parquet/arrow/arrow_reader/
statistics.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`StatisticsConverter`] to convert statistics in parquet format to arrow [`ArrayRef`].

/// Notice that all the corresponding tests are in
/// `arrow-rs/parquet/tests/arrow_reader/statistics.rs`.
use crate::arrow::buffer::bit_util::sign_extend_be;
use crate::arrow::parquet_column;
use crate::basic::Type as PhysicalType;
use crate::data_type::{ByteArray, FixedLenByteArray};
use crate::errors::{ParquetError, Result};
use crate::file::metadata::{ParquetColumnIndex, ParquetOffsetIndex, RowGroupMetaData};
use crate::file::page_index::index::{Index, PageIndex};
use crate::file::statistics::Statistics as ParquetStatistics;
use crate::schema::types::SchemaDescriptor;
use arrow_array::builder::{
    BinaryViewBuilder, BooleanBuilder, FixedSizeBinaryBuilder, LargeStringBuilder, StringBuilder,
    StringViewBuilder,
};
use arrow_array::{
    new_empty_array, new_null_array, ArrayRef, BinaryArray, BooleanArray, Date32Array, Date64Array,
    Decimal128Array, Decimal256Array, Float16Array, Float32Array, Float64Array, Int16Array,
    Int32Array, Int64Array, Int8Array, LargeBinaryArray, Time32MillisecondArray, Time32SecondArray,
    Time64MicrosecondArray, Time64NanosecondArray, TimestampMicrosecondArray,
    TimestampMillisecondArray, TimestampNanosecondArray, TimestampSecondArray, UInt16Array,
    UInt32Array, UInt64Array, UInt8Array,
};
use arrow_buffer::i256;
use arrow_schema::{DataType, Field, Schema, TimeUnit};
use half::f16;
use paste::paste;
use std::sync::Arc;

// Convert the bytes array to i128.
// The endian of the input bytes array must be big-endian.
pub(crate) fn from_bytes_to_i128(b: &[u8]) -> i128 {
    // The bytes array are from parquet file and must be the big-endian.
    // The endian is defined by parquet format, and the reference document
    // https://github.com/apache/parquet-format/blob/54e53e5d7794d383529dd30746378f19a12afd58/src/main/thrift/parquet.thrift#L66
    i128::from_be_bytes(sign_extend_be::<16>(b))
}

// Convert the bytes array to i256.
// The endian of the input bytes array must be big-endian.
pub(crate) fn from_bytes_to_i256(b: &[u8]) -> i256 {
    i256::from_be_bytes(sign_extend_be::<32>(b))
}

// Convert the bytes array to f16
pub(crate) fn from_bytes_to_f16(b: &[u8]) -> Option<f16> {
    match b {
        [low, high] => Some(f16::from_be_bytes([*high, *low])),
        _ => None,
    }
}

/// Define an adapter iterator for extracting statistics from an iterator of
/// `ParquetStatistics`
///
///
/// Handles checking if the statistics are present and valid with the correct type.
///
/// Parameters:
/// * `$iterator_type` is the name of the iterator type (e.g. `MinBooleanStatsIterator`)
/// * `$func` is the function to call to get the value (e.g. `min` or `max`)
/// * `$parquet_statistics_type` is the type of the statistics (e.g. `ParquetStatistics::Boolean`)
/// * `$stat_value_type` is the type of the statistics value (e.g. `bool`)
macro_rules! make_stats_iterator {
    ($iterator_type:ident, $func:ident, $parquet_statistics_type:path, $stat_value_type:ty) => {
        /// Maps an iterator of `ParquetStatistics` into an iterator of
        /// `&$stat_value_type``
        ///
        /// Yielded elements:
        /// * Some(stats) if valid
        /// * None if the statistics are not present, not valid, or not $stat_value_type
        struct $iterator_type<'a, I>
        where
            I: Iterator<Item = Option<&'a ParquetStatistics>>,
        {
            iter: I,
        }

        impl<'a, I> $iterator_type<'a, I>
        where
            I: Iterator<Item = Option<&'a ParquetStatistics>>,
        {
            /// Create a new iterator to extract the statistics
            fn new(iter: I) -> Self {
                Self { iter }
            }
        }

        /// Implement the Iterator trait for the iterator
        impl<'a, I> Iterator for $iterator_type<'a, I>
        where
            I: Iterator<Item = Option<&'a ParquetStatistics>>,
        {
            type Item = Option<&'a $stat_value_type>;

            /// return the next statistics value
            fn next(&mut self) -> Option<Self::Item> {
                let next = self.iter.next();
                next.map(|x| {
                    x.and_then(|stats| match stats {
                        $parquet_statistics_type(s) => s.$func(),
                        _ => None,
                    })
                })
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }
    };
}

make_stats_iterator!(
    MinBooleanStatsIterator,
    min_opt,
    ParquetStatistics::Boolean,
    bool
);
make_stats_iterator!(
    MaxBooleanStatsIterator,
    max_opt,
    ParquetStatistics::Boolean,
    bool
);
make_stats_iterator!(
    MinInt32StatsIterator,
    min_opt,
    ParquetStatistics::Int32,
    i32
);
make_stats_iterator!(
    MaxInt32StatsIterator,
    max_opt,
    ParquetStatistics::Int32,
    i32
);
make_stats_iterator!(
    MinInt64StatsIterator,
    min_opt,
    ParquetStatistics::Int64,
    i64
);
make_stats_iterator!(
    MaxInt64StatsIterator,
    max_opt,
    ParquetStatistics::Int64,
    i64
);
make_stats_iterator!(
    MinFloatStatsIterator,
    min_opt,
    ParquetStatistics::Float,
    f32
);
make_stats_iterator!(
    MaxFloatStatsIterator,
    max_opt,
    ParquetStatistics::Float,
    f32
);
make_stats_iterator!(
    MinDoubleStatsIterator,
    min_opt,
    ParquetStatistics::Double,
    f64
);
make_stats_iterator!(
    MaxDoubleStatsIterator,
    max_opt,
    ParquetStatistics::Double,
    f64
);
make_stats_iterator!(
    MinByteArrayStatsIterator,
    min_bytes_opt,
    ParquetStatistics::ByteArray,
    [u8]
);
make_stats_iterator!(
    MaxByteArrayStatsIterator,
    max_bytes_opt,
    ParquetStatistics::ByteArray,
    [u8]
);
make_stats_iterator!(
    MinFixedLenByteArrayStatsIterator,
    min_bytes_opt,
    ParquetStatistics::FixedLenByteArray,
    [u8]
);
make_stats_iterator!(
    MaxFixedLenByteArrayStatsIterator,
    max_bytes_opt,
    ParquetStatistics::FixedLenByteArray,
    [u8]
);

