1use crate::dictionary::{merge_dictionary_values, should_merge_dictionary_values};
34use arrow_array::builder::{
35 BooleanBuilder, GenericByteBuilder, GenericByteViewBuilder, PrimitiveBuilder,
36};
37use arrow_array::cast::AsArray;
38use arrow_array::types::*;
39use arrow_array::*;
40use arrow_buffer::{ArrowNativeType, BooleanBufferBuilder, NullBuffer, OffsetBuffer};
41use arrow_data::transform::{Capacities, MutableArrayData};
42use arrow_data::ArrayDataBuilder;
43use arrow_schema::{ArrowError, DataType, FieldRef, Fields, SchemaRef};
44use std::{collections::HashSet, ops::Add, sync::Arc};
45
46fn binary_capacity<T: ByteArrayType>(arrays: &[&dyn Array]) -> Capacities {
47 let mut item_capacity = 0;
48 let mut bytes_capacity = 0;
49 for array in arrays {
50 let a = array.as_bytes::<T>();
51
52 let offsets = a.value_offsets();
54 bytes_capacity += offsets[offsets.len() - 1].as_usize() - offsets[0].as_usize();
55 item_capacity += a.len()
56 }
57
58 Capacities::Binary(item_capacity, Some(bytes_capacity))
59}
60
61fn fixed_size_list_capacity(arrays: &[&dyn Array], data_type: &DataType) -> Capacities {
62 if let DataType::FixedSizeList(f, _) = data_type {
63 let item_capacity = arrays.iter().map(|a| a.len()).sum();
64 let child_data_type = f.data_type();
65 match child_data_type {
66 DataType::Utf8
69 | DataType::LargeUtf8
70 | DataType::Binary
71 | DataType::LargeBinary
72 | DataType::FixedSizeList(_, _) => {
73 let values: Vec<&dyn arrow_array::Array> = arrays
74 .iter()
75 .map(|a| a.as_fixed_size_list().values().as_ref())
76 .collect();
77 Capacities::List(
78 item_capacity,
79 Some(Box::new(get_capacity(&values, child_data_type))),
80 )
81 }
82 _ => Capacities::Array(item_capacity),
83 }
84 } else {
85 unreachable!("illegal data type for fixed size list")
86 }
87}
88
89fn concat_byte_view<B: ByteViewType>(arrays: &[&dyn Array]) -> Result<ArrayRef, ArrowError> {
90 let mut builder =
91 GenericByteViewBuilder::<B>::with_capacity(arrays.iter().map(|a| a.len()).sum());
92 for &array in arrays.iter() {
93 builder.append_array(array.as_byte_view());
94 }
95 Ok(Arc::new(builder.finish()))
96}
97
98fn concat_dictionaries<K: ArrowDictionaryKeyType>(
99 arrays: &[&dyn Array],
100) -> Result<ArrayRef, ArrowError> {
101 let mut output_len = 0;
102 let dictionaries: Vec<_> = arrays
103 .iter()
104 .map(|x| x.as_dictionary::<K>())
105 .inspect(|d| output_len += d.len())
106 .collect();
107
108 if !should_merge_dictionary_values::<K>(&dictionaries, output_len) {
109 return concat_fallback(arrays, Capacities::Array(output_len));
110 }
111
112 let merged = merge_dictionary_values(&dictionaries, None)?;
113
114 let mut key_values = Vec::with_capacity(output_len);
116
117 let mut has_nulls = false;
118 for (d, mapping) in dictionaries.iter().zip(merged.key_mappings) {
119 has_nulls |= d.null_count() != 0;
120 for key in d.keys().values() {
121 key_values.push(mapping.get(key.as_usize()).copied().unwrap_or_default())
123 }
124 }
125
126 let nulls = has_nulls.then(|| {
127 let mut nulls = BooleanBufferBuilder::new(output_len);
128 for d in &dictionaries {
129 match d.nulls() {
130 Some(n) => nulls.append_buffer(n.inner()),
131 None => nulls.append_n(d.len(), true),
132 }
133 }
134 NullBuffer::new(nulls.finish())
135 });
136
137 let keys = PrimitiveArray::<K>::new(key_values.into(), nulls);
138 assert_eq!(keys.len(), output_len);
140
141 let array = unsafe { DictionaryArray::new_unchecked(keys, merged.values) };
142 Ok(Arc::new(array))
143}
144
145fn concat_lists<OffsetSize: OffsetSizeTrait>(
146 arrays: &[&dyn Array],
147 field: &FieldRef,
148) -> Result<ArrayRef, ArrowError> {
149 let mut output_len = 0;
150 let mut list_has_nulls = false;
151 let mut list_has_slices = false;
152
153 let lists = arrays
154 .iter()
155 .map(|x| x.as_list::<OffsetSize>())
156 .inspect(|l| {
157 output_len += l.len();
158 list_has_nulls |= l.null_count() != 0;
159 list_has_slices |= l.offsets()[0] > OffsetSize::zero()
160 || l.offsets().last().unwrap().as_usize() < l.values().len();
161 })
162 .collect::<Vec<_>>();
163
164 let lists_nulls = list_has_nulls.then(|| {
165 let mut nulls = BooleanBufferBuilder::new(output_len);
166 for l in &lists {
167 match l.nulls() {
168 Some(n) => nulls.append_buffer(n.inner()),
169 None => nulls.append_n(l.len(), true),
170 }
171 }
172 NullBuffer::new(nulls.finish())
173 });
174
175 let mut sliced_values;
178 let values: Vec<&dyn Array> = if list_has_slices {
179 sliced_values = Vec::with_capacity(lists.len());
180 for l in &lists {
181 let offsets = l.offsets();
184 let start_offset = offsets[0].as_usize();
185 let end_offset = offsets.last().unwrap().as_usize();
186 sliced_values.push(l.values().slice(start_offset, end_offset - start_offset));
187 }
188 sliced_values.iter().map(|a| a.as_ref()).collect()
189 } else {
190 lists.iter().map(|x| x.values().as_ref()).collect()
191 };
192
193 let concatenated_values = concat(values.as_slice())?;
194
195 let value_offset_buffer =
197 OffsetBuffer::<OffsetSize>::from_lengths(lists.iter().flat_map(|x| x.offsets().lengths()));
198
199 let array = GenericListArray::<OffsetSize>::try_new(
200 Arc::clone(field),
201 value_offset_buffer,
202 concatenated_values,
203 lists_nulls,
204 )?;
205
206 Ok(Arc::new(array))
207}
208
209fn concat_primitives<T: ArrowPrimitiveType>(arrays: &[&dyn Array]) -> Result<ArrayRef, ArrowError> {
210 let mut builder = PrimitiveBuilder::<T>::with_capacity(arrays.iter().map(|a| a.len()).sum())
211 .with_data_type(arrays[0].data_type().clone());
212
213 for array in arrays {
214 builder.append_array(array.as_primitive());
215 }
216
217 Ok(Arc::new(builder.finish()))
218}
219
220fn concat_boolean(arrays: &[&dyn Array]) -> Result<ArrayRef, ArrowError> {
221 let mut builder = BooleanBuilder::with_capacity(arrays.iter().map(|a| a.len()).sum());
222
223 for array in arrays {
224 builder.append_array(array.as_boolean());
225 }
226
227 Ok(Arc::new(builder.finish()))
228}
229
230fn concat_bytes<T: ByteArrayType>(arrays: &[&dyn Array]) -> Result<ArrayRef, ArrowError> {
231 let (item_capacity, bytes_capacity) = match binary_capacity::<T>(arrays) {
232 Capacities::Binary(item_capacity, Some(bytes_capacity)) => (item_capacity, bytes_capacity),
233 _ => unreachable!(),
234 };
235
236 let mut builder = GenericByteBuilder::<T>::with_capacity(item_capacity, bytes_capacity);
237
238 for array in arrays {
239 builder.append_array(array.as_bytes::<T>());
240 }
241
242 Ok(Arc::new(builder.finish()))
243}
244
245fn concat_structs(arrays: &[&dyn Array], fields: &Fields) -> Result<ArrayRef, ArrowError> {
246 let mut len = 0;
247 let mut has_nulls = false;
248 let structs = arrays
249 .iter()
250 .map(|a| {
251 len += a.len();
252 has_nulls |= a.null_count() > 0;
253 a.as_struct()
254 })
255 .collect::<Vec<_>>();
256
257 let nulls = has_nulls.then(|| {
258 let mut b = BooleanBufferBuilder::new(len);
259 for s in &structs {
260 match s.nulls() {
261 Some(n) => b.append_buffer(n.inner()),
262 None => b.append_n(s.len(), true),
263 }
264 }
265 NullBuffer::new(b.finish())
266 });
267
268 let column_concat_result = (0..fields.len())
269 .map(|i| {
270 let extracted_cols = structs
271 .iter()
272 .map(|s| s.column(i).as_ref())
273 .collect::<Vec<_>>();
274 concat(&extracted_cols)
275 })
276 .collect::<Result<Vec<_>, ArrowError>>()?;
277
278 Ok(Arc::new(StructArray::try_new_with_length(
279 fields.clone(),
280 column_concat_result,
281 nulls,
282 len,
283 )?))
