parquet/arrow/async_writer/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Contains async writer which writes arrow data into parquet data.
//!
//! Provides `async` API for writing [`RecordBatch`]es as parquet files. The API is
//! similar to the [`sync` API](crate::arrow::arrow_writer::ArrowWriter), so please
//! read the documentation there before using this API.
//!
//! Here is an example for using [`AsyncArrowWriter`]:
//!
//! ```
//! # #[tokio::main(flavor="current_thread")]
//! # async fn main() {
//! #
//! # use std::sync::Arc;
//! # use arrow_array::{ArrayRef, Int64Array, RecordBatch, RecordBatchReader};
//! # use bytes::Bytes;
//! # use parquet::arrow::{AsyncArrowWriter, arrow_reader::ParquetRecordBatchReaderBuilder};
//! #
//! let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
//! let to_write = RecordBatch::try_from_iter([("col", col)]).unwrap();
//!
//! let mut buffer = Vec::new();
//! let mut writer = AsyncArrowWriter::try_new(&mut buffer, to_write.schema(), None).unwrap();
//! writer.write(&to_write).await.unwrap();
//! writer.close().await.unwrap();
//!
//! let buffer = Bytes::from(buffer);
//! let mut reader = ParquetRecordBatchReaderBuilder::try_new(buffer.clone())
//! .unwrap()
//! .build()
//! .unwrap();
//! let read = reader.next().unwrap().unwrap();
//!
//! assert_eq!(to_write, read);
//! # }
//! ```
//!
//! [`object_store`] provides it's native implementation of [`AsyncFileWriter`] by [`ParquetObjectWriter`].
#[cfg(feature = "object_store")]
mod store;
#[cfg(feature = "object_store")]
pub use store::*;
use crate::{
arrow::arrow_writer::ArrowWriterOptions,
arrow::ArrowWriter,
errors::{ParquetError, Result},
file::{metadata::RowGroupMetaData, properties::WriterProperties},
format::{FileMetaData, KeyValue},
};
use arrow_array::RecordBatch;
use arrow_schema::SchemaRef;
use bytes::Bytes;
use futures::future::BoxFuture;
use futures::FutureExt;
use std::mem;
use tokio::io::{AsyncWrite, AsyncWriteExt};
/// The asynchronous interface used by [`AsyncArrowWriter`] to write parquet files.
pub trait AsyncFileWriter: Send {
/// Write the provided bytes to the underlying writer
///
/// The underlying writer CAN decide to buffer the data or write it immediately.
/// This design allows the writer implementer to control the buffering and I/O scheduling.
///
/// The underlying writer MAY implement retry logic to prevent breaking users write process.
fn write(&mut self, bs: Bytes) -> BoxFuture<'_, Result<()>>;
/// Flush any buffered data to the underlying writer and finish writing process.
///
/// After `complete` returns `Ok(())`, caller SHOULD not call write again.
fn complete(&mut self) -> BoxFuture<'_, Result<()>>;
}
impl AsyncFileWriter for Box<dyn AsyncFileWriter> {
fn write(&mut self, bs: Bytes) -> BoxFuture<'_, Result<()>> {
self.as_mut().write(bs)
}
fn complete(&mut self) -> BoxFuture<'_, Result<()>> {
self.as_mut().complete()
}
}
impl<T: AsyncWrite + Unpin + Send> AsyncFileWriter for T {
fn write(&mut self, bs: Bytes) -> BoxFuture<'_, Result<()>> {
async move {
self.write_all(&bs).await?;
Ok(())
}
.boxed()
}
fn complete(&mut self) -> BoxFuture<'_, Result<()>> {
async move {
self.flush().await?;
self.shutdown().await?;
Ok(())
}
.boxed()
}
}
/// Encodes [`RecordBatch`] to parquet, outputting to an [`AsyncFileWriter`]
///
/// ## Memory Usage
///
/// This writer eagerly writes data as soon as possible to the underlying [`AsyncFileWriter`],
/// permitting fine-grained control over buffering and I/O scheduling. However, the columnar
/// nature of parquet forces data for an entire row group to be buffered in memory, before
/// it can be flushed. Depending on the data and the configured row group size, this buffering
/// may be substantial.