/// Special iterator adapter for extracting i128 values from from an iterator of
/// `ParquetStatistics`
///
/// Handles checking if the statistics are present and valid with the correct type.
///
/// Depending on the parquet file, the statistics for `Decimal128` can be stored as
/// `Int32`, `Int64` or `ByteArray` or `FixedSizeByteArray` :mindblown:
///
/// This iterator handles all cases, extracting the values
/// and converting it to `stat_value_type`.
///
/// Parameters:
/// * `$iterator_type` is the name of the iterator type (e.g. `MinBooleanStatsIterator`)
/// * `$func` is the function to call to get the value (e.g. `min` or `max`)
/// * `$bytes_func` is the function to call to get the value as bytes (e.g. `min_bytes` or `max_bytes`)
/// * `$stat_value_type` is the type of the statistics value (e.g. `i128`)
/// * `convert_func` is the function to convert the bytes to stats value (e.g. `from_bytes_to_i128`)
macro_rules! make_decimal_stats_iterator {
    ($iterator_type:ident, $func:ident, $bytes_func:ident, $stat_value_type:ident, $convert_func: ident) => {
        struct $iterator_type<'a, I>
        where
            I: Iterator<Item = Option<&'a ParquetStatistics>>,
        {
            iter: I,
        }

        impl<'a, I> $iterator_type<'a, I>
        where
            I: Iterator<Item = Option<&'a ParquetStatistics>>,
        {
            fn new(iter: I) -> Self {
                Self { iter }
            }
        }

        impl<'a, I> Iterator for $iterator_type<'a, I>
        where
            I: Iterator<Item = Option<&'a ParquetStatistics>>,
        {
            type Item = Option<$stat_value_type>;

            fn next(&mut self) -> Option<Self::Item> {
                let next = self.iter.next();
                next.map(|x| {
                    x.and_then(|stats| match stats {
                        ParquetStatistics::Int32(s) => {
                            s.$func().map(|x| $stat_value_type::from(*x))
                        }
                        ParquetStatistics::Int64(s) => {
                            s.$func().map(|x| $stat_value_type::from(*x))
                        }
                        ParquetStatistics::ByteArray(s) => s.$bytes_func().map($convert_func),
                        ParquetStatistics::FixedLenByteArray(s) => {
                            s.$bytes_func().map($convert_func)
                        }
                        _ => None,
                    })
                })
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }
    };
}

make_decimal_stats_iterator!(
    MinDecimal128StatsIterator,
    min_opt,
    min_bytes_opt,
    i128,
    from_bytes_to_i128
);
make_decimal_stats_iterator!(
    MaxDecimal128StatsIterator,
    max_opt,
    max_bytes_opt,
    i128,
    from_bytes_to_i128
);
make_decimal_stats_iterator!(
    MinDecimal256StatsIterator,
    min_opt,
    min_bytes_opt,
    i256,
    from_bytes_to_i256
);
make_decimal_stats_iterator!(
    MaxDecimal256StatsIterator,
    max_opt,
    max_bytes_opt,
    i256,
    from_bytes_to_i256
);

/// Special macro to combine the statistics iterators for min and max using the [`mod@paste`] macro.
/// This is used to avoid repeating the same code for min and max statistics extractions
///
/// Parameters:
/// stat_type_prefix: The prefix of the statistics iterator type (e.g. `Min` or `Max`)
/// data_type: The data type of the statistics (e.g. `DataType::Int32`)
/// iterator: The iterator of [`ParquetStatistics`] to extract the statistics from.
macro_rules! get_statistics {
    ($stat_type_prefix: ident, $data_type: ident, $iterator: ident, $physical_type: ident) => {
        paste! {
        match $data_type {
            DataType::Boolean => Ok(Arc::new(BooleanArray::from_iter(
                [<$stat_type_prefix BooleanStatsIterator>]::new($iterator).map(|x| x.copied()),
            ))),
            DataType::Int8 => Ok(Arc::new(Int8Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| {
                    x.and_then(|x| i8::try_from(*x).ok())
                }),
            ))),
            DataType::Int16 => Ok(Arc::new(Int16Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| {
                    x.and_then(|x| i16::try_from(*x).ok())
                }),
            ))),
            DataType::Int32 => Ok(Arc::new(Int32Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| x.copied()),
            ))),
            DataType::Int64 => Ok(Arc::new(Int64Array::from_iter(
                [<$stat_type_prefix Int64StatsIterator>]::new($iterator).map(|x| x.copied()),
            ))),
            DataType::UInt8 => Ok(Arc::new(UInt8Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| {
                    x.and_then(|x| u8::try_from(*x).ok())
                }),
            ))),
            DataType::UInt16 => Ok(Arc::new(UInt16Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| {
                    x.and_then(|x| u16::try_from(*x).ok())
                }),
            ))),
            DataType::UInt32 => Ok(Arc::new(UInt32Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| x.map(|x| *x as u32)),
            ))),
            DataType::UInt64 => Ok(Arc::new(UInt64Array::from_iter(
                [<$stat_type_prefix Int64StatsIterator>]::new($iterator).map(|x| x.map(|x| *x as u64)),
            ))),
            DataType::Float16 => Ok(Arc::new(Float16Array::from_iter(
                [<$stat_type_prefix FixedLenByteArrayStatsIterator>]::new($iterator).map(|x| x.and_then(|x| {
                    from_bytes_to_f16(x)
                })),
            ))),
            DataType::Float32 => Ok(Arc::new(Float32Array::from_iter(
                [<$stat_type_prefix FloatStatsIterator>]::new($iterator).map(|x| x.copied()),
            ))),
            DataType::Float64 => Ok(Arc::new(Float64Array::from_iter(
                [<$stat_type_prefix DoubleStatsIterator>]::new($iterator).map(|x| x.copied()),
            ))),
            DataType::Date32 => Ok(Arc::new(Date32Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| x.copied()),
            ))),
            DataType::Date64 if $physical_type == Some(PhysicalType::INT32) => Ok(Arc::new(Date64Array::from_iter(
                [<$stat_type_prefix Int32StatsIterator>]::new($iterator)
                    .map(|x| x.map(|x| i64::from(*x) * 24 * 60 * 60 * 1000))))),
            DataType::Date64 if $physical_type == Some(PhysicalType::INT64) => Ok(Arc::new(Date64Array::from_iter(
                [<$stat_type_prefix Int64StatsIterator>]::new($iterator).map(|x| x.copied()),))),
            DataType::Timestamp(unit, timezone) =>{
                let iter = [<$stat_type_prefix Int64StatsIterator>]::new($iterator).map(|x| x.copied());
                Ok(match unit {
                    TimeUnit::Second => Arc::new(TimestampSecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                    TimeUnit::Millisecond => Arc::new(TimestampMillisecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                    TimeUnit::Microsecond => Arc::new(TimestampMicrosecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                    TimeUnit::Nanosecond => Arc::new(TimestampNanosecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                })
            },
            DataType::Time32(unit) => {
                Ok(match unit {
                    TimeUnit::Second =>  Arc::new(Time32SecondArray::from_iter(
                        [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| x.copied()),
                    )),
                    TimeUnit::Millisecond => Arc::new(Time32MillisecondArray::from_iter(
                        [<$stat_type_prefix Int32StatsIterator>]::new($iterator).map(|x| x.copied()),
                    )),
                    _ => {
                        let len = $iterator.count();
                        // don't know how to extract statistics, so return a null array
                        new_null_array($data_type, len)
                    }
                })
            },
            DataType::Time64(unit) => {
                Ok(match unit {
                    TimeUnit::Microsecond =>  Arc::new(Time64MicrosecondArray::from_iter(
                        [<$stat_type_prefix Int64StatsIterator>]::new($iterator).map(|x| x.copied()),
                    )),
                    TimeUnit::Nanosecond => Arc::new(Time64NanosecondArray::from_iter(
                        [<$stat_type_prefix Int64StatsIterator>]::new($iterator).map(|x| x.copied()),
                    )),
                    _ => {
                        let len = $iterator.count();
                        // don't know how to extract statistics, so return a null array
                        new_null_array($data_type, len)
                    }
                })
            },
            DataType::Binary => Ok(Arc::new(BinaryArray::from_iter(
                [<$stat_type_prefix ByteArrayStatsIterator>]::new($iterator)
            ))),
            DataType::LargeBinary => Ok(Arc::new(LargeBinaryArray::from_iter(
                [<$stat_type_prefix ByteArrayStatsIterator>]::new($iterator)
            ))),
            DataType::Utf8 => {
                let iterator = [<$stat_type_prefix ByteArrayStatsIterator>]::new($iterator);
                let mut builder = StringBuilder::new();
                for x in iterator {
                    let Some(x) = x else {
                        builder.append_null(); // no statistics value
                        continue;
                    };