284}
285
286fn concat_run_arrays<R: RunEndIndexType>(arrays: &[&dyn Array]) -> Result<ArrayRef, ArrowError>
293where
294 R::Native: Add<Output = R::Native>,
295{
296 let run_arrays: Vec<_> = arrays
297 .iter()
298 .map(|x| x.as_run::<R>())
299 .filter(|x| !x.run_ends().is_empty())
300 .collect();
301
302 let needed_run_end_adjustments = std::iter::once(R::default_value())
304 .chain(
305 run_arrays
306 .iter()
307 .scan(R::default_value(), |acc, run_array| {
308 *acc = *acc + *run_array.run_ends().values().last().unwrap();
309 Some(*acc)
310 }),
311 )
312 .collect::<Vec<_>>();
313
314 let total_len = needed_run_end_adjustments.last().unwrap().as_usize();
316
317 let run_ends_array =
318 PrimitiveArray::<R>::from_iter_values(run_arrays.iter().enumerate().flat_map(
319 move |(i, run_array)| {
320 let adjustment = needed_run_end_adjustments[i];
321 run_array
322 .run_ends()
323 .values()
324 .iter()
325 .map(move |run_end| *run_end + adjustment)
326 },
327 ));
328
329 let all_values = concat(
330 &run_arrays
331 .iter()
332 .map(|x| x.values().as_ref())
333 .collect::<Vec<_>>(),
334 )?;
335
336 let builder = ArrayDataBuilder::new(run_arrays[0].data_type().clone())
337 .len(total_len)
338 .child_data(vec![run_ends_array.into_data(), all_values.into_data()]);
339
340 let array_data = unsafe { builder.build_unchecked() };
342 array_data.validate_data()?;
343
344 Ok(Arc::<RunArray<R>>::new(array_data.into()))
345}
346
347macro_rules! dict_helper {
348 ($t:ty, $arrays:expr) => {
349 return Ok(Arc::new(concat_dictionaries::<$t>($arrays)?) as _)
350 };
351}
352
353macro_rules! primitive_concat {
354 ($t:ty, $arrays:expr) => {
355 return Ok(Arc::new(concat_primitives::<$t>($arrays)?) as _)
356 };
357}
358
359fn get_capacity(arrays: &[&dyn Array], data_type: &DataType) -> Capacities {
360 match data_type {
361 DataType::Utf8 => binary_capacity::<Utf8Type>(arrays),
362 DataType::LargeUtf8 => binary_capacity::<LargeUtf8Type>(arrays),
363 DataType::Binary => binary_capacity::<BinaryType>(arrays),
364 DataType::LargeBinary => binary_capacity::<LargeBinaryType>(arrays),
365 DataType::FixedSizeList(_, _) => fixed_size_list_capacity(arrays, data_type),
366 _ => Capacities::Array(arrays.iter().map(|a| a.len()).sum()),
367 }
368}
369
370pub fn concat(arrays: &[&dyn Array]) -> Result<ArrayRef, ArrowError> {
372 if arrays.is_empty() {
373 return Err(ArrowError::ComputeError(
374 "concat requires input of at least one array".to_string(),
375 ));
376 } else if arrays.len() == 1 {
377 let array = arrays[0];
378 return Ok(array.slice(0, array.len()));
379 }
380
381 let d = arrays[0].data_type();
382 if arrays.iter().skip(1).any(|array| array.data_type() != d) {
383 let error_message = {
385 let mut unique_data_types = HashSet::with_capacity(11);
387
388 let mut error_message =
389 format!("It is not possible to concatenate arrays of different data types ({d}");
390 unique_data_types.insert(d);
391
392 for array in arrays {
393 let is_unique = unique_data_types.insert(array.data_type());
394
395 if unique_data_types.len() == 11 {
396 error_message.push_str(", ...");
397 break;
398 }
399
400 if is_unique {
401 error_message.push_str(", ");
402 error_message.push_str(&array.data_type().to_string());
403 }
404 }
405
406 error_message.push_str(").");
407
408 error_message
409 };
410
411 return Err(ArrowError::InvalidArgumentError(error_message));
412 }
413
414 downcast_primitive! {
415 d => (primitive_concat, arrays),
416 DataType::Boolean => concat_boolean(arrays),
417 DataType::Dictionary(k, _) => {
418 downcast_integer! {
419 k.as_ref() => (dict_helper, arrays),
420 _ => unreachable!("illegal dictionary key type {k}")
421 }
422 }
423 DataType::List(field) => concat_lists::<i32>(arrays, field),
424 DataType::LargeList(field) => concat_lists::<i64>(arrays, field),
425 DataType::Struct(fields) => concat_structs(arrays, fields),
426 DataType::Utf8 => concat_bytes::<Utf8Type>(arrays),
427 DataType::LargeUtf8 => concat_bytes::<LargeUtf8Type>(arrays),
428 DataType::Binary => concat_bytes::<BinaryType>(arrays),
429 DataType::LargeBinary => concat_bytes::<LargeBinaryType>(arrays),
430 DataType::RunEndEncoded(r, _) => {
431 match r.data_type() {
434 DataType::Int16 => concat_run_arrays::<Int16Type>(arrays),
435 DataType::Int32 => concat_run_arrays::<Int32Type>(arrays),
436 DataType::Int64 => concat_run_arrays::<Int64Type>(arrays),
437 _ => unreachable!("Unsupported run end index type: {r:?}"),
438 }
439 }
440 DataType::Utf8View => concat_byte_view::<StringViewType>(arrays),
441 DataType::BinaryView => concat_byte_view::<BinaryViewType>(arrays),
442 _ => {
443 let capacity = get_capacity(arrays, d);
444 concat_fallback(arrays, capacity)
445 }
446 }
447}
448
449fn concat_fallback(arrays: &[&dyn Array], capacity: Capacities) -> Result<ArrayRef, ArrowError> {
453 let array_data: Vec<_> = arrays.iter().map(|a| a.to_data()).collect::<Vec<_>>();
454 let array_data = array_data.iter().collect();
455 let mut mutable = MutableArrayData::with_capacities(array_data, false, capacity);
456
457 for (i, a) in arrays.iter().enumerate() {
458 mutable.extend(i, 0, a.len())
459 }
460
461 Ok(make_array(mutable.freeze()))
462}
463
464pub fn concat_batches<'a>(
471 schema: &SchemaRef,
472 input_batches: impl IntoIterator<Item = &'a RecordBatch>,
473) -> Result<RecordBatch, ArrowError> {
474 if schema.fields().is_empty() {
476 let num_rows: usize = input_batches.into_iter().map(RecordBatch::num_rows).sum();
477 let mut options = RecordBatchOptions::default();
478 options.row_count = Some(num_rows);
479 return RecordBatch::try_new_with_options(schema.clone(), vec![], &options);
480 }
481
482 let batches: Vec<&RecordBatch> = input_batches.into_iter().collect();
483 if batches.is_empty() {
484 return Ok(RecordBatch::new_empty(schema.clone()));
485 }
486 let field_num = schema.fields().len();
487 let mut arrays = Vec::with_capacity(field_num);
488 for i in 0..field_num {
489 let array = concat(
490 &batches
491 .iter()
492 .map(|batch| batch.column(i).as_ref())
493 .collect::<Vec<_>>(),
494 )?;
495 arrays.push(array);
496 }
497 RecordBatch::try_new(schema.clone(), arrays)
498}
499
500#[cfg(test)]
501mod tests {
502 use super::*;