///
/// Memory usage can be limited by calling [`Self::flush`] to flush the in progress row group,
/// although this will likely increase overall file size and reduce query performance.
/// See [ArrowWriter] for more information.
///
/// ```no_run
/// # use tokio::fs::File;
/// # use arrow_array::RecordBatch;
/// # use parquet::arrow::AsyncArrowWriter;
/// # async fn test() {
/// let mut writer: AsyncArrowWriter<File> = todo!();
/// let batch: RecordBatch = todo!();
/// writer.write(&batch).await.unwrap();
/// // Trigger an early flush if buffered size exceeds 1_000_000
/// if writer.in_progress_size() > 1_000_000 {
/// writer.flush().await.unwrap()
/// }
/// # }
/// ```
pub struct AsyncArrowWriter<W> {
/// Underlying sync writer
sync_writer: ArrowWriter<Vec<u8>>,
/// Async writer provided by caller
async_writer: W,
}
impl<W: AsyncFileWriter> AsyncArrowWriter<W> {
/// Try to create a new Async Arrow Writer
pub fn try_new(
writer: W,
arrow_schema: SchemaRef,
props: Option<WriterProperties>,
) -> Result<Self> {
let options = ArrowWriterOptions::new().with_properties(props.unwrap_or_default());
Self::try_new_with_options(writer, arrow_schema, options)
}
/// Try to create a new Async Arrow Writer with [`ArrowWriterOptions`]
pub fn try_new_with_options(
writer: W,
arrow_schema: SchemaRef,
options: ArrowWriterOptions,
) -> Result<Self> {
let sync_writer = ArrowWriter::try_new_with_options(Vec::new(), arrow_schema, options)?;
Ok(Self {
sync_writer,
async_writer: writer,
})
}
/// Returns metadata for any flushed row groups
pub fn flushed_row_groups(&self) -> &[RowGroupMetaData] {
self.sync_writer.flushed_row_groups()
}
/// Estimated memory usage, in bytes, of this `ArrowWriter`
///
/// See [ArrowWriter::memory_size] for more information.
pub fn memory_size(&self) -> usize {
self.sync_writer.memory_size()
}
/// Anticipated encoded size of the in progress row group.
///
/// See [ArrowWriter::memory_size] for more information.
pub fn in_progress_size(&self) -> usize {
self.sync_writer.in_progress_size()
}
/// Returns the number of rows buffered in the in progress row group
pub fn in_progress_rows(&self) -> usize {
self.sync_writer.in_progress_rows()
}
/// Returns the number of bytes written by this instance
pub fn bytes_written(&self) -> usize {
self.sync_writer.bytes_written()
}
/// Enqueues the provided `RecordBatch` to be written
///
/// After every sync write by the inner [ArrowWriter], the inner buffer will be
/// checked and flush if at least half full
pub async fn write(&mut self, batch: &RecordBatch) -> Result<()> {
let before = self.sync_writer.flushed_row_groups().len();
self.sync_writer.write(batch)?;
if before != self.sync_writer.flushed_row_groups().len() {
self.do_write().await?;
}
Ok(())
}
/// Flushes all buffered rows into a new row group
pub async fn flush(&mut self) -> Result<()> {
self.sync_writer.flush()?;
self.do_write().await?;
Ok(())
}
/// Append [`KeyValue`] metadata in addition to those in [`WriterProperties`]
///
/// This method allows to append metadata after [`RecordBatch`]es are written.
pub fn append_key_value_metadata(&mut self, kv_metadata: KeyValue) {
self.sync_writer.append_key_value_metadata(kv_metadata);
}
/// Close and finalize the writer.
///
/// All the data in the inner buffer will be force flushed.
