arrow_select/coalesce.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`BatchCoalescer`] concatenates multiple [`RecordBatch`]es after
19//! operations such as [`filter`] and [`take`].
20//!
21//! [`filter`]: crate::filter::filter
22//! [`take`]: crate::take::take
23use crate::filter::filter_record_batch;
24use crate::take::take_record_batch;
25use arrow_array::types::{BinaryViewType, StringViewType};
26use arrow_array::{Array, ArrayRef, BooleanArray, RecordBatch, downcast_primitive};
27use arrow_schema::{ArrowError, DataType, SchemaRef};
28use std::collections::VecDeque;
29use std::sync::Arc;
30// Originally From DataFusion's coalesce module:
31// https://github.com/apache/datafusion/blob/9d2f04996604e709ee440b65f41e7b882f50b788/datafusion/physical-plan/src/coalesce/mod.rs#L26-L25
32
33mod byte_view;
34mod generic;
35mod primitive;
36
37use byte_view::InProgressByteViewArray;
38use generic::GenericInProgressArray;
39use primitive::InProgressPrimitiveArray;
40
41/// Concatenate multiple [`RecordBatch`]es
42///
43/// Implements the common pattern of incrementally creating output
44/// [`RecordBatch`]es of a specific size from an input stream of
45/// [`RecordBatch`]es.
46///
47/// This is useful after operations such as [`filter`] and [`take`] that produce
48/// smaller batches, and we want to coalesce them into larger batches for
49/// further processing.
50///
51/// # Motivation
52///
53/// If we use [`concat_batches`] to implement the same functionality, there are 2 potential issues:
54/// 1. At least 2x peak memory (holding the input and output of concat)
55/// 2. 2 copies of the data (to create the output of filter and then create the output of concat)
56///
57/// See: <https://github.com/apache/arrow-rs/issues/6692> for more discussions
58/// about the motivation.
59///
60/// [`filter`]: crate::filter::filter
61/// [`take`]: crate::take::take
62/// [`concat_batches`]: crate::concat::concat_batches
63///
64/// # Example
65/// ```
66/// use arrow_array::record_batch;
67/// use arrow_select::coalesce::{BatchCoalescer};
68/// let batch1 = record_batch!(("a", Int32, [1, 2, 3])).unwrap();
69/// let batch2 = record_batch!(("a", Int32, [4, 5])).unwrap();
70///
71/// // Create a `BatchCoalescer` that will produce batches with at least 4 rows
72/// let target_batch_size = 4;
73/// let mut coalescer = BatchCoalescer::new(batch1.schema(), 4);
74///
75/// // push the batches
76/// coalescer.push_batch(batch1).unwrap();
77/// // only pushed 3 rows (not yet 4, enough to produce a batch)
78/// assert!(coalescer.next_completed_batch().is_none());
79/// coalescer.push_batch(batch2).unwrap();
80/// // now we have 5 rows, so we can produce a batch
81/// let finished = coalescer.next_completed_batch().unwrap();
82/// // 4 rows came out (target batch size is 4)
83/// let expected = record_batch!(("a", Int32, [1, 2, 3, 4])).unwrap();
84/// assert_eq!(finished, expected);
85///
86/// // Have no more input, but still have an in-progress batch
87/// assert!(coalescer.next_completed_batch().is_none());
88/// // We can finish the batch, which will produce the remaining rows
89/// coalescer.finish_buffered_batch().unwrap();
90/// let expected = record_batch!(("a", Int32, [5])).unwrap();
91/// assert_eq!(coalescer.next_completed_batch().unwrap(), expected);
92///
93/// // The coalescer is now empty
94/// assert!(coalescer.next_completed_batch().is_none());
95/// ```
96///
97/// # Background
98///
99/// Generally speaking, larger [`RecordBatch`]es are more efficient to process
100/// than smaller [`RecordBatch`]es (until the CPU cache is exceeded) because
101/// there is fixed processing overhead per batch. This coalescer builds up these
102/// larger batches incrementally.