503 use arrow_array::builder::{GenericListBuilder, StringDictionaryBuilder};
504 use arrow_schema::{Field, Schema};
505 use std::fmt::Debug;
506
507 #[test]
508 fn test_concat_empty_vec() {
509 let re = concat(&[]);
510 assert!(re.is_err());
511 }
512
513 #[test]
514 fn test_concat_batches_no_columns() {
515 let schema = Arc::new(Schema::empty());
517
518 let mut options = RecordBatchOptions::default();
519 options.row_count = Some(100);
520 let batch = RecordBatch::try_new_with_options(schema.clone(), vec![], &options).unwrap();
521 let re = concat_batches(&schema, &[batch.clone(), batch]).unwrap();
523
524 assert_eq!(re.num_rows(), 200);
525 }
526
527 #[test]
528 fn test_concat_one_element_vec() {
529 let arr = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
530 Some(-1),
531 Some(2),
532 None,
533 ])) as ArrayRef;
534 let result = concat(&[arr.as_ref()]).unwrap();
535 assert_eq!(
536 &arr, &result,
537 "concatenating single element array gives back the same result"
538 );
539 }
540
541 #[test]
542 fn test_concat_incompatible_datatypes() {
543 let re = concat(&[
544 &PrimitiveArray::<Int64Type>::from(vec![Some(-1), Some(2), None]),
545 &StringArray::from(vec![Some("hello"), Some("bar"), Some("world")]),
547 &StringArray::from(vec![Some("hey"), Some(""), Some("you")]),
548 &PrimitiveArray::<Int32Type>::from(vec![Some(-1), Some(2), None]),
550 ]);
551
552 assert_eq!(re.unwrap_err().to_string(), "Invalid argument error: It is not possible to concatenate arrays of different data types (Int64, Utf8, Int32).");
553 }
554
555 #[test]
556 fn test_concat_10_incompatible_datatypes_should_include_all_of_them() {
557 let re = concat(&[
558 &PrimitiveArray::<Int64Type>::from(vec![Some(-1), Some(2), None]),
559 &StringArray::from(vec![Some("hello"), Some("bar"), Some("world")]),
561 &StringArray::from(vec![Some("hey"), Some(""), Some("you")]),
562 &PrimitiveArray::<Int32Type>::from(vec![Some(-1), Some(2), None]),
564 &PrimitiveArray::<Int8Type>::from(vec![Some(-1), Some(2), None]),
565 &PrimitiveArray::<Int16Type>::from(vec![Some(-1), Some(2), None]),
566 &PrimitiveArray::<UInt8Type>::from(vec![Some(1), Some(2), None]),
567 &PrimitiveArray::<UInt16Type>::from(vec![Some(1), Some(2), None]),
568 &PrimitiveArray::<UInt32Type>::from(vec![Some(1), Some(2), None]),
569 &PrimitiveArray::<UInt16Type>::from(vec![Some(1), Some(2), None]),
571 &PrimitiveArray::<UInt64Type>::from(vec![Some(1), Some(2), None]),
572 &PrimitiveArray::<Float32Type>::from(vec![Some(1.0), Some(2.0), None]),
573 ]);
574
575 assert_eq!(re.unwrap_err().to_string(), "Invalid argument error: It is not possible to concatenate arrays of different data types (Int64, Utf8, Int32, Int8, Int16, UInt8, UInt16, UInt32, UInt64, Float32).");
576 }
577
578 #[test]
579 fn test_concat_11_incompatible_datatypes_should_only_include_10() {
580 let re = concat(&[
581 &PrimitiveArray::<Int64Type>::from(vec![Some(-1), Some(2), None]),
582 &StringArray::from(vec![Some("hello"), Some("bar"), Some("world")]),
584 &StringArray::from(vec![Some("hey"), Some(""), Some("you")]),
585 &PrimitiveArray::<Int32Type>::from(vec![Some(-1), Some(2), None]),
587 &PrimitiveArray::<Int8Type>::from(vec![Some(-1), Some(2), None]),
588 &PrimitiveArray::<Int16Type>::from(vec![Some(-1), Some(2), None]),
589 &PrimitiveArray::<UInt8Type>::from(vec![Some(1), Some(2), None]),
590 &PrimitiveArray::<UInt16Type>::from(vec![Some(1), Some(2), None]),
591 &PrimitiveArray::<UInt32Type>::from(vec![Some(1), Some(2), None]),
592 &PrimitiveArray::<UInt16Type>::from(vec![Some(1), Some(2), None]),
594 &PrimitiveArray::<UInt64Type>::from(vec![Some(1), Some(2), None]),
595 &PrimitiveArray::<Float32Type>::from(vec![Some(1.0), Some(2.0), None]),
596 &PrimitiveArray::<Float64Type>::from(vec![Some(1.0), Some(2.0), None]),
597 ]);
598
599 assert_eq!(re.unwrap_err().to_string(), "Invalid argument error: It is not possible to concatenate arrays of different data types (Int64, Utf8, Int32, Int8, Int16, UInt8, UInt16, UInt32, UInt64, Float32, ...).");
600 }
601
602 #[test]
603 fn test_concat_13_incompatible_datatypes_should_not_include_all_of_them() {
604 let re = concat(&[
605 &PrimitiveArray::<Int64Type>::from(vec![Some(-1), Some(2), None]),
606 &StringArray::from(vec![Some("hello"), Some("bar"), Some("world")]),
608 &StringArray::from(vec![Some("hey"), Some(""), Some("you")]),
609 &PrimitiveArray::<Int32Type>::from(vec![Some(-1), Some(2), None]),
611 &PrimitiveArray::<Int8Type>::from(vec![Some(-1), Some(2), None]),
612 &PrimitiveArray::<Int16Type>::from(vec![Some(-1), Some(2), None]),
613 &PrimitiveArray::<UInt8Type>::from(vec![Some(1), Some(2), None]),
614 &PrimitiveArray::<UInt16Type>::from(vec![Some(1), Some(2), None]),
615 &PrimitiveArray::<UInt32Type>::from(vec![Some(1), Some(2), None]),
616 &PrimitiveArray::<UInt16Type>::from(vec![Some(1), Some(2), None]),
618 &PrimitiveArray::<UInt64Type>::from(vec![Some(1), Some(2), None]),
619 &PrimitiveArray::<Float32Type>::from(vec![Some(1.0), Some(2.0), None]),
620 &PrimitiveArray::<Float64Type>::from(vec![Some(1.0), Some(2.0), None]),
621 &PrimitiveArray::<Float16Type>::new_null(3),
622 &BooleanArray::from(vec![Some(true), Some(false), None]),
623 ]);
624
625 assert_eq!(re.unwrap_err().to_string(), "Invalid argument error: It is not possible to concatenate arrays of different data types (Int64, Utf8, Int32, Int8, Int16, UInt8, UInt16, UInt32, UInt64, Float32, ...).");
626 }
627
628 #[test]
629 fn test_concat_string_arrays() {
630 let arr = concat(&[
631 &StringArray::from(vec!["hello", "world"]),
632 &StringArray::from(vec!["2", "3", "4"]),
633 &StringArray::from(vec![Some("foo"), Some("bar"), None, Some("baz")]),
634 ])
635 .unwrap();
636
637 let expected_output = Arc::new(StringArray::from(vec![
638 Some("hello"),
639 Some("world"),
640 Some("2"),
641 Some("3"),
642 Some("4"),
643 Some("foo"),
644 Some("bar"),
645 None,
646 Some("baz"),
647 ])) as ArrayRef;
648
649 assert_eq!(&arr, &expected_output);
650 }
651
652 #[test]
653 fn test_concat_string_view_arrays() {
654 let arr = concat(&[
655 &StringViewArray::from(vec!["helloxxxxxxxxxxa", "world____________"]),
656 &StringViewArray::from(vec!["helloxxxxxxxxxxy", "3", "4"]),