///
/// Unlike [`Self::close`] this does not consume self
///
/// Attempting to write after calling finish will result in an error
pub async fn finish(&mut self) -> Result<FileMetaData> {
let metadata = self.sync_writer.finish()?;
// Force to flush the remaining data.
self.do_write().await?;
self.async_writer.complete().await?;
Ok(metadata)
}
/// Close and finalize the writer.
///
/// All the data in the inner buffer will be force flushed.
pub async fn close(mut self) -> Result<FileMetaData> {
self.finish().await
}
/// Flush the data written by `sync_writer` into the `async_writer`
///
/// # Notes
///
/// This method will take the inner buffer from the `sync_writer` and write it into the
/// async writer. After the write, the inner buffer will be empty.
async fn do_write(&mut self) -> Result<()> {
let buffer = mem::take(self.sync_writer.inner_mut());
self.async_writer
.write(Bytes::from(buffer))
.await
.map_err(|e| ParquetError::External(Box::new(e)))?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use arrow::datatypes::{DataType, Field, Schema};
use arrow_array::{ArrayRef, BinaryArray, Int32Array, Int64Array, RecordBatchReader};
use bytes::Bytes;
use std::sync::Arc;
use tokio::pin;
use crate::arrow::arrow_reader::{ParquetRecordBatchReader, ParquetRecordBatchReaderBuilder};
use super::*;
fn get_test_reader() -> ParquetRecordBatchReader {
let testdata = arrow::util::test_util::parquet_test_data();
// This test file is large enough to generate multiple row groups.
let path = format!("{}/alltypes_tiny_pages_plain.parquet", testdata);
let original_data = Bytes::from(std::fs::read(path).unwrap());
ParquetRecordBatchReaderBuilder::try_new(original_data)
.unwrap()
.build()
.unwrap()
}
#[tokio::test]
async fn test_async_writer() {
let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
let to_write = RecordBatch::try_from_iter([("col", col)]).unwrap();
let mut buffer = Vec::new();
let mut writer = AsyncArrowWriter::try_new(&mut buffer, to_write.schema(), None).unwrap();
writer.write(&to_write).await.unwrap();
writer.close().await.unwrap();
let buffer = Bytes::from(buffer);
let mut reader = ParquetRecordBatchReaderBuilder::try_new(buffer)
.unwrap()
.build()
.unwrap();
let read = reader.next().unwrap().unwrap();
assert_eq!(to_write, read);
}
// Read the data from the test file and write it by the async writer and sync writer.
// And then compares the results of the two writers.
#[tokio::test]
async fn test_async_writer_with_sync_writer() {
let reader = get_test_reader();
let write_props = WriterProperties::builder()
.set_max_row_group_size(64)
.build();
let mut async_buffer = Vec::new();
let mut async_writer = AsyncArrowWriter::try_new(
&mut async_buffer,
reader.schema(),
Some(write_props.clone()),
)
.unwrap();
let mut sync_buffer = Vec::new();
let mut sync_writer =
ArrowWriter::try_new(&mut sync_buffer, reader.schema(), Some(write_props)).unwrap();
for record_batch in reader {
let record_batch = record_batch.unwrap();
async_writer.write(&record_batch).await.unwrap();
sync_writer.write(&record_batch).unwrap();
}
sync_writer.close().unwrap();
async_writer.close().await.unwrap();
assert_eq!(sync_buffer, async_buffer);
}
struct TestAsyncSink {
sink: Vec<u8>,
min_accept_bytes: usize,
expect_total_bytes: usize,
}
impl AsyncWrite for TestAsyncSink {
fn poll_write(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<std::result::Result<usize, std::io::Error>> {
let written_bytes = self.sink.len();
if written_bytes + buf.len() < self.expect_total_bytes {
assert!(buf.len() >= self.min_accept_bytes);
} else {
assert_eq!(written_bytes + buf.len(), self.expect_total_bytes);
}
let sink = &mut self.get_mut().sink;