                    let Ok(x) = std::str::from_utf8(x) else {
                        builder.append_null();
                        continue;
                    };

                    builder.append_value(x);
                }
                Ok(Arc::new(builder.finish()))
            },
            DataType::LargeUtf8 => {
                let iterator = [<$stat_type_prefix ByteArrayStatsIterator>]::new($iterator);
                let mut builder = LargeStringBuilder::new();
                for x in iterator {
                    let Some(x) = x else {
                        builder.append_null(); // no statistics value
                        continue;
                    };

                    let Ok(x) = std::str::from_utf8(x) else {
                        builder.append_null();
                        continue;
                    };

                    builder.append_value(x);
                }
                Ok(Arc::new(builder.finish()))
            },
            DataType::FixedSizeBinary(size) => {
                let iterator = [<$stat_type_prefix FixedLenByteArrayStatsIterator>]::new($iterator);
                let mut builder = FixedSizeBinaryBuilder::new(*size);
                for x in iterator {
                    let Some(x) = x else {
                        builder.append_null(); // no statistics value
                        continue;
                    };

                    // ignore invalid values
                    if x.len().try_into() != Ok(*size){
                        builder.append_null();
                        continue;
                    }

                    builder.append_value(x).expect("ensure to append successfully here, because size have been checked before");
                }
                Ok(Arc::new(builder.finish()))
            },
            DataType::Decimal128(precision, scale) => {
                let arr = Decimal128Array::from_iter(
                    [<$stat_type_prefix Decimal128StatsIterator>]::new($iterator)
                ).with_precision_and_scale(*precision, *scale)?;
                Ok(Arc::new(arr))
            },
            DataType::Decimal256(precision, scale) => {
                let arr = Decimal256Array::from_iter(
                    [<$stat_type_prefix Decimal256StatsIterator>]::new($iterator)
                ).with_precision_and_scale(*precision, *scale)?;
                Ok(Arc::new(arr))
            },
            DataType::Dictionary(_, value_type) => {
                [<$stat_type_prefix:lower _ statistics>](value_type, $iterator, $physical_type)
            },
            DataType::Utf8View => {
                let iterator = [<$stat_type_prefix ByteArrayStatsIterator>]::new($iterator);
                let mut builder = StringViewBuilder::new();
                for x in iterator {
                    let Some(x) = x else {
                        builder.append_null(); // no statistics value
                        continue;
                    };

                    let Ok(x) = std::str::from_utf8(x) else {
                        builder.append_null();
                        continue;
                    };

                    builder.append_value(x);
                }
                Ok(Arc::new(builder.finish()))
            },
            DataType::BinaryView => {
                let iterator = [<$stat_type_prefix ByteArrayStatsIterator>]::new($iterator);
                let mut builder = BinaryViewBuilder::new();
                for x in iterator {
                    let Some(x) = x else {
                        builder.append_null(); // no statistics value
                        continue;
                    };

                    builder.append_value(x);
                }
                Ok(Arc::new(builder.finish()))
            }

            DataType::Map(_,_) |
            DataType::Duration(_) |
            DataType::Interval(_) |
            DataType::Date64 |  // required to cover $physical_type match guard
            DataType::Null |
            DataType::List(_) |
            DataType::ListView(_) |
            DataType::FixedSizeList(_, _) |
            DataType::LargeList(_) |
            DataType::LargeListView(_) |
            DataType::Struct(_) |
            DataType::Union(_, _) |
            DataType::RunEndEncoded(_, _) => {
                let len = $iterator.count();
                // don't know how to extract statistics, so return a null array
                Ok(new_null_array($data_type, len))
            }
        }}}
}

macro_rules! make_data_page_stats_iterator {
    ($iterator_type: ident, $func: expr, $index_type: path, $stat_value_type: ty) => {
        struct $iterator_type<'a, I>
        where
            I: Iterator<Item = (usize, &'a Index)>,
        {
            iter: I,
        }

        impl<'a, I> $iterator_type<'a, I>
        where
            I: Iterator<Item = (usize, &'a Index)>,
        {
            fn new(iter: I) -> Self {
                Self { iter }
            }
        }

        impl<'a, I> Iterator for $iterator_type<'a, I>
        where
            I: Iterator<Item = (usize, &'a Index)>,
        {
            type Item = Vec<Option<$stat_value_type>>;

            fn next(&mut self) -> Option<Self::Item> {
                let next = self.iter.next();
                match next {
                    Some((len, index)) => match index {
                        $index_type(native_index) => {
                            Some(native_index.indexes.iter().map($func).collect::<Vec<_>>())
                        }
                        // No matching `Index` found;
                        // thus no statistics that can be extracted.
                        // We return vec![None; len] to effectively
                        // create an arrow null-array with the length
                        // corresponding to the number of entries in
                        // `ParquetOffsetIndex` per row group per column.
                        _ => Some(vec![None; len]),
                    },
                    _ => None,
                }
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }
    };
}