657 &StringViewArray::from(vec![Some("foo"), Some("bar"), None, Some("baz")]),
658 ])
659 .unwrap();
660
661 let expected_output = Arc::new(StringViewArray::from(vec![
662 Some("helloxxxxxxxxxxa"),
663 Some("world____________"),
664 Some("helloxxxxxxxxxxy"),
665 Some("3"),
666 Some("4"),
667 Some("foo"),
668 Some("bar"),
669 None,
670 Some("baz"),
671 ])) as ArrayRef;
672
673 assert_eq!(&arr, &expected_output);
674 }
675
676 #[test]
677 fn test_concat_primitive_arrays() {
678 let arr = concat(&[
679 &PrimitiveArray::<Int64Type>::from(vec![Some(-1), Some(-1), Some(2), None, None]),
680 &PrimitiveArray::<Int64Type>::from(vec![Some(101), Some(102), Some(103), None]),
681 &PrimitiveArray::<Int64Type>::from(vec![Some(256), Some(512), Some(1024)]),
682 ])
683 .unwrap();
684
685 let expected_output = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
686 Some(-1),
687 Some(-1),
688 Some(2),
689 None,
690 None,
691 Some(101),
692 Some(102),
693 Some(103),
694 None,
695 Some(256),
696 Some(512),
697 Some(1024),
698 ])) as ArrayRef;
699
700 assert_eq!(&arr, &expected_output);
701 }
702
703 #[test]
704 fn test_concat_primitive_array_slices() {
705 let input_1 =
706 PrimitiveArray::<Int64Type>::from(vec![Some(-1), Some(-1), Some(2), None, None])
707 .slice(1, 3);
708
709 let input_2 =
710 PrimitiveArray::<Int64Type>::from(vec![Some(101), Some(102), Some(103), None])
711 .slice(1, 3);
712 let arr = concat(&[&input_1, &input_2]).unwrap();
713
714 let expected_output = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
715 Some(-1),
716 Some(2),
717 None,
718 Some(102),
719 Some(103),
720 None,
721 ])) as ArrayRef;
722
723 assert_eq!(&arr, &expected_output);
724 }
725
726 #[test]
727 fn test_concat_boolean_primitive_arrays() {
728 let arr = concat(&[
729 &BooleanArray::from(vec![
730 Some(true),
731 Some(true),
732 Some(false),
733 None,
734 None,
735 Some(false),
736 ]),
737 &BooleanArray::from(vec![None, Some(false), Some(true), Some(false)]),
738 ])
739 .unwrap();
740
741 let expected_output = Arc::new(BooleanArray::from(vec![
742 Some(true),
743 Some(true),
744 Some(false),
745 None,
746 None,
747 Some(false),
748 None,
749 Some(false),
750 Some(true),
751 Some(false),
752 ])) as ArrayRef;
753
754 assert_eq!(&arr, &expected_output);
755 }
756
757 #[test]
758 fn test_concat_primitive_list_arrays() {
759 let list1 = vec![
760 Some(vec![Some(-1), Some(-1), Some(2), None, None]),
761 Some(vec![]),
762 None,
763 Some(vec![Some(10)]),
764 ];
765 let list1_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list1.clone());
766
767 let list2 = vec![
768 None,
769 Some(vec![Some(100), None, Some(101)]),
770 Some(vec![Some(102)]),
771 ];
772 let list2_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list2.clone());
773
774 let list3 = vec![Some(vec![Some(1000), Some(1001)])];
775 let list3_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list3.clone());
776
777 let array_result = concat(&[&list1_array, &list2_array, &list3_array]).unwrap();
778
779 let expected = list1.into_iter().chain(list2).chain(list3);
780 let array_expected = ListArray::from_iter_primitive::<Int64Type, _, _>(expected);
781
782 assert_eq!(array_result.as_ref(), &array_expected as &dyn Array);
783 }
784
785 #[test]
786 fn test_concat_primitive_list_arrays_slices() {
787 let list1 = vec![
788 Some(vec![Some(-1), Some(-1), Some(2), None, None]),
789 Some(vec![]), None, Some(vec![Some(10)]),
792 ];
793 let list1_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list1.clone());
794 let list1_array = list1_array.slice(1, 2);
795 let list1_values = list1.into_iter().skip(1).take(2);
796
797 let list2 = vec![
798 None,
799 Some(vec![Some(100), None, Some(101)]),
800 Some(vec![Some(102)]),
801 ];
802 let list2_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list2.clone());
803
804 assert!(list1_array.offsets()[0].as_usize() > 0);
806 let array_result = concat(&[&list1_array, &list2_array]).unwrap();
807
808 let expected = list1_values.chain(list2);
809 let array_expected = ListArray::from_iter_primitive::<Int64Type, _, _>(expected);
810
811 assert_eq!(array_result.as_ref(), &array_expected as &dyn Array);
812 }
813
814 #[test]
815 fn test_concat_primitive_list_arrays_sliced_lengths() {
816 let list1 = vec![
817 Some(vec![Some(-1), Some(-1), Some(2), None, None]), Some(vec![]), None, Some(vec![Some(10)]),
821 ];
822 let list1_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list1.clone());
823 let list1_array = list1_array.slice(0, 3); let list1_values = list1.into_iter().take(3);
825
826 let list2 = vec![
827 None,
828 Some(vec![Some(100), None, Some(101)]),
829 Some(vec![Some(102)]),
830 ];
831 let list2_array = ListArray::from_iter_primitive::<Int64Type, _, _>(list2.clone());
832
833 assert_eq!(list1_array.offsets()[0].as_usize(), 0);
836 assert!(list1_array.offsets().last().unwrap().as_usize() < list1_array.values().len());
837 let array_result = concat(&[&list1_array, &list2_array]).unwrap();
838
839 let expected = list1_values.chain(list2);
840 let array_expected = ListArray::from_iter_primitive::<Int64Type, _, _>(expected);
841
842 assert_eq!(array_result.as_ref(), &array_expected as &dyn Array);
843 }
844
845 #[test]
846 fn test_concat_primitive_fixed_size_list_arrays() {
847 let list1 = vec![
848 Some(vec![Some(-1), None]),
849 None,
850 Some(vec![Some(10), Some(20)]),
851 ];
852 let list1_array =
853 FixedSizeListArray::from_iter_primitive::<Int64Type, _, _>(list1.clone(), 2);
854
855 let list2 = vec![
856 None,
857 Some(vec![Some(100), None]),
858 Some(vec![Some(102), Some(103)]),
859 ];
860 let list2_array =
861 FixedSizeListArray::from_iter_primitive::<Int64Type, _, _>(list2.clone(), 2);
862
863 let list3 = vec![Some(vec![Some(1000), Some(1001)])];
864 let list3_array =
865 FixedSizeListArray::from_iter_primitive::<Int64Type, _, _>(list3.clone(), 2);
866
867 let array_result = concat(&[&list1_array, &list2_array, &list3_array]).unwrap();
868
869 let expected = list1.into_iter().chain(list2).chain(list3);
870 let array_expected =
871 FixedSizeListArray::from_iter_primitive::<Int64Type, _, _>(expected, 2);
872
873 assert_eq!(array_result.as_ref(), &array_expected as &dyn Array);
