwrap(), vec![false; 5]);
660
661        let mask = ProjectionMask::columns(&schema, []);
662        assert_eq!(mask.mask.unwrap(), vec![false; 5]);
663
664        let mask = ProjectionMask::columns(&schema, ["a", "c"]);
665        assert_eq!(mask.mask.unwrap(), [true, true, true, false, true]);
666
667        let mask = ProjectionMask::columns(&schema, ["a.key_value.key", "c"]);
668        assert_eq!(mask.mask.unwrap(), [true, false, false, false, true]);
669
670        let mask = ProjectionMask::columns(&schema, ["a.key_value.value", "b"]);
671        assert_eq!(mask.mask.unwrap(), [false, true, true, true, false]);
672
673        let schema = parse_schema(
674            "
675            message test_schema {
676                OPTIONAL group a (LIST) {
677                    REPEATED group list {
678                        OPTIONAL group element (LIST) {
679                            REPEATED group list {
680                                OPTIONAL group element (LIST) {
681                                    REPEATED group list {
682                                        OPTIONAL BYTE_ARRAY element (UTF8);
683                                    }
684                                }
685                            }
686                        }
687                    }
688                }
689                REQUIRED INT32 b;
690            }
691            ",
692        );
693
694        let mask = ProjectionMask::columns(&schema, ["a", "b"]);
695        assert_eq!(mask.mask.unwrap(), [true, true]);
696
697        let mask = ProjectionMask::columns(&schema, ["a.list.element", "b"]);
698        assert_eq!(mask.mask.unwrap(), [true, true]);
699
700        let mask =
701            ProjectionMask::columns(&schema, ["a.list.element.list.element.list.element", "b"]);
702        assert_eq!(mask.mask.unwrap(), [true, true]);
703
704        let mask = ProjectionMask::columns(&schema, ["b"]);
705        assert_eq!(mask.mask.unwrap(), [false, true]);
706
707        let schema = parse_schema(
708            "
709            message test_schema {
710                OPTIONAL INT32 a;
711                OPTIONAL INT32 b;
712                OPTIONAL INT32 c;
713                OPTIONAL INT32 d;
714                OPTIONAL INT32 e;
715            }
716            ",
717        );
718
719        let mask = ProjectionMask::columns(&schema, ["a", "b"]);
720        assert_eq!(mask.mask.unwrap(), [true, true, false, false, false]);
721
722        let mask = ProjectionMask::columns(&schema, ["d", "b", "d"]);
723        assert_eq!(mask.mask.unwrap(), [false, true, false, true, false]);
724
725        let schema = parse_schema(
726            "
727            message test_schema {
728                OPTIONAL INT32 a;
729                OPTIONAL INT32 b;
730                OPTIONAL INT32 a;
731                OPTIONAL INT32 d;
732                OPTIONAL INT32 e;
733            }
734            ",
735        );
736
737        let mask = ProjectionMask::columns(&schema, ["a", "e"]);
738        assert_eq!(mask.mask.unwrap(), [true, false, true, false, true]);
739
740        let schema = parse_schema(
741            "
742            message test_schema {
743                OPTIONAL INT32 a;
744                OPTIONAL INT32 aa;
745            }
746            ",
747        );
748
749        let mask = ProjectionMask::columns(&schema, ["a"]);
750        assert_eq!(mask.mask.unwrap(), [true, false]);
751    }
752
753    #[test]
754    fn test_projection_mask_union() {
755        let mut mask1 = ProjectionMask {
756            mask: Some(vec![true, false, true]),
757        };
758        let mask2 = ProjectionMask {
759            mask: Some(vec![false, true, true]),
760        };
761        mask1.union(&mask2);
762        assert_eq!(mask1.mask, Some(vec![true, true, true]));
763
764        let mut mask1 = ProjectionMask { mask: None };
765        let mask2 = ProjectionMask {
766            mask: Some(vec![false, true, true]),
767        };
768        mask1.union(&mask2);
769        assert_eq!(mask1.mask, None);
770
771        let mut mask1 = ProjectionMask {
772            mask: Some(vec![true, false, true]),
773        };
774        let mask2 = ProjectionMask { mask: None };
775        mask1.union(&mask2);
776        assert_eq!(mask1.mask, None);
777
778        let mut mask1 = ProjectionMask { mask: None };
779        let mask2 = ProjectionMask { mask: None };
780        mask1.union(&mask2);
781        assert_eq!(mask1.mask, None);
782    }
783
784    #[test]
785    fn test_projection_mask_intersect() {