make_data_page_stats_iterator!(
    MinBooleanDataPageStatsIterator,
    |x: &PageIndex<bool>| { x.min },
    Index::BOOLEAN,
    bool
);
make_data_page_stats_iterator!(
    MaxBooleanDataPageStatsIterator,
    |x: &PageIndex<bool>| { x.max },
    Index::BOOLEAN,
    bool
);
make_data_page_stats_iterator!(
    MinInt32DataPageStatsIterator,
    |x: &PageIndex<i32>| { x.min },
    Index::INT32,
    i32
);
make_data_page_stats_iterator!(
    MaxInt32DataPageStatsIterator,
    |x: &PageIndex<i32>| { x.max },
    Index::INT32,
    i32
);
make_data_page_stats_iterator!(
    MinInt64DataPageStatsIterator,
    |x: &PageIndex<i64>| { x.min },
    Index::INT64,
    i64
);
make_data_page_stats_iterator!(
    MaxInt64DataPageStatsIterator,
    |x: &PageIndex<i64>| { x.max },
    Index::INT64,
    i64
);
make_data_page_stats_iterator!(
    MinFloat16DataPageStatsIterator,
    |x: &PageIndex<FixedLenByteArray>| { x.min.clone() },
    Index::FIXED_LEN_BYTE_ARRAY,
    FixedLenByteArray
);
make_data_page_stats_iterator!(
    MaxFloat16DataPageStatsIterator,
    |x: &PageIndex<FixedLenByteArray>| { x.max.clone() },
    Index::FIXED_LEN_BYTE_ARRAY,
    FixedLenByteArray
);
make_data_page_stats_iterator!(
    MinFloat32DataPageStatsIterator,
    |x: &PageIndex<f32>| { x.min },
    Index::FLOAT,
    f32
);
make_data_page_stats_iterator!(
    MaxFloat32DataPageStatsIterator,
    |x: &PageIndex<f32>| { x.max },
    Index::FLOAT,
    f32
);
make_data_page_stats_iterator!(
    MinFloat64DataPageStatsIterator,
    |x: &PageIndex<f64>| { x.min },
    Index::DOUBLE,
    f64
);
make_data_page_stats_iterator!(
    MaxFloat64DataPageStatsIterator,
    |x: &PageIndex<f64>| { x.max },
    Index::DOUBLE,
    f64
);
make_data_page_stats_iterator!(
    MinByteArrayDataPageStatsIterator,
    |x: &PageIndex<ByteArray>| { x.min.clone() },
    Index::BYTE_ARRAY,
    ByteArray
);
make_data_page_stats_iterator!(
    MaxByteArrayDataPageStatsIterator,
    |x: &PageIndex<ByteArray>| { x.max.clone() },
    Index::BYTE_ARRAY,
    ByteArray
);
make_data_page_stats_iterator!(
    MaxFixedLenByteArrayDataPageStatsIterator,
    |x: &PageIndex<FixedLenByteArray>| { x.max.clone() },
    Index::FIXED_LEN_BYTE_ARRAY,
    FixedLenByteArray
);

make_data_page_stats_iterator!(
    MinFixedLenByteArrayDataPageStatsIterator,
    |x: &PageIndex<FixedLenByteArray>| { x.min.clone() },
    Index::FIXED_LEN_BYTE_ARRAY,
    FixedLenByteArray
);

macro_rules! get_decimal_page_stats_iterator {
    ($iterator_type: ident, $func: ident, $stat_value_type: ident, $convert_func: ident) => {
        struct $iterator_type<'a, I>
        where
            I: Iterator<Item = (usize, &'a Index)>,
        {
            iter: I,
        }

        impl<'a, I> $iterator_type<'a, I>
        where
            I: Iterator<Item = (usize, &'a Index)>,
        {
            fn new(iter: I) -> Self {
                Self { iter }
            }
        }

        impl<'a, I> Iterator for $iterator_type<'a, I>
        where
            I: Iterator<Item = (usize, &'a Index)>,
        {
            type Item = Vec<Option<$stat_value_type>>;

            fn next(&mut self) -> Option<Self::Item> {
                let next = self.iter.next();
                match next {
                    Some((len, index)) => match index {
                        Index::INT32(native_index) => Some(
                            native_index
                                .indexes
                                .iter()
                                .map(|x| x.$func.and_then(|x| Some($stat_value_type::from(x))))
                                .collect::<Vec<_>>(),
                        ),
                        Index::INT64(native_index) => Some(
                            native_index
                                .indexes
                                .iter()
                                .map(|x| x.$func.and_then(|x| Some($stat_value_type::from(x))))
                                .collect::<Vec<_>>(),
                        ),
                        Index::BYTE_ARRAY(native_index) => Some(
                            native_index
                                .indexes
                                .iter()
                                .map(|x| {
                                    x.clone().$func.and_then(|x| Some($convert_func(x.data())))
                                })
                                .collect::<Vec<_>>(),
                        ),
                        Index::FIXED_LEN_BYTE_ARRAY(native_index) => Some(
                            native_index
                                .indexes
                                .iter()
                                .map(|x| {
                                    x.clone().$func.and_then(|x| Some($convert_func(x.data())))
                                })
                                .collect::<Vec<_>>(),
                        ),
                        _ => Some(vec![None; len]),
                    },
                    _ => None,
                }
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }
    };
}

get_decimal_page_stats_iterator!(
    MinDecimal128DataPageStatsIterator,
    min,
    i128,
    from_bytes_to_i128
);

get_decimal_page_stats_iterator!(
    MaxDecimal128DataPageStatsIterator,
    max,
    i128,
    from_bytes_to_i128
);

get_decimal_page_stats_iterator!(
    MinDecimal256DataPageStatsIterator,
    min,
    i256,
    from_bytes_to_i256
);

get_decimal_page_stats_iterator!(
    MaxDecimal256DataPageStatsIterator,
    max,
    i256,
    from_bytes_to_i256
);

macro_rules! get_data_page_statistics {
    ($stat_type_prefix: ident, $data_type: ident, $iterator: ident, $physical_type: ident) => {
        paste! {
            match $data_type {
                DataType::Boolean => {
                    let iterator = [<$stat_type_prefix BooleanDataPageStatsIterator>]::new($iterator);
                    let mut builder = BooleanBuilder::new();
                    for x in iterator {
                        for x in x.into_iter() {
                            let Some(x) = x else {
                                builder.append_null(); // no statistics value
                                continue;
                            };
                            builder.append_value(x);
                        }
                    }
                    Ok(Arc::new(builder.finish()))
                },
                DataType::UInt8 => Ok(Arc::new(
                    UInt8Array::from_iter(
                        [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| u8::try_from(x).ok())
                                })
                            })
                            .flatten()
                    )
                )),
                DataType::UInt16 => Ok(Arc::new(
                    UInt16Array::from_iter(
                        [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| u16::try_from(x).ok())
                                })
                            })
                            .flatten()
                    )
                )),
                DataType::UInt32 => Ok(Arc::new(
                    UInt32Array::from_iter(
                        [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| Some(x as u32))
                                })
                            })
                            .flatten()
                ))),
                DataType::UInt64 => Ok(Arc::new(
                    UInt64Array::from_iter(
                        [<$stat_type_prefix Int64DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| Some(x as u64))
                                })
                            })
                            .flatten()
                ))),
                DataType::Int8 => Ok(Arc::new(
                    Int8Array::from_iter(
                        [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| i8::try_from(x).ok())
                                })
                            })
                            .flatten()
                    )
                )),
                DataType::Int16 => Ok(Arc::new(
                    Int16Array::from_iter(
                        [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| i16::try_from(x).ok())
                                })
                            })
                            .flatten()
                    )
                )),
                DataType::Int32 => Ok(Arc::new(Int32Array::from_iter([<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Int64 => Ok(Arc::new(Int64Array::from_iter([<$stat_type_prefix Int64DataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Float16 => Ok(Arc::new(
                    Float16Array::from_iter(
                        [<$stat_type_prefix Float16DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter().map(|x| {
                                    x.and_then(|x| from_bytes_to_f16(x.data()))
                                })
                            })
                            .flatten()
                    )
                )),
                DataType::Float32 => Ok(Arc::new(Float32Array::from_iter([<$stat_type_prefix Float32DataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Float64 => Ok(Arc::new(Float64Array::from_iter([<$stat_type_prefix Float64DataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Binary => Ok(Arc::new(BinaryArray::from_iter([<$stat_type_prefix ByteArrayDataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::LargeBinary => Ok(Arc::new(LargeBinaryArray::from_iter([<$stat_type_prefix ByteArrayDataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Utf8 => {
                    let mut builder = StringBuilder::new();
                    let iterator = [<$stat_type_prefix ByteArrayDataPageStatsIterator>]::new($iterator);
                    for x in iterator {
                        for x in x.into_iter() {
                            let Some(x) = x else {
                                builder.append_null(); // no statistics value
                                continue;
                            };