874 }
875
876 #[test]
877 fn test_concat_struct_arrays() {
878 let field = Arc::new(Field::new("field", DataType::Int64, true));
879 let input_primitive_1: ArrayRef = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
880 Some(-1),
881 Some(-1),
882 Some(2),
883 None,
884 None,
885 ]));
886 let input_struct_1 = StructArray::from(vec![(field.clone(), input_primitive_1)]);
887
888 let input_primitive_2: ArrayRef = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
889 Some(101),
890 Some(102),
891 Some(103),
892 None,
893 ]));
894 let input_struct_2 = StructArray::from(vec![(field.clone(), input_primitive_2)]);
895
896 let input_primitive_3: ArrayRef = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
897 Some(256),
898 Some(512),
899 Some(1024),
900 ]));
901 let input_struct_3 = StructArray::from(vec![(field, input_primitive_3)]);
902
903 let arr = concat(&[&input_struct_1, &input_struct_2, &input_struct_3]).unwrap();
904
905 let expected_primitive_output = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
906 Some(-1),
907 Some(-1),
908 Some(2),
909 None,
910 None,
911 Some(101),
912 Some(102),
913 Some(103),
914 None,
915 Some(256),
916 Some(512),
917 Some(1024),
918 ])) as ArrayRef;
919
920 let actual_primitive = arr
921 .as_any()
922 .downcast_ref::<StructArray>()
923 .unwrap()
924 .column(0);
925 assert_eq!(actual_primitive, &expected_primitive_output);
926 }
927
928 #[test]
929 fn test_concat_struct_array_slices() {
930 let field = Arc::new(Field::new("field", DataType::Int64, true));
931 let input_primitive_1: ArrayRef = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
932 Some(-1),
933 Some(-1),
934 Some(2),
935 None,
936 None,
937 ]));
938 let input_struct_1 = StructArray::from(vec![(field.clone(), input_primitive_1)]);
939
940 let input_primitive_2: ArrayRef = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
941 Some(101),
942 Some(102),
943 Some(103),
944 None,
945 ]));
946 let input_struct_2 = StructArray::from(vec![(field, input_primitive_2)]);
947
948 let arr = concat(&[&input_struct_1.slice(1, 3), &input_struct_2.slice(1, 2)]).unwrap();
949
950 let expected_primitive_output = Arc::new(PrimitiveArray::<Int64Type>::from(vec![
951 Some(-1),
952 Some(2),
953 None,
954 Some(102),
955 Some(103),
956 ])) as ArrayRef;
957
958 let actual_primitive = arr
959 .as_any()
960 .downcast_ref::<StructArray>()
961 .unwrap()
962 .column(0);
963 assert_eq!(actual_primitive, &expected_primitive_output);
964 }
965
966 #[test]
967 fn test_concat_struct_arrays_no_nulls() {
968 let input_1a = vec![1, 2, 3];
969 let input_1b = vec!["one", "two", "three"];
970 let input_2a = vec![4, 5, 6, 7];
971 let input_2b = vec!["four", "five", "six", "seven"];
972
973 let struct_from_primitives = |ints: Vec<i64>, strings: Vec<&str>| {
974 StructArray::try_from(vec![
975 ("ints", Arc::new(Int64Array::from(ints)) as _),
976 ("strings", Arc::new(StringArray::from(strings)) as _),
977 ])
978 };
979
980 let expected_output = struct_from_primitives(
981 [input_1a.clone(), input_2a.clone()].concat(),
982 [input_1b.clone(), input_2b.clone()].concat(),
983 )
984 .unwrap();
985
986 let input_1 = struct_from_primitives(input_1a, input_1b).unwrap();
987 let input_2 = struct_from_primitives(input_2a, input_2b).unwrap();
988
989 let arr = concat(&[&input_1, &input_2]).unwrap();
990 let struct_result = arr.as_struct();
991
992 assert_eq!(struct_result, &expected_output);
993 assert_eq!(arr.null_count(), 0);
994 }
995
996 #[test]
997 fn test_concat_struct_no_fields() {
998 let input_1 = StructArray::new_empty_fields(10, None);
999 let input_2 = StructArray::new_empty_fields(10, None);
1000 let arr = concat(&[&input_1, &input_2]).unwrap();
1001
1002 assert_eq!(arr.len(), 20);
1003 assert_eq!(arr.null_count(), 0);
1004
1005 let input1_valid = StructArray::new_empty_fields(10, Some(NullBuffer::new_valid(10)));
1006 let input2_null = StructArray::new_empty_fields(10, Some(NullBuffer::new_null(10)));
1007 let arr = concat(&[&input1_valid, &input2_null]).unwrap();
1008
1009 assert_eq!(arr.len(), 20);
1010 assert_eq!(arr.null_count(), 10);
1011 }
1012
1013 #[test]
1014 fn test_string_array_slices() {
1015 let input_1 = StringArray::from(vec!["hello", "A", "B", "C"]);
1016 let input_2 = StringArray::from(vec!["world", "D", "E", "Z"]);
1017
1018 let arr = concat(&[&input_1.slice(1, 3), &input_2.slice(1, 2)]).unwrap();
1019
1020 let expected_output = StringArray::from(vec!["A", "B", "C", "D", "E"]);
1021
1022 let actual_output = arr.as_any().downcast_ref::<StringArray>().unwrap();
1023 assert_eq!(actual_output, &expected_output);
1024 }
1025
1026 #[test]
1027 fn test_string_array_with_null_slices() {
1028 let input_1 = StringArray::from(vec![Some("hello"), None, Some("A"), Some("C")]);
1029 let input_2 = StringArray::from(vec![None, Some("world"), Some("D"), None]);
1030
1031 let arr = concat(&[&input_1.slice(1, 3), &input_2.slice(1, 2)]).unwrap();
1032
1033 let expected_output =
1034 StringArray::from(vec![None, Some("A"), Some("C"), Some("world"), Some("D")]);
1035
1036 let actual_output = arr.as_any().downcast_ref::<StringArray>().unwrap();
1037 assert_eq!(actual_output, &expected_output);
1038 }
1039
1040 fn collect_string_dictionary(array: &DictionaryArray<Int32Type>) -> Vec<Option<&str>> {
1041 let concrete = array.downcast_dict::<StringArray>().unwrap();
1042 concrete.into_iter().collect()
1043 }
1044
1045 #[test]
1046 fn test_string_dictionary_array() {
1047 let input_1: DictionaryArray<Int32Type> = vec!["hello", "A", "B", "hello", "hello", "C"]
1048 .into_iter()
1049 .collect();
1050 let input_2: DictionaryArray<Int32Type> = vec!["hello", "E", "E", "hello", "F", "E"]
1051 .into_iter()
1052 .collect();
1053
1054 let expected: Vec<_> = vec![
1055 "hello", "A", "B", "hello", "hello", "C", "hello", "E", "E", "hello", "F", "E",
1056 ]
1057 .into_iter()
1058 .map(Some)
1059 .collect();
1060
1061 let concat = concat(&[&input_1 as _, &input_2 as _]).unwrap();
1062 let dictionary = concat.as_dictionary::<Int32Type>();
1063 let actual = collect_string_dictionary(dictionary);
1064 assert_eq!(actual, expected);
1065
1066 assert_eq!(
1068 dictionary.values().len(),
1069 input_1.values().len() + input_2.values().len(),