786        let mut mask1 = ProjectionMask {
787            mask: Some(vec![true, false, true]),
788        };
789        let mask2 = ProjectionMask {
790            mask: Some(vec![false, true, true]),
791        };
792        mask1.intersect(&mask2);
793        assert_eq!(mask1.mask, Some(vec![false, false, true]));
794
795        let mut mask1 = ProjectionMask { mask: None };
796        let mask2 = ProjectionMask {
797            mask: Some(vec![false, true, true]),
798        };
799        mask1.intersect(&mask2);
800        assert_eq!(mask1.mask, Some(vec![false, true, true]));
801
802        let mut mask1 = ProjectionMask {
803            mask: Some(vec![true, false, true]),
804        };
805        let mask2 = ProjectionMask { mask: None };
806        mask1.intersect(&mask2);
807        assert_eq!(mask1.mask, Some(vec![true, false, true]));
808
809        let mut mask1 = ProjectionMask { mask: None };
810        let mask2 = ProjectionMask { mask: None };
811        mask1.intersect(&mask2);
812        assert_eq!(mask1.mask, None);
813    }
814
815    #[test]
816    fn test_projection_mask_without_nested_no_nested() {
817        // Schema with no nested types
818        let schema = parse_schema(
819            "
820            message test_schema {
821                OPTIONAL INT32 a;
822                OPTIONAL INT32 b;
823                REQUIRED DOUBLE d;
824            }
825            ",
826        );
827
828        let mask = ProjectionMask::all();
829        // All columns are non-nested, but without_nested_types returns a new mask
830        assert_eq!(
831            Some(ProjectionMask::leaves(&schema, [0, 1, 2])),
832            mask.without_nested_types(&schema)
833        );
834
835        // select b, c
836        let mask = ProjectionMask::leaves(&schema, [1, 2]);
837        assert_eq!(Some(mask.clone()), mask.without_nested_types(&schema));
838    }
839
840    #[test]
841    fn test_projection_mask_without_nested_nested() {
842        // Schema with nested types (structs)
843        let schema = parse_schema(
844            "
845            message test_schema {
846                OPTIONAL INT32 a;
847                OPTIONAL group b {
848                    REQUIRED INT32 b1;
849                    OPTIONAL INT64 b2;
850                }
851                OPTIONAL group c (LIST) {
852                    REPEATED group list {
853                        OPTIONAL INT32 element;
854                    }
855                }
856                REQUIRED DOUBLE d;
857            }
858            ",
859        );
860
861        // all leaves --> a, d
862        let mask = ProjectionMask::all();
863        assert_eq!(
864            Some(ProjectionMask::leaves(&schema, [0, 4])),
865            mask.without_nested_types(&schema)
866        );
867
868        // b1 --> empty (it is nested)
869        let mask = ProjectionMask::leaves(&schema, [1]);
870        assert_eq!(None, mask.without_nested_types(&schema));
871
872        // b2, d --> d
873        let mask = ProjectionMask::leaves(&schema, [1, 4]);
874        assert_eq!(
875            Some(ProjectionMask::leaves(&schema, [4])),
876            mask.without_nested_types(&schema)
877        );
878
879        // element --> empty (it is nested)
880        let mask = ProjectionMask::leaves(&schema, [3]);
881        assert_eq!(None, mask.without_nested_types(&schema));
882    }
883
884    #[test]
885    fn test_projection_mask_without_nested_map_only() {
886        // Example from https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
887        let schema = parse_schema(
888            "
889            message test_schema {
890                required group my_map (MAP) {
891                    repeated group key_value {
892                        required binary key (STRING);
893                        optional int32 value;
894                    }
895                }
896            }
897            ",
898        );
899
900        let mask = ProjectionMask::all();
901        assert_eq!(None, mask.without_nested_types(&schema));
902
903        // key --> empty (it is nested)
904        let mask = ProjectionMask::leaves(&schema, [0]);
905        assert_eq!(None, mask.without_nested_types(&schema));
906
907        // value --> empty (it is nested)
908        let mask = ProjectionMask::leaves(&schema, [1]);
909        assert_eq!(None, mask.without_nested_types(&schema));
910    }
911
912    #[test]
913    fn test_projection_mask_without_nested_map_with_non_nested() {