                            let Ok(x) = std::str::from_utf8(x.data()) else {
                                builder.append_null();
                                continue;
                            };

                            builder.append_value(x);
                        }
                    }
                    Ok(Arc::new(builder.finish()))
                },
                DataType::LargeUtf8 => {
                    let mut builder = LargeStringBuilder::new();
                    let iterator = [<$stat_type_prefix ByteArrayDataPageStatsIterator>]::new($iterator);
                    for x in iterator {
                        for x in x.into_iter() {
                            let Some(x) = x else {
                                builder.append_null(); // no statistics value
                                continue;
                            };

                            let Ok(x) = std::str::from_utf8(x.data()) else {
                                builder.append_null();
                                continue;
                            };

                            builder.append_value(x);
                        }
                    }
                    Ok(Arc::new(builder.finish()))
                },
                DataType::Dictionary(_, value_type) => {
                    [<$stat_type_prefix:lower _ page_statistics>](value_type, $iterator, $physical_type)
                },
                DataType::Timestamp(unit, timezone) => {
                    let iter = [<$stat_type_prefix Int64DataPageStatsIterator>]::new($iterator).flatten();
                    Ok(match unit {
                        TimeUnit::Second => Arc::new(TimestampSecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                        TimeUnit::Millisecond => Arc::new(TimestampMillisecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                        TimeUnit::Microsecond => Arc::new(TimestampMicrosecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                        TimeUnit::Nanosecond => Arc::new(TimestampNanosecondArray::from_iter(iter).with_timezone_opt(timezone.clone())),
                    })
                },
                DataType::Date32 => Ok(Arc::new(Date32Array::from_iter([<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Date64 if $physical_type == Some(PhysicalType::INT32)=> Ok(
                    Arc::new(
                        Date64Array::from_iter([<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator)
                            .map(|x| {
                                x.into_iter()
                                .map(|x| {
                                    x.and_then(|x| i64::try_from(x).ok())
                                })
                                .map(|x| x.map(|x| x * 24 * 60 * 60 * 1000))
                            }).flatten()
                        )
                    )
                ),
                DataType::Date64 if $physical_type == Some(PhysicalType::INT64) => Ok(Arc::new(Date64Array::from_iter([<$stat_type_prefix Int64DataPageStatsIterator>]::new($iterator).flatten()))),
                DataType::Decimal128(precision, scale) => Ok(Arc::new(
                    Decimal128Array::from_iter([<$stat_type_prefix Decimal128DataPageStatsIterator>]::new($iterator).flatten()).with_precision_and_scale(*precision, *scale)?)),
                DataType::Decimal256(precision, scale) => Ok(Arc::new(
                    Decimal256Array::from_iter([<$stat_type_prefix Decimal256DataPageStatsIterator>]::new($iterator).flatten()).with_precision_and_scale(*precision, *scale)?)),
                DataType::Time32(unit) => {
                    Ok(match unit {
                        TimeUnit::Second =>  Arc::new(Time32SecondArray::from_iter(
                            [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator).flatten(),
                        )),
                        TimeUnit::Millisecond => Arc::new(Time32MillisecondArray::from_iter(
                            [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator).flatten(),
                        )),
                        _ => {
                            // don't know how to extract statistics, so return an empty array
                            new_empty_array(&DataType::Time32(unit.clone()))
                        }
                    })
                }
                DataType::Time64(unit) => {
                    Ok(match unit {
                        TimeUnit::Microsecond =>  Arc::new(Time64MicrosecondArray::from_iter(
                            [<$stat_type_prefix Int64DataPageStatsIterator>]::new($iterator).flatten(),
                        )),
                        TimeUnit::Nanosecond => Arc::new(Time64NanosecondArray::from_iter(
                            [<$stat_type_prefix Int64DataPageStatsIterator>]::new($iterator).flatten(),
                        )),
                        _ => {
                            // don't know how to extract statistics, so return an empty array
                            new_empty_array(&DataType::Time64(unit.clone()))
                        }
                    })
                },
                DataType::FixedSizeBinary(size) => {
                    let mut builder = FixedSizeBinaryBuilder::new(*size);
                    let iterator = [<$stat_type_prefix FixedLenByteArrayDataPageStatsIterator>]::new($iterator);
                    for x in iterator {
                        for x in x.into_iter() {
                            let Some(x) = x else {
                                builder.append_null(); // no statistics value
                                continue;
                            };

                            if x.len() == *size as usize {
                                let _ = builder.append_value(x.data());
                            } else {
                                builder.append_null();
                            }
                        }
                    }
                    Ok(Arc::new(builder.finish()))
                },
                DataType::Utf8View => {
                    let mut builder = StringViewBuilder::new();
                    let iterator = [<$stat_type_prefix ByteArrayDataPageStatsIterator>]::new($iterator);
                    for x in iterator {
                        for x in x.into_iter() {
                            let Some(x) = x else {
                                builder.append_null(); // no statistics value
                                continue;
                            };

                            let Ok(x) = std::str::from_utf8(x.data()) else {
                                builder.append_null();
                                continue;
                            };

                            builder.append_value(x);
                        }
                    }
                    Ok(Arc::new(builder.finish()))
                },
                DataType::BinaryView => {
                    let mut builder = BinaryViewBuilder::new();
                    let iterator = [<$stat_type_prefix ByteArrayDataPageStatsIterator>]::new($iterator);
                    for x in iterator {
                        for x in x.into_iter() {
                            let Some(x) = x else {
                                builder.append_null(); // no statistics value
                                continue;
                            };