1070 )
1071 }
1072
1073 #[test]
1074 fn test_string_dictionary_array_nulls() {
1075 let input_1: DictionaryArray<Int32Type> = vec![Some("foo"), Some("bar"), None, Some("fiz")]
1076 .into_iter()
1077 .collect();
1078 let input_2: DictionaryArray<Int32Type> = vec![None].into_iter().collect();
1079 let expected = vec![Some("foo"), Some("bar"), None, Some("fiz"), None];
1080
1081 let concat = concat(&[&input_1 as _, &input_2 as _]).unwrap();
1082 let dictionary = concat.as_dictionary::<Int32Type>();
1083 let actual = collect_string_dictionary(dictionary);
1084 assert_eq!(actual, expected);
1085
1086 assert_eq!(
1088 dictionary.values().len(),
1089 input_1.values().len() + input_2.values().len(),
1090 )
1091 }
1092
1093 #[test]
1094 fn test_string_dictionary_array_nulls_in_values() {
1095 let input_1_keys = Int32Array::from_iter_values([0, 2, 1, 3]);
1096 let input_1_values = StringArray::from(vec![Some("foo"), None, Some("bar"), Some("fiz")]);
1097 let input_1 = DictionaryArray::new(input_1_keys, Arc::new(input_1_values));
1098
1099 let input_2_keys = Int32Array::from_iter_values([0]);
1100 let input_2_values = StringArray::from(vec![None, Some("hello")]);
1101 let input_2 = DictionaryArray::new(input_2_keys, Arc::new(input_2_values));
1102
1103 let expected = vec![Some("foo"), Some("bar"), None, Some("fiz"), None];
1104
1105 let concat = concat(&[&input_1 as _, &input_2 as _]).unwrap();
1106 let dictionary = concat.as_dictionary::<Int32Type>();
1107 let actual = collect_string_dictionary(dictionary);
1108 assert_eq!(actual, expected);
1109 }
1110
1111 #[test]
1112 fn test_string_dictionary_merge() {
1113 let mut builder = StringDictionaryBuilder::<Int32Type>::new();
1114 for i in 0..20 {
1115 builder.append(i.to_string()).unwrap();
1116 }
1117 let input_1 = builder.finish();
1118
1119 let mut builder = StringDictionaryBuilder::<Int32Type>::new();
1120 for i in 0..30 {
1121 builder.append(i.to_string()).unwrap();
1122 }
1123 let input_2 = builder.finish();
1124
1125 let expected: Vec<_> = (0..20).chain(0..30).map(|x| x.to_string()).collect();
1126 let expected: Vec<_> = expected.iter().map(|x| Some(x.as_str())).collect();
1127
1128 let concat = concat(&[&input_1 as _, &input_2 as _]).unwrap();
1129 let dictionary = concat.as_dictionary::<Int32Type>();
1130 let actual = collect_string_dictionary(dictionary);
1131 assert_eq!(actual, expected);
1132
1133 let values_len = dictionary.values().len();
1136 assert!((30..40).contains(&values_len), "{values_len}")
1137 }
1138
1139 #[test]
1140 fn test_primitive_dictionary_merge() {
1141 let keys = vec![1; 5];
1143 let values = (10..20).collect::<Vec<_>>();
1144 let dict = DictionaryArray::new(
1145 Int8Array::from(keys.clone()),
1146 Arc::new(Int32Array::from(values.clone())),
1147 );
1148 let other = DictionaryArray::new(
1149 Int8Array::from(keys.clone()),
1150 Arc::new(Int32Array::from(values.clone())),
1151 );
1152
1153 let result_same_dictionary = concat(&[&dict, &dict]).unwrap();
1154 assert!(dict.values().to_data().ptr_eq(
1158 &result_same_dictionary
1159 .as_dictionary::<Int8Type>()
1160 .values()
1161 .to_data()
1162 ));
1163 assert_eq!(
1164 result_same_dictionary
1165 .as_dictionary::<Int8Type>()
1166 .values()
1167 .len(),
1168 values.len(),
1169 );
1170
1171 let result_cloned_dictionary = concat(&[&dict, &other]).unwrap();
1172 assert_eq!(
1174 result_cloned_dictionary
1175 .as_dictionary::<Int8Type>()
1176 .values()
1177 .len(),
1178 1
1179 );
1180 }
1181
1182 #[test]
1183 fn test_concat_string_sizes() {
1184 let a: LargeStringArray = ((0..150).map(|_| Some("foo"))).collect();
1185 let b: LargeStringArray = ((0..150).map(|_| Some("foo"))).collect();
1186 let c = LargeStringArray::from(vec![Some("foo"), Some("bar"), None, Some("baz")]);
1187 let arr = concat(&[&a, &b, &c]).unwrap();
1195 assert_eq!(arr.to_data().buffers()[1].capacity(), 960);
1197 }
1198
1199 #[test]
1200 fn test_dictionary_concat_reuse() {
1201 let array: DictionaryArray<Int8Type> = vec!["a", "a", "b", "c"].into_iter().collect();
1202 let copy: DictionaryArray<Int8Type> = array.clone();
1203
1204 assert_eq!(
1206 array.values(),
1207 &(Arc::new(StringArray::from(vec!["a", "b", "c"])) as ArrayRef)
1208 );
1209 assert_eq!(array.keys(), &Int8Array::from(vec![0, 0, 1, 2]));
1210
1211 let combined = concat(&[© as _, &array as _]).unwrap();
1213 let combined = combined.as_dictionary::<Int8Type>();
1214
1215 assert_eq!(
1216 combined.values(),
1217 &(Arc::new(StringArray::from(vec!["a", "b", "c"])) as ArrayRef),
1218 "Actual: {combined:#?}"
1219 );
1220
1221 assert_eq!(
1222 combined.keys(),
1223 &Int8Array::from(vec![0, 0, 1, 2, 0, 0, 1, 2])
1224 );
1225
1226 assert!(array
1228 .values()
1229 .to_data()
1230 .ptr_eq(&combined.values().to_data()));
1231 assert!(copy.values().to_data().ptr_eq(&combined.values().to_data()));
1232
1233 let new: DictionaryArray<Int8Type> = vec!["d"].into_iter().collect();
1234 let combined = concat(&[© as _, &array as _, &new as _]).unwrap();
1235 let com = combined.as_dictionary::<Int8Type>();
1236
1237 assert!(!array.values().to_data().ptr_eq(&com.values().to_data()));
1239 assert!(!copy.values().to_data().ptr_eq(&com.values().to_data()));
1240 assert!(!new.values().to_data().ptr_eq(&com.values().to_data()));
1241 }
1242
1243 #[test]
1244 fn concat_record_batches() {
1245 let schema = Arc::new(Schema::new(vec![
1246 Field::new("a", DataType::Int32, false),
1247 Field::new("b", DataType::Utf8, false),
1248 ]));
1249 let batch1 = RecordBatch::try_new(
1250 schema.clone(),
1251 vec![
1252 Arc::new(Int32Array::from(vec![1, 2])),
1253 Arc::new(StringArray::from(vec!["a", "b"])),
1254 ],
1255 )
1256 .unwrap();
1257 let batch2 = RecordBatch::try_new(
1258 schema.clone(),
1259 vec![
1260 Arc::new(Int32Array::from(vec![3, 4])),
1261 Arc::new(StringArray::from(vec!["c", "d"])),
1262 ],
1263 )
1264 .unwrap();
1265 let new_batch = concat_batches(&schema, [&batch1, &batch2]).unwrap();
1266 assert_eq!(new_batch.schema().as_ref(), schema.as_ref());
1267 assert_eq!(2, new_batch.num_columns());
1268 assert_eq!(4, new_batch.num_rows());
1269 let new_batch_owned = concat_batches(&schema, &[batch1, batch2]).unwrap();