914        // Example from https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
915        // with an additional non-nested field
916        let schema = parse_schema(
917            "
918            message test_schema {
919                REQUIRED INT32 a;
920                required group my_map (MAP) {
921                    repeated group key_value {
922                        required binary key (STRING);
923                        optional int32 value;
924                    }
925                }
926                REQUIRED INT32 b;
927            }
928            ",
929        );
930
931        // all leaves --> a, b which are the only non nested ones
932        let mask = ProjectionMask::all();
933        assert_eq!(
934            Some(ProjectionMask::leaves(&schema, [0, 3])),
935            mask.without_nested_types(&schema)
936        );
937
938        // key, value, b --> b (the only non-nested one)
939        let mask = ProjectionMask::leaves(&schema, [1, 2, 3]);
940        assert_eq!(
941            Some(ProjectionMask::leaves(&schema, [3])),
942            mask.without_nested_types(&schema)
943        );
944
945        // key, value --> NONE
946        let mask = ProjectionMask::leaves(&schema, [1, 2]);
947        assert_eq!(None, mask.without_nested_types(&schema));
948    }
949
950    #[test]
951    fn test_projection_mask_without_nested_deeply_nested() {
952        // Map of Maps
953        let schema = parse_schema(
954            "
955            message test_schema {
956                OPTIONAL group a (MAP) {
957                    REPEATED group key_value {
958                        REQUIRED BYTE_ARRAY key (UTF8);
959                        OPTIONAL group value (MAP) {
960                            REPEATED group key_value {
961                                REQUIRED INT32 key;
962                                REQUIRED BOOLEAN value;
963                            }
964                        }
965                    }
966                }
967                REQUIRED INT32 b;
968                REQUIRED DOUBLE c;
969            ",
970        );
971
972        let mask = ProjectionMask::all();
973        assert_eq!(
974            Some(ProjectionMask::leaves(&schema, [3, 4])),
975            mask.without_nested_types(&schema)
976        );
977
978        // (first) key, c --> c (the only non-nested one)
979        let mask = ProjectionMask::leaves(&schema, [0, 4]);
980        assert_eq!(
981            Some(ProjectionMask::leaves(&schema, [4])),
982            mask.without_nested_types(&schema)
983        );
984
985        // (second) key, value, b --> b (the only non-nested one)
986        let mask = ProjectionMask::leaves(&schema, [1, 2, 3]);
987        assert_eq!(
988            Some(ProjectionMask::leaves(&schema, [3])),
989            mask.without_nested_types(&schema)
990        );
991
992        // key --> NONE (the only non-nested one)
993        let mask = ProjectionMask::leaves(&schema, [0]);
994        assert_eq!(None, mask.without_nested_types(&schema));
995    }
996
997    #[test]
998    fn test_projection_mask_without_nested_list() {
999        // Example from https://github.com/apache/parquet-format/blob/master/LogicalTypes.md#lists
1000        let schema = parse_schema(
1001            "
1002            message test_schema {
1003                required group my_list (LIST) {
1004                    repeated group list {
1005                        optional binary element (STRING);
1006                    }
1007                }
1008                REQUIRED INT32 b;
1009            }
1010            ",
1011        );
1012
1013        let mask = ProjectionMask::all();
1014        assert_eq!(
1015            Some(ProjectionMask::leaves(&schema, [1])),
1016            mask.without_nested_types(&schema),
1017        );
1018
1019        // element --> empty (it is nested)
1020        let mask = ProjectionMask::leaves(&schema, [0]);
1021        assert_eq!(None, mask.without_nested_types(&schema));
1022
1023        // element, b --> b (it is nested)
1024        let mask = ProjectionMask::leaves(&schema, [0, 1]);
1025        assert_eq!(
1026            Some(ProjectionMask::leaves(&schema, [1])),
1027            mask.without_nested_types(&schema),
1028        );
1029    }
1030
1031    /// Converts a schema string into a `SchemaDescriptor`
1032    fn parse_schema(schema: &str) -> SchemaDescriptor {
1033        let parquet_group_type = parse_message_type(schema).unwrap();
1034        SchemaDescriptor::new(Arc::new(parquet_group_type))
1035    }
1036}