                            builder.append_value(x);
                        }
                    }
                    Ok(Arc::new(builder.finish()))
                },
                DataType::Date64 |  // required to cover $physical_type match guard
                DataType::Null |
                DataType::Duration(_) |
                DataType::Interval(_) |
                DataType::List(_) |
                DataType::ListView(_) |
                DataType::FixedSizeList(_, _) |
                DataType::LargeList(_) |
                DataType::LargeListView(_) |
                DataType::Struct(_) |
                DataType::Union(_, _) |
                DataType::Map(_, _) |
                DataType::RunEndEncoded(_, _) => {
                    let len = $iterator.count();
                    // don't know how to extract statistics, so return a null array
                    Ok(new_null_array($data_type, len))
                },
            }
        }
    }
}
/// Extracts the min statistics from an iterator of [`ParquetStatistics`] to an
/// [`ArrayRef`]
///
/// This is an internal helper -- see [`StatisticsConverter`] for public API
fn min_statistics<'a, I: Iterator<Item = Option<&'a ParquetStatistics>>>(
    data_type: &DataType,
    iterator: I,
    physical_type: Option<PhysicalType>,
) -> Result<ArrayRef> {
    get_statistics!(Min, data_type, iterator, physical_type)
}

/// Extracts the max statistics from an iterator of [`ParquetStatistics`] to an [`ArrayRef`]
///
/// This is an internal helper -- see [`StatisticsConverter`] for public API
fn max_statistics<'a, I: Iterator<Item = Option<&'a ParquetStatistics>>>(
    data_type: &DataType,
    iterator: I,
    physical_type: Option<PhysicalType>,
) -> Result<ArrayRef> {
    get_statistics!(Max, data_type, iterator, physical_type)
}

/// Extracts the min statistics from an iterator
/// of parquet page [`Index`]'es to an [`ArrayRef`]
pub(crate) fn min_page_statistics<'a, I>(
    data_type: &DataType,
    iterator: I,
    physical_type: Option<PhysicalType>,
) -> Result<ArrayRef>
where
    I: Iterator<Item = (usize, &'a Index)>,
{
    get_data_page_statistics!(Min, data_type, iterator, physical_type)
}

/// Extracts the max statistics from an iterator
/// of parquet page [`Index`]'es to an [`ArrayRef`]
pub(crate) fn max_page_statistics<'a, I>(
    data_type: &DataType,
    iterator: I,
    physical_type: Option<PhysicalType>,
) -> Result<ArrayRef>
where
    I: Iterator<Item = (usize, &'a Index)>,
{
    get_data_page_statistics!(Max, data_type, iterator, physical_type)
}

/// Extracts the null count statistics from an iterator
/// of parquet page [`Index`]'es to an [`ArrayRef`]
///
/// The returned Array is an [`UInt64Array`]
pub(crate) fn null_counts_page_statistics<'a, I>(iterator: I) -> Result<UInt64Array>
where
    I: Iterator<Item = (usize, &'a Index)>,
{
    let iter = iterator.flat_map(|(len, index)| match index {
        Index::NONE => vec![None; len],
        Index::BOOLEAN(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        Index::INT32(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        Index::INT64(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        Index::FLOAT(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        Index::DOUBLE(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        Index::FIXED_LEN_BYTE_ARRAY(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        Index::BYTE_ARRAY(native_index) => native_index
            .indexes
            .iter()
            .map(|x| x.null_count.map(|x| x as u64))
            .collect::<Vec<_>>(),
        _ => unimplemented!(),
    });

    Ok(UInt64Array::from_iter(iter))
}

/// Extracts Parquet statistics as Arrow arrays
///
/// This is used to convert Parquet statistics to Arrow [`ArrayRef`], with
/// proper type conversions. This information can be used for pruning Parquet
/// files, row groups, and data pages based on the statistics embedded in
/// Parquet metadata.
///
/// # Schemas
///
/// The converter uses the schema of the Parquet file and the Arrow schema to
/// convert the underlying statistics value (stored as a parquet value) into the
/// corresponding Arrow value. For example, Decimals are stored as binary in
/// parquet files and this structure handles mapping them to the `i128`
/// representation used in Arrow.
///
/// Note: The Parquet schema and Arrow schema do not have to be identical (for
/// example, the columns may be in different orders and one or the other schemas
/// may have additional columns). The function [`parquet_column`] is used to
/// match the column in the Parquet schema to the column in the Arrow schema.
#[derive(Debug)]
pub struct StatisticsConverter<'a> {
    /// the index of the matched column in the Parquet schema
    parquet_column_index: Option<usize>,
    /// The field (with data type) of the column in the Arrow schema
    arrow_field: &'a Field,
    /// treat missing null_counts as 0 nulls
    missing_null_counts_as_zero: bool,
    /// The physical type of the matched column in the Parquet schema
    physical_type: Option<PhysicalType>,
}

impl<'a> StatisticsConverter<'a> {
    /// Return the index of the column in the Parquet schema, if any
    ///
    /// Returns `None` if the column is was present in the Arrow schema, but not
    /// present in the parquet file
    pub fn parquet_column_index(&self) -> Option<usize> {
        self.parquet_column_index
    }

    /// Return the arrow schema's [`Field]` of the column in the Arrow schema
    pub fn arrow_field(&self) -> &'a Field {
        self.arrow_field
    }

    /// Set the statistics converter to treat missing null counts as missing
    ///
    /// By default, the converter will treat missing null counts as though
    /// the null count is known to be `0`.
    ///
    /// Note that parquet files written by parquet-rs currently do not store
    /// null counts even when it is known there are zero nulls, and the reader
    /// will return 0 for the null counts in that instance. This behavior may
    /// change in a future release.
    ///
    /// Both parquet-java and parquet-cpp store null counts as 0 when there are
    /// no nulls, and don't write unknown values to the null count field.
    pub fn with_missing_null_counts_as_zero(mut self, missing_null_counts_as_zero: bool) -> Self {
        self.missing_null_counts_as_zero = missing_null_counts_as_zero;
        self
    }

    /// Returns a [`UInt64Array`] with row counts for each row group
    ///
    /// # Return Value
    ///
    /// The returned array has no nulls, and has one value for each row group.
    /// Each value is the number of rows in the row group.
    ///
    /// # Example
    /// ```no_run
    /// # use arrow::datatypes::Schema;
    /// # use arrow_array::{ArrayRef, UInt64Array};
    /// # use parquet::arrow::arrow_reader::statistics::StatisticsConverter;
    /// # use parquet::file::metadata::ParquetMetaData;
    /// # fn get_parquet_metadata() -> ParquetMetaData { unimplemented!() }
    /// # fn get_arrow_schema() -> Schema { unimplemented!() }
    /// // Given the metadata for a parquet file and the arrow schema
    /// let metadata: ParquetMetaData = get_parquet_metadata();
    /// let arrow_schema: Schema = get_arrow_schema();
    /// let parquet_schema = metadata.file_metadata().schema_descr();
    /// // create a converter
    /// let converter = StatisticsConverter::try_new("foo", &arrow_schema, parquet_schema)
    ///   .unwrap();
    /// // get the row counts for each row group
    /// let row_counts = converter.row_group_row_counts(metadata
    ///   .row_groups()
    ///   .iter()
    /// ).unwrap();
    /// // file had 2 row groups, with 1024 and 23 rows respectively
    /// assert_eq!(row_counts, Some(UInt64Array::from(vec![1024, 23])));
    /// ```
    pub fn row_group_row_counts<I>(&self, metadatas: I) -> Result<Option<UInt64Array>>
    where
        I: IntoIterator<Item = &'a RowGroupMetaData>,
    {
        let Some(_) = self.parquet_column_index else {
            return Ok(None);
        };

        let mut builder = UInt64Array::builder(10);
        for metadata in metadatas.into_iter() {
            let row_count = metadata.num_rows();
            let row_count: u64 = row_count.try_into().map_err(|e| {
                arrow_err!(format!(
                    "Parquet row count {row_count} too large to convert to u64: {e}"
                ))
            })?;
            builder.append_value(row_count);
        }
        Ok(Some(builder.finish()))
    }