1270 assert_eq!(new_batch_owned.schema().as_ref(), schema.as_ref());
1271 assert_eq!(2, new_batch_owned.num_columns());
1272 assert_eq!(4, new_batch_owned.num_rows());
1273 }
1274
1275 #[test]
1276 fn concat_empty_record_batch() {
1277 let schema = Arc::new(Schema::new(vec![
1278 Field::new("a", DataType::Int32, false),
1279 Field::new("b", DataType::Utf8, false),
1280 ]));
1281 let batch = concat_batches(&schema, []).unwrap();
1282 assert_eq!(batch.schema().as_ref(), schema.as_ref());
1283 assert_eq!(0, batch.num_rows());
1284 }
1285
1286 #[test]
1287 fn concat_record_batches_of_different_schemas_but_compatible_data() {
1288 let schema1 = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)]));
1289 let schema2 = Arc::new(Schema::new(vec![Field::new("c", DataType::Int32, false)]));
1291 let batch1 = RecordBatch::try_new(
1292 schema1.clone(),
1293 vec![Arc::new(Int32Array::from(vec![1, 2]))],
1294 )
1295 .unwrap();
1296 let batch2 =
1297 RecordBatch::try_new(schema2, vec![Arc::new(Int32Array::from(vec![3, 4]))]).unwrap();
1298 let batch = concat_batches(&schema1, [&batch1, &batch2]).unwrap();
1300 assert_eq!(batch.schema().as_ref(), schema1.as_ref());
1301 assert_eq!(4, batch.num_rows());
1302 }
1303
1304 #[test]
1305 fn concat_record_batches_of_different_schemas_incompatible_data() {
1306 let schema1 = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)]));
1307 let schema2 = Arc::new(Schema::new(vec![Field::new("a", DataType::Utf8, false)]));
1309 let batch1 = RecordBatch::try_new(
1310 schema1.clone(),
1311 vec![Arc::new(Int32Array::from(vec![1, 2]))],
1312 )
1313 .unwrap();
1314 let batch2 = RecordBatch::try_new(
1315 schema2,
1316 vec![Arc::new(StringArray::from(vec!["foo", "bar"]))],
1317 )
1318 .unwrap();
1319
1320 let error = concat_batches(&schema1, [&batch1, &batch2]).unwrap_err();
1321 assert_eq!(error.to_string(), "Invalid argument error: It is not possible to concatenate arrays of different data types (Int32, Utf8).");
1322 }
1323
1324 #[test]
1325 fn concat_capacity() {
1326 let a = Int32Array::from_iter_values(0..100);
1327 let b = Int32Array::from_iter_values(10..20);
1328 let a = concat(&[&a, &b]).unwrap();
1329 let data = a.to_data();
1330 assert_eq!(data.buffers()[0].len(), 440);
1331 assert_eq!(data.buffers()[0].capacity(), 448); let a = concat(&[&a.slice(10, 20), &b]).unwrap();
1334 let data = a.to_data();
1335 assert_eq!(data.buffers()[0].len(), 120);
1336 assert_eq!(data.buffers()[0].capacity(), 128); let a = StringArray::from_iter_values(std::iter::repeat("foo").take(100));
1339 let b = StringArray::from(vec!["bingo", "bongo", "lorem", ""]);
1340
1341 let a = concat(&[&a, &b]).unwrap();
1342 let data = a.to_data();
1343 assert_eq!(data.buffers()[0].len(), 420);
1345 assert_eq!(data.buffers()[0].capacity(), 448); assert_eq!(data.buffers()[1].len(), 315);
1349 assert_eq!(data.buffers()[1].capacity(), 320); let a = concat(&[&a.slice(10, 40), &b]).unwrap();
1352 let data = a.to_data();
1353 assert_eq!(data.buffers()[0].len(), 180);
1355 assert_eq!(data.buffers()[0].capacity(), 192); assert_eq!(data.buffers()[1].len(), 135);
1359 assert_eq!(data.buffers()[1].capacity(), 192); let a = LargeBinaryArray::from_iter_values(std::iter::repeat(b"foo").take(100));
1362 let b = LargeBinaryArray::from_iter_values(std::iter::repeat(b"cupcakes").take(10));
1363
1364 let a = concat(&[&a, &b]).unwrap();
1365 let data = a.to_data();
1366 assert_eq!(data.buffers()[0].len(), 888);
1368 assert_eq!(data.buffers()[0].capacity(), 896); assert_eq!(data.buffers()[1].len(), 380);
1372 assert_eq!(data.buffers()[1].capacity(), 384); let a = concat(&[&a.slice(10, 40), &b]).unwrap();
1375 let data = a.to_data();
1376 assert_eq!(data.buffers()[0].len(), 408);
1378 assert_eq!(data.buffers()[0].capacity(), 448); assert_eq!(data.buffers()[1].len(), 200);
1382 assert_eq!(data.buffers()[1].capacity(), 256); }
1384
1385 #[test]
1386 fn concat_sparse_nulls() {
1387 let values = StringArray::from_iter_values((0..100).map(|x| x.to_string()));
1388 let keys = Int32Array::from(vec![1; 10]);
1389 let dict_a = DictionaryArray::new(keys, Arc::new(values));
1390 let values = StringArray::new_null(0);
1391 let keys = Int32Array::new_null(10);
1392 let dict_b = DictionaryArray::new(keys, Arc::new(values));
1393 let array = concat(&[&dict_a, &dict_b]).unwrap();
1394 assert_eq!(array.null_count(), 10);
1395 assert_eq!(array.logical_null_count(), 10);
1396 }
1397
1398 #[test]
1399 fn concat_dictionary_list_array_simple() {
1400 let scalars = vec![
1401 create_single_row_list_of_dict(vec![Some("a")]),
1402 create_single_row_list_of_dict(vec![Some("a")]),
1403 create_single_row_list_of_dict(vec![Some("b")]),
1404 ];
1405
1406 let arrays = scalars
1407 .iter()
1408 .map(|a| a as &(dyn Array))
1409 .collect::<Vec<_>>();
1410 let concat_res = concat(arrays.as_slice()).unwrap();
1411
1412 let expected_list = create_list_of_dict(vec![
1413 Some(vec![Some("a")]),
1415 Some(vec![Some("a")]),
1416 Some(vec![Some("b")]),
1417 ]);
1418
1419 let list = concat_res.as_list::<i32>();
1420
1421 list.iter().zip(expected_list.iter()).for_each(|(a, b)| {
1423 assert_eq!(a, b);
1424 });
1425
1426 assert_dictionary_has_unique_values::<_, StringArray>(
1427 list.values().as_dictionary::<Int32Type>(),
1428 );
1429 }
1430
1431 #[test]
1432 fn concat_many_dictionary_list_arrays() {
1433 let number_of_unique_values = 8;
1434 let scalars = (0..80000)
1435 .map(|i| {
1436 create_single_row_list_of_dict(vec![Some(
1437 (i % number_of_unique_values).to_string(),
1438 )])
1439 })
1440 .collect::<Vec<_>>();
1441
1442 let arrays = scalars
1443 .iter()
1444 .map(|a| a as &(dyn Array))
1445 .collect::<Vec<_>>();
1446 let concat_res = concat(arrays.as_slice()).unwrap();
1447
1448 let expected_list = create_list_of_dict(
1449 (0..80000)
1450 .map(|i| Some(vec![Some((i % number_of_unique_values).to_string())]))
1451 .collect::<Vec<_>>(),
1452 );
1453
1454 let list = concat_res.as_list::<i32>();
1455
1456 list.iter().zip(expected_list.iter()).for_each(|(a, b)| {
1458 assert_eq!(a, b);
1459 });
1460
1461 assert_dictionary_has_unique_values::<_, StringArray>(
1462 list.values().as_dictionary::<Int32Type>(),
1463 );
1464 }