pin!(sink);
sink.poll_write(cx, buf)
}
fn poll_flush(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<std::result::Result<(), std::io::Error>> {
let sink = &mut self.get_mut().sink;
pin!(sink);
sink.poll_flush(cx)
}
fn poll_shutdown(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<std::result::Result<(), std::io::Error>> {
let sink = &mut self.get_mut().sink;
pin!(sink);
sink.poll_shutdown(cx)
}
}
#[tokio::test]
async fn test_async_writer_bytes_written() {
let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
let to_write = RecordBatch::try_from_iter([("col", col)]).unwrap();
let temp = tempfile::tempfile().unwrap();
let file = tokio::fs::File::from_std(temp.try_clone().unwrap());
let mut writer =
AsyncArrowWriter::try_new(file.try_clone().await.unwrap(), to_write.schema(), None)
.unwrap();
writer.write(&to_write).await.unwrap();
let _metadata = writer.finish().await.unwrap();
// After `finish` this should include the metadata and footer
let reported = writer.bytes_written();
// Get actual size from file metadata
let actual = file.metadata().await.unwrap().len() as usize;
assert_eq!(reported, actual);
}
#[tokio::test]
async fn test_async_writer_file() {
let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
let col2 = Arc::new(BinaryArray::from_iter_values(vec![
vec![0; 500000],
vec![0; 500000],
vec![0; 500000],
])) as ArrayRef;
let to_write = RecordBatch::try_from_iter([("col", col), ("col2", col2)]).unwrap();
let temp = tempfile::tempfile().unwrap();
let file = tokio::fs::File::from_std(temp.try_clone().unwrap());
let mut writer = AsyncArrowWriter::try_new(file, to_write.schema(), None).unwrap();
writer.write(&to_write).await.unwrap();
writer.close().await.unwrap();
let mut reader = ParquetRecordBatchReaderBuilder::try_new(temp)
.unwrap()
.build()
.unwrap();
let read = reader.next().unwrap().unwrap();
assert_eq!(to_write, read);
}
#[tokio::test]
async fn in_progress_accounting() {
// define schema
let schema = Schema::new(vec![Field::new("a", DataType::Int32, false)]);
// create some data
let a = Int32Array::from_value(0_i32, 512);
// build a record batch
let batch = RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a)]).unwrap();
let temp = tempfile::tempfile().unwrap();
let file = tokio::fs::File::from_std(temp.try_clone().unwrap());
let mut writer = AsyncArrowWriter::try_new(file, batch.schema(), None).unwrap();
// starts empty
assert_eq!(writer.in_progress_size(), 0);
assert_eq!(writer.in_progress_rows(), 0);
assert_eq!(writer.bytes_written(), 4); // Initial Parquet header
writer.write(&batch).await.unwrap();
// updated on write
let initial_size = writer.in_progress_size();
assert!(initial_size > 0);
assert_eq!(writer.in_progress_rows(), batch.num_rows());
let initial_memory = writer.memory_size();
// memory estimate is larger than estimated encoded size
assert!(
initial_size <= initial_memory,
"{initial_size} <= {initial_memory}"
);
// updated on second write
writer.write(&batch).await.unwrap();
assert!(writer.in_progress_size() > initial_size);
assert_eq!(writer.in_progress_rows(), batch.num_rows() * 2);
assert!(writer.memory_size() > initial_memory);
assert!(
writer.in_progress_size() <= writer.memory_size(),
"in_progress_size {} <= memory_size {}",
writer.in_progress_size(),
writer.memory_size()
);
// in progress tracking is cleared, but the overall data written is updated
let pre_flush_bytes_written = writer.bytes_written();
writer.flush().await.unwrap();
assert_eq!(writer.in_progress_size(), 0);
assert_eq!(writer.memory_size(), 0);
assert_eq!(writer.in_progress_rows(), 0);
assert!(writer.bytes_written() > pre_flush_bytes_written);
writer.close().await.unwrap();
}
}