    /// Create a new `StatisticsConverter` to extract statistics for a column
    ///
    /// Note if there is no corresponding column in the parquet file, the returned
    /// arrays will be null. This can happen if the column is in the arrow
    /// schema but not in the parquet schema due to schema evolution.
    ///
    /// See example on [`Self::row_group_mins`] for usage
    ///
    /// # Errors
    ///
    /// * If the column is not found in the arrow schema
    pub fn try_new<'b>(
        column_name: &'b str,
        arrow_schema: &'a Schema,
        parquet_schema: &'a SchemaDescriptor,
    ) -> Result<Self> {
        // ensure the requested column is in the arrow schema
        let Some((_idx, arrow_field)) = arrow_schema.column_with_name(column_name) else {
            return Err(arrow_err!(format!(
                "Column '{}' not found in schema for statistics conversion",
                column_name
            )));
        };

        // find the column in the parquet schema, if not, return a null array
        let parquet_index = match parquet_column(parquet_schema, arrow_schema, column_name) {
            Some((parquet_idx, matched_field)) => {
                // sanity check that matching field matches the arrow field
                if matched_field.as_ref() != arrow_field {
                    return Err(arrow_err!(format!(
                        "Matched column '{:?}' does not match original matched column '{:?}'",
                        matched_field, arrow_field
                    )));
                }
                Some(parquet_idx)
            }
            None => None,
        };

        Ok(Self {
            parquet_column_index: parquet_index,
            arrow_field,
            missing_null_counts_as_zero: true,
            physical_type: parquet_index.map(|idx| parquet_schema.column(idx).physical_type()),
        })
    }

    /// Extract the minimum values from row group statistics in [`RowGroupMetaData`]
    ///
    /// # Return Value
    ///
    /// The returned array contains 1 value for each row group, in the same order as `metadatas`
    ///
    /// Each value is either
    /// * the minimum value for the column
    /// * a null value, if the statistics can not be extracted
    ///
    /// Note that a null value does NOT mean the min value was actually
    /// `null` it means it the requested statistic is unknown
    ///
    /// # Errors
    ///
    /// Reasons for not being able to extract the statistics include:
    /// * the column is not present in the parquet file
    /// * statistics for the column are not present in the row group
    /// * the stored statistic value can not be converted to the requested type
    ///
    /// # Example
    /// ```no_run
    /// # use std::sync::Arc;
    /// # use arrow::datatypes::Schema;
    /// # use arrow_array::{ArrayRef, Float64Array};
    /// # use parquet::arrow::arrow_reader::statistics::StatisticsConverter;
    /// # use parquet::file::metadata::ParquetMetaData;
    /// # fn get_parquet_metadata() -> ParquetMetaData { unimplemented!() }
    /// # fn get_arrow_schema() -> Schema { unimplemented!() }
    /// // Given the metadata for a parquet file and the arrow schema
    /// let metadata: ParquetMetaData = get_parquet_metadata();
    /// let arrow_schema: Schema = get_arrow_schema();
    /// let parquet_schema = metadata.file_metadata().schema_descr();
    /// // create a converter
    /// let converter = StatisticsConverter::try_new("foo", &arrow_schema, parquet_schema)
    ///   .unwrap();
    /// // get the minimum value for the column "foo" in the parquet file
    /// let min_values: ArrayRef = converter
    ///   .row_group_mins(metadata.row_groups().iter())
    ///   .unwrap();
    /// // if "foo" is a Float64 value, the returned array will contain Float64 values
    /// assert_eq!(min_values, Arc::new(Float64Array::from(vec![Some(1.0), Some(2.0)])) as _);
    /// ```
    pub fn row_group_mins<I>(&self, metadatas: I) -> Result<ArrayRef>
    where
        I: IntoIterator<Item = &'a RowGroupMetaData>,
    {
        let data_type = self.arrow_field.data_type();

        let Some(parquet_index) = self.parquet_column_index else {
            return Ok(self.make_null_array(data_type, metadatas));
        };

        let iter = metadatas
            .into_iter()
            .map(|x| x.column(parquet_index).statistics());
        min_statistics(data_type, iter, self.physical_type)
    }

    /// Extract the maximum values from row group statistics in [`RowGroupMetaData`]
    ///
    /// See docs on [`Self::row_group_mins`] for details
    pub fn row_group_maxes<I>(&self, metadatas: I) -> Result<ArrayRef>
    where
        I: IntoIterator<Item = &'a RowGroupMetaData>,
    {
        let data_type = self.arrow_field.data_type();

        let Some(parquet_index) = self.parquet_column_index else {
            return Ok(self.make_null_array(data_type, metadatas));
        };

        let iter = metadatas
            .into_iter()
            .map(|x| x.column(parquet_index).statistics());
        max_statistics(data_type, iter, self.physical_type)
    }

    /// Extract the null counts from row group statistics in [`RowGroupMetaData`]
    ///
    /// See docs on [`Self::row_group_mins`] for details
    pub fn row_group_null_counts<I>(&self, metadatas: I) -> Result<UInt64Array>
    where
        I: IntoIterator<Item = &'a RowGroupMetaData>,
    {
        let Some(parquet_index) = self.parquet_column_index else {
            let num_row_groups = metadatas.into_iter().count();
            return Ok(UInt64Array::from_iter(
                std::iter::repeat(None).take(num_row_groups),
            ));
        };

        let null_counts = metadatas
            .into_iter()
            .map(|x| x.column(parquet_index).statistics())
            .map(|s| {
                s.and_then(|s| {
                    if self.missing_null_counts_as_zero {
                        Some(s.null_count_opt().unwrap_or(0))
                    } else {
                        s.null_count_opt()
                    }
                })
            });
        Ok(UInt64Array::from_iter(null_counts))
    }