103///
104/// ```text
105/// ┌────────────────────┐
106/// │ RecordBatch │
107/// │ num_rows = 100 │
108/// └────────────────────┘ ┌────────────────────┐
109/// │ │
110/// ┌────────────────────┐ Coalesce │ │
111/// │ │ Batches │ │
112/// │ RecordBatch │ │ │
113/// │ num_rows = 200 │ ─ ─ ─ ─ ─ ─ ▶ │ │
114/// │ │ │ RecordBatch │
115/// │ │ │ num_rows = 400 │
116/// └────────────────────┘ │ │
117/// │ │
118/// ┌────────────────────┐ │ │
119/// │ │ │ │
120/// │ RecordBatch │ │ │
121/// │ num_rows = 100 │ └────────────────────┘
122/// │ │
123/// └────────────────────┘
124/// ```
125///
126/// # Notes:
127///
128/// 1. Output rows are produced in the same order as the input rows
129///
130/// 2. The output is a sequence of batches, with all but the last being at exactly
131/// `target_batch_size` rows.
132#[derive(Debug)]
133pub struct BatchCoalescer {
134 /// The input schema
135 schema: SchemaRef,
136 /// The target batch size (and thus size for views allocation). This is a
137 /// hard limit: the output batch will be exactly `target_batch_size`,
138 /// rather than possibly being slightly above.
139 target_batch_size: usize,
140 /// In-progress arrays
141 in_progress_arrays: Vec<Box<dyn InProgressArray>>,
142 /// Buffered row count. Always less than `batch_size`
143 buffered_rows: usize,
144 /// Completed batches
145 completed: VecDeque<RecordBatch>,
146 /// Biggest coalesce batch size. See [`Self::with_biggest_coalesce_batch_size`]
147 biggest_coalesce_batch_size: Option<usize>,
148}
149
150impl BatchCoalescer {
151 /// Create a new `BatchCoalescer`
152 ///
153 /// # Arguments
154 /// - `schema` - the schema of the output batches
155 /// - `target_batch_size` - the number of rows in each output batch.
156 /// Typical values are `4096` or `8192` rows.
157 ///
158 pub fn new(schema: SchemaRef, target_batch_size: usize) -> Self {
159 let in_progress_arrays = schema
160 .fields()
161 .iter()
162 .map(|field| create_in_progress_array(field.data_type(), target_batch_size))
163 .collect::<Vec<_>>();
164
165 Self {
166 schema,
167 target_batch_size,
168 in_progress_arrays,
169 // We will for sure store at least one completed batch
170 completed: VecDeque::with_capacity(1),
171 buffered_rows: 0,
172 biggest_coalesce_batch_size: None,
173 }
174 }
175
176 /// Set the coalesce batch size limit (default `None`)
177 ///
178 /// This limit determine when batches should bypass coalescing. Intuitively,
179 /// batches that are already large are costly to coalesce and are efficient
180 /// enough to process directly without coalescing.
181 ///
182 /// If `Some(limit)`, batches larger than this limit will bypass coalescing
183 /// when there is no buffered data, or when the previously buffered data
184 /// already exceeds this limit.
185 ///
186 /// If `None`, all batches will be coalesced according to the
187 /// target_batch_size.