1465
1466 fn create_single_row_list_of_dict(
1467 list_items: Vec<Option<impl AsRef<str>>>,
1468 ) -> GenericListArray<i32> {
1469 let rows = list_items.into_iter().map(Some).collect();
1470
1471 create_list_of_dict(vec![rows])
1472 }
1473
1474 fn create_list_of_dict(
1475 rows: Vec<Option<Vec<Option<impl AsRef<str>>>>>,
1476 ) -> GenericListArray<i32> {
1477 let mut builder =
1478 GenericListBuilder::<i32, _>::new(StringDictionaryBuilder::<Int32Type>::new());
1479
1480 for row in rows {
1481 builder.append_option(row);
1482 }
1483
1484 builder.finish()
1485 }
1486
1487 fn assert_dictionary_has_unique_values<'a, K, V>(array: &'a DictionaryArray<K>)
1488 where
1489 K: ArrowDictionaryKeyType,
1490 V: Sync + Send + 'static,
1491 &'a V: ArrayAccessor + IntoIterator,
1492
1493 <&'a V as ArrayAccessor>::Item: Default + Clone + PartialEq + Debug + Ord,
1494 <&'a V as IntoIterator>::Item: Clone + PartialEq + Debug + Ord,
1495 {
1496 let dict = array.downcast_dict::<V>().unwrap();
1497 let mut values = dict.values().into_iter().collect::<Vec<_>>();
1498
1499 values.sort();
1501
1502 let mut unique_values = values.clone();
1503
1504 unique_values.dedup();
1505
1506 assert_eq!(
1507 values, unique_values,
1508 "There are duplicates in the value list (the value list here is sorted which is only for the assertion)"
1509 );
1510 }
1511
1512 #[test]
1514 fn test_concat_run_array() {
1515 let run_ends1 = Int32Array::from(vec![2, 4]);
1517 let values1 = Int32Array::from(vec![10, 20]);
1518 let array1 = RunArray::try_new(&run_ends1, &values1).unwrap();
1519
1520 let run_ends2 = Int32Array::from(vec![1, 4]);
1521 let values2 = Int32Array::from(vec![30, 40]);
1522 let array2 = RunArray::try_new(&run_ends2, &values2).unwrap();
1523
1524 let result = concat(&[&array1, &array2]).unwrap();
1526 let result_run_array: &arrow_array::RunArray<Int32Type> = result.as_run();
1527
1528 assert_eq!(result_run_array.len(), 8); let run_ends = result_run_array.run_ends().values();
1533 assert_eq!(run_ends.len(), 4);
1534 assert_eq!(&[2, 4, 5, 8], run_ends);
1535
1536 let values = result_run_array
1538 .values()
1539 .as_any()
1540 .downcast_ref::<Int32Array>()
1541 .unwrap();
1542 assert_eq!(values.len(), 4);
1543 assert_eq!(&[10, 20, 30, 40], values.values());
1544 }
1545
1546 #[test]
1547 fn test_concat_run_array_matching_first_last_value() {
1548 let run_ends1 = Int32Array::from(vec![2, 4, 7]);
1550 let values1 = Int32Array::from(vec![10, 20, 30]);
1551 let array1 = RunArray::try_new(&run_ends1, &values1).unwrap();
1552
1553 let run_ends2 = Int32Array::from(vec![3, 5]);
1555 let values2 = Int32Array::from(vec![30, 40]);
1556 let array2 = RunArray::try_new(&run_ends2, &values2).unwrap();
1557
1558 let result = concat(&[&array1, &array2]).unwrap();
1560 let result_run_array: &arrow_array::RunArray<Int32Type> = result.as_run();
1561
1562 assert_eq!(result_run_array.len(), 12);
1564
1565 let run_ends = result_run_array.run_ends().values();
1567 assert_eq!(&[2, 4, 7, 10, 12], run_ends);
1568
1569 assert_eq!(
1571 &[10, 20, 30, 30, 40],
1572 result_run_array
1573 .values()
1574 .as_any()
1575 .downcast_ref::<Int32Array>()
1576 .unwrap()
1577 .values()
1578 );
1579 }
1580
1581 #[test]
1582 fn test_concat_run_array_with_nulls() {
1583 let values1 = Int32Array::from(vec![Some(10), None, Some(30)]);
1585 let run_ends1 = Int32Array::from(vec![2, 4, 7]);
1586 let array1 = RunArray::try_new(&run_ends1, &values1).unwrap();
1587
1588 let values2 = Int32Array::from(vec![Some(30), None]);
1590 let run_ends2 = Int32Array::from(vec![3, 5]);
1591 let array2 = RunArray::try_new(&run_ends2, &values2).unwrap();
1592
1593 let result = concat(&[&array1, &array2]).unwrap();
1595 let result_run_array: &arrow_array::RunArray<Int32Type> = result.as_run();
1596
1597 assert_eq!(result_run_array.len(), 12);
1599
1600 assert_eq!(result_run_array.len(), 12); let run_ends_values = result_run_array.run_ends().values();
1608 assert_eq!(&[2, 4, 7, 10, 12], run_ends_values);
1609
1610 let expected = Int32Array::from(vec![Some(10), None, Some(30), Some(30), None]);
1612 let actual = result_run_array
1613 .values()
1614 .as_any()
1615 .downcast_ref::<Int32Array>()
1616 .unwrap();
1617 assert_eq!(actual.len(), expected.len());
1618 assert_eq!(actual.null_count(), expected.null_count());
1619 assert_eq!(actual.values(), expected.values());
1620 }
1621
1622 #[test]
1623 fn test_concat_run_array_single() {
1624 let run_ends1 = Int32Array::from(vec![2, 4]);
1626 let values1 = Int32Array::from(vec![10, 20]);
1627 let array1 = RunArray::try_new(&run_ends1, &values1).unwrap();
1628
1629 let result = concat(&[&array1]).unwrap();
1631 let result_run_array: &arrow_array::RunArray<Int32Type> = result.as_run();
1632
1633 assert_eq!(result_run_array.len(), 4);
1635
1636 let run_ends = result_run_array.run_ends().values();
1638 assert_eq!(&[2, 4], run_ends);
1639
1640 assert_eq!(
1642 &[10, 20],
1643 result_run_array
1644 .values()
1645 .as_any()
1646 .downcast_ref::<Int32Array>()
1647 .unwrap()
1648 .values()
1649 );
1650 }
1651
1652 #[test]
1653 fn test_concat_run_array_with_3_arrays() {
1654 let run_ends1 = Int32Array::from(vec![2, 4]);
1655 let values1 = Int32Array::from(vec![10, 20]);
1656 let array1 = RunArray::try_new(&run_ends1, &values1).unwrap();
1657 let run_ends2 = Int32Array::from(vec![1, 4]);
1658 let values2 = Int32Array::from(vec![30, 40]);
1659 let array2 = RunArray::try_new(&run_ends2, &values2).unwrap();
1660 let run_ends3 = Int32Array::from(vec![1, 4]);
1661 let values3 = Int32Array::from(vec![50, 60]);
1662 let array3 = RunArray::try_new(&run_ends3, &values3).unwrap();
1663
1664 let result = concat(&[&array1, &array2, &array3]).unwrap();
1666 let result_run_array: &arrow_array::RunArray<Int32Type> = result.as_run();
1667
1668 assert_eq!(result_run_array.len(), 12); let run_ends = result_run_array.run_ends().values();
1673 assert_eq!(run_ends.len(), 6);
1674 assert_eq!(&[2, 4, 5, 8, 9, 12], run_ends);
1675
1676 let values = result_run_array
1678 .values()
1679 .as_any()
1680 .downcast_ref::<Int32Array>()
1681 .unwrap();
1682 assert_eq!(values.len(), 6);
1683 assert_eq!(&[10, 20, 30, 40, 50, 60], values.values());
1684 }
1685}