    /// Extract the minimum values from Data Page statistics.
    ///
    /// In Parquet files, in addition to the Column Chunk level statistics
    /// (stored for each column for each row group) there are also
    /// optional statistics stored for each data page, as part of
    /// the [`ParquetColumnIndex`].
    ///
    /// Since a single Column Chunk is stored as one or more pages,
    /// page level statistics can prune at a finer granularity.
    ///
    /// However since they are stored in a separate metadata
    /// structure ([`Index`]) there is different code to extract them as
    /// compared to arrow statistics.
    ///
    /// # Parameters:
    ///
    /// * `column_page_index`: The parquet column page indices, read from
    ///   `ParquetMetaData` column_index
    ///
    /// * `column_offset_index`: The parquet column offset indices, read from
    ///   `ParquetMetaData` offset_index
    ///
    /// * `row_group_indices`: The indices of the row groups, that are used to
    ///   extract the column page index and offset index on a per row group
    ///   per column basis.
    ///
    /// # Return Value
    ///
    /// The returned array contains 1 value for each `NativeIndex`
    /// in the underlying `Index`es, in the same order as they appear
    /// in `metadatas`.
    ///
    /// For example, if there are two `Index`es in `metadatas`:
    /// 1. the first having `3` `PageIndex` entries
    /// 2. the second having `2` `PageIndex` entries
    ///
    /// The returned array would have 5 rows.
    ///
    /// Each value is either:
    /// * the minimum value for the page
    /// * a null value, if the statistics can not be extracted
    ///
    /// Note that a null value does NOT mean the min value was actually
    /// `null` it means it the requested statistic is unknown
    ///
    /// # Errors
    ///
    /// Reasons for not being able to extract the statistics include:
    /// * the column is not present in the parquet file
    /// * statistics for the pages are not present in the row group
    /// * the stored statistic value can not be converted to the requested type
    pub fn data_page_mins<I>(
        &self,
        column_page_index: &ParquetColumnIndex,
        column_offset_index: &ParquetOffsetIndex,
        row_group_indices: I,
    ) -> Result<ArrayRef>
    where
        I: IntoIterator<Item = &'a usize>,
    {
        let data_type = self.arrow_field.data_type();

        let Some(parquet_index) = self.parquet_column_index else {
            return Ok(self.make_null_array(data_type, row_group_indices));
        };

        let iter = row_group_indices.into_iter().map(|rg_index| {
            let column_page_index_per_row_group_per_column =
                &column_page_index[*rg_index][parquet_index];
            let num_data_pages = &column_offset_index[*rg_index][parquet_index]
                .page_locations()
                .len();

            (*num_data_pages, column_page_index_per_row_group_per_column)
        });

        min_page_statistics(data_type, iter, self.physical_type)
    }

    /// Extract the maximum values from Data Page statistics.
    ///
    /// See docs on [`Self::data_page_mins`] for details.
    pub fn data_page_maxes<I>(
        &self,
        column_page_index: &ParquetColumnIndex,
        column_offset_index: &ParquetOffsetIndex,
        row_group_indices: I,
    ) -> Result<ArrayRef>
    where
        I: IntoIterator<Item = &'a usize>,
    {
        let data_type = self.arrow_field.data_type();

        let Some(parquet_index) = self.parquet_column_index else {
            return Ok(self.make_null_array(data_type, row_group_indices));
        };

        let iter = row_group_indices.into_iter().map(|rg_index| {
            let column_page_index_per_row_group_per_column =
                &column_page_index[*rg_index][parquet_index];
            let num_data_pages = &column_offset_index[*rg_index][parquet_index]
                .page_locations()
                .len();

            (*num_data_pages, column_page_index_per_row_group_per_column)
        });

        max_page_statistics(data_type, iter, self.physical_type)
    }

    /// Returns a [`UInt64Array`] with null counts for each data page.
    ///
    /// See docs on [`Self::data_page_mins`] for details.
    pub fn data_page_null_counts<I>(
        &self,
        column_page_index: &ParquetColumnIndex,
        column_offset_index: &ParquetOffsetIndex,
        row_group_indices: I,
    ) -> Result<UInt64Array>
    where
        I: IntoIterator<Item = &'a usize>,
    {
        let Some(parquet_index) = self.parquet_column_index else {
            let num_row_groups = row_group_indices.into_iter().count();
            return Ok(UInt64Array::from_iter(
                std::iter::repeat(None).take(num_row_groups),
            ));
        };

        let iter = row_group_indices.into_iter().map(|rg_index| {
            let column_page_index_per_row_group_per_column =
                &column_page_index[*rg_index][parquet_index];
            let num_data_pages = &column_offset_index[*rg_index][parquet_index]
                .page_locations()
                .len();

            (*num_data_pages, column_page_index_per_row_group_per_column)
        });
        null_counts_page_statistics(iter)
    }

    /// Returns a [`UInt64Array`] with row counts for each data page.
    ///
    /// This function iterates over the given row group indexes and computes
    /// the row count for each page in the specified column.
    ///
    /// # Parameters:
    ///
    /// * `column_offset_index`: The parquet column offset indices, read from
    ///   `ParquetMetaData` offset_index
    ///
    /// * `row_group_metadatas`: The metadata slice of the row groups, read
    ///   from `ParquetMetaData` row_groups
    ///
    /// * `row_group_indices`: The indices of the row groups, that are used to
    ///   extract the column offset index on a per row group per column basis.
    ///
    /// See docs on [`Self::data_page_mins`] for details.
    pub fn data_page_row_counts<I>(
        &self,
        column_offset_index: &ParquetOffsetIndex,
        row_group_metadatas: &'a [RowGroupMetaData],
        row_group_indices: I,
    ) -> Result<Option<UInt64Array>>
    where
        I: IntoIterator<Item = &'a usize>,
    {
        let Some(parquet_index) = self.parquet_column_index else {
            // no matching column found in parquet_index;
            // thus we cannot extract page_locations in order to determine
            // the row count on a per DataPage basis.
            return Ok(None);
        };

        let mut row_count_total = Vec::new();
        for rg_idx in row_group_indices {
            let page_locations = &column_offset_index[*rg_idx][parquet_index].page_locations();

            let row_count_per_page = page_locations
                .windows(2)
                .map(|loc| Some(loc[1].first_row_index as u64 - loc[0].first_row_index as u64));

            // append the last page row count
            let num_rows_in_row_group = &row_group_metadatas[*rg_idx].num_rows();
            let row_count_per_page = row_count_per_page
                .chain(std::iter::once(Some(
                    *num_rows_in_row_group as u64
                        - page_locations.last().unwrap().first_row_index as u64,
                )))
                .collect::<Vec<_>>();

            row_count_total.extend(row_count_per_page);
        }

        Ok(Some(UInt64Array::from_iter(row_count_total)))
    }

    /// Returns a null array of data_type with one element per row group
    fn make_null_array<I, A>(&self, data_type: &DataType, metadatas: I) -> ArrayRef
    where
        I: IntoIterator<Item = A>,
    {
        // column was in the arrow schema but not in the parquet schema, so return a null array
        let num_row_groups = metadatas.into_iter().count();
        new_null_array(data_type, num_row_groups)
    }
}

// See tests in parquet/tests/arrow_reader/statistics.rs