188 pub fn with_biggest_coalesce_batch_size(mut self, limit: Option<usize>) -> Self {
189 self.biggest_coalesce_batch_size = limit;
190 self
191 }
192
193 /// Get the current biggest coalesce batch size limit
194 ///
195 /// See [`Self::with_biggest_coalesce_batch_size`] for details
196 pub fn biggest_coalesce_batch_size(&self) -> Option<usize> {
197 self.biggest_coalesce_batch_size
198 }
199
200 /// Set the biggest coalesce batch size limit
201 ///
202 /// See [`Self::with_biggest_coalesce_batch_size`] for details
203 pub fn set_biggest_coalesce_batch_size(&mut self, limit: Option<usize>) {
204 self.biggest_coalesce_batch_size = limit;
205 }
206
207 /// Return the schema of the output batches
208 pub fn schema(&self) -> SchemaRef {
209 Arc::clone(&self.schema)
210 }
211
212 /// Push a batch into the Coalescer after applying a filter
213 ///
214 /// This is semantically equivalent of calling [`Self::push_batch`]
215 /// with the results from [`filter_record_batch`]
216 ///
217 /// # Example
218 /// ```
219 /// # use arrow_array::{record_batch, BooleanArray};
220 /// # use arrow_select::coalesce::BatchCoalescer;
221 /// let batch1 = record_batch!(("a", Int32, [1, 2, 3])).unwrap();
222 /// let batch2 = record_batch!(("a", Int32, [4, 5, 6])).unwrap();
223 /// // Apply a filter to each batch to pick the first and last row
224 /// let filter = BooleanArray::from(vec![true, false, true]);
225 /// // create a new Coalescer that targets creating 1000 row batches
226 /// let mut coalescer = BatchCoalescer::new(batch1.schema(), 1000);
227 /// coalescer.push_batch_with_filter(batch1, &filter);
228 /// coalescer.push_batch_with_filter(batch2, &filter);
229 /// // finsh and retrieve the created batch
230 /// coalescer.finish_buffered_batch().unwrap();
231 /// let completed_batch = coalescer.next_completed_batch().unwrap();
232 /// // filtered out 2 and 5:
233 /// let expected_batch = record_batch!(("a", Int32, [1, 3, 4, 6])).unwrap();
234 /// assert_eq!(completed_batch, expected_batch);
235 /// ```
236 pub fn push_batch_with_filter(
237 &mut self,
238 batch: RecordBatch,
239 filter: &BooleanArray,
240 ) -> Result<(), ArrowError> {
241 // TODO: optimize this to avoid materializing (copying the results
242 // of filter to a new batch)
243 let filtered_batch = filter_record_batch(&batch, filter)?;
244 self.push_batch(filtered_batch)
245 }
246
247 /// Push a batch into the Coalescer after applying a set of indices
248 /// This is semantically equivalent of calling [`Self::push_batch`]
249 /// with the results from [`take_record_batch`]
250 ///
251 /// # Example
252 /// ```
253 /// # use arrow_array::{record_batch, UInt64Array};
254 /// # use arrow_select::coalesce::BatchCoalescer;
255 /// let batch1 = record_batch!(("a", Int32, [0, 0, 0])).unwrap();
256 /// let batch2 = record_batch!(("a", Int32, [1, 1, 4, 5, 1, 4])).unwrap();
257 /// // Sorted indices to create a sorted output, this can be obtained with
258 /// // `arrow-ord`'s sort_to_indices operation
259 /// let indices = UInt64Array::from(vec![0, 1, 4, 2, 5, 3]);
260 /// // create a new Coalescer that targets creating 1000 row batches
261 /// let mut coalescer = BatchCoalescer::new(batch1.schema(), 1000);
262 /// coalescer.push_batch(batch1);
263 /// coalescer.push_batch_with_indices(batch2, &indices);
264 /// // finsh and retrieve the created batch
265 /// coalescer.finish_buffered_batch().unwrap();
266 /// let completed_batch = coalescer.next_completed_batch().unwrap();
267 /// let expected_batch = record_batch!(("a", Int32, [0, 0, 0, 1, 1, 1, 4, 4, 5])).unwrap();
268 /// assert_eq!(completed_batch, expected_batch);
269 /// ```
270 pub fn push_batch_with_indices(
271 &mut self,
272 batch: RecordBatch,
273 indices: &dyn Array,
274 ) -> Result<(), ArrowError> {
275 // todo: optimize this to avoid materializing (copying the results of take indices to a new batch)
276 let taken_batch = take_record_batch(&batch, indices)?;
277 self.push_batch(taken_batch)
278 }
279
280 /// Push all the rows from `batch` into the Coalescer
281 ///
282 /// When buffered data plus incoming rows reach `target_batch_size` ,
283 /// completed batches are generated eagerly and can be retrieved via
284 /// [`Self::next_completed_batch()`].
285 /// Output batches contain exactly `target_batch_size` rows, so the tail of
286 /// the input batch may remain buffered.
287 /// Remaining partial data either waits for future input batches or can be
288 /// materialized immediately by calling [`Self::finish_buffered_batch()`].
289 ///
290 /// # Example
291 /// ```
292 /// # use arrow_array::record_batch;
293 /// # use arrow_select::coalesce::BatchCoalescer;
294 /// let batch1 = record_batch!(("a", Int32, [1, 2, 3])).unwrap();
295 /// let batch2 = record_batch!(("a", Int32, [4, 5, 6])).unwrap();
296 /// // create a new Coalescer that targets creating 1000 row batches
297 /// let mut coalescer = BatchCoalescer::new(batch1.schema(), 1000);
298 /// coalescer.push_batch(batch1);
299 /// coalescer.push_batch(batch2);
300 /// // finsh and retrieve the created batch
301 /// coalescer.finish_buffered_batch().unwrap();
302 /// let completed_batch = coalescer.next_completed_batch().unwrap();
303 /// let expected_batch = record_batch!(("a", Int32, [1, 2, 3, 4, 5, 6])).unwrap();
304 /// assert_eq!(completed_batch, expected_batch);
305 /// ```
306 pub fn push_batch(&mut self, batch: RecordBatch) -> Result<(), ArrowError> {
307 // Large batch bypass optimization:
308 // When biggest_coalesce_batch_size is configured and a batch exceeds this limit,
309 // we can avoid expensive split-and-merge operations by passing it through directly.
310 //
311 // IMPORTANT: This optimization is OPTIONAL and only active when biggest_coalesce_batch_size
312 // is explicitly set via with_biggest_coalesce_batch_size(Some(limit)).
313 // If not set (None), ALL batches follow normal coalescing behavior regardless of size.
314
315 // =============================================================================
316 // CASE 1: No buffer + large batch → Direct bypass
317 // =============================================================================
318 // Example scenario (target_batch_size=1000, biggest_coalesce_batch_size=Some(500)):
319 // Input sequence: [600, 1200, 300]
320 //
321 // With biggest_coalesce_batch_size=Some(500) (optimization enabled):
322 // 600 → large batch detected! buffered_rows=0 → Case 1: direct bypass
323 // → output: [600] (bypass, preserves large batch)
324 // 1200 → large batch detected! buffered_rows=0 → Case 1: direct bypass
325 // → output: [1200] (bypass, preserves large batch)
326 // 300 → normal batch, buffer: [300]
327 // Result: [600], [1200], [300] - large batches preserved, mixed sizes
328
329 // =============================================================================
330 // CASE 2: Buffer too large + large batch → Flush first, then bypass
331 // =============================================================================
332 // This case prevents creating extremely large merged batches that would
333 // significantly exceed both target_batch_size and biggest_coalesce_batch_size.
334 //
335 // Example 1: Buffer exceeds limit before large batch arrives
336 // target_batch_size=1000, biggest_coalesce_batch_size=Some(400)
337 // Input: [350, 200, 800]
338 //
339 // Step 1: push_batch([350])
340 // → batch_size=350 <= 400, normal path
341 // → buffer: [350], buffered_rows=350
342 //
343 // Step 2: push_batch([200])
344 // → batch_size=200 <= 400, normal path
345 // → buffer: [350, 200], buffered_rows=550
346 //
347 // Step 3: push_batch([800])
348 // → batch_size=800 > 400, large batch path
349 // → buffered_rows=550 > 400 → Case 2: flush first
350 // → flush: output [550] (combined [350, 200])
351 // → then bypass: output [800]
352 // Result: [550], [800] - buffer flushed to prevent oversized merge
353 //
354 // Example 2: Multiple small batches accumulate before large batch
355 // target_batch_size=1000, biggest_coalesce_batch_size=Some(300)
356 // Input: [150, 100, 80, 900]
357 //
358 // Step 1-3: Accumulate small batches
359 // 150 → buffer: [150], buffered_rows=150
360 // 100 → buffer: [150, 100], buffered_rows=250
361 // 80 → buffer: [150, 100, 80], buffered_rows=330
362 //
363 // Step 4: push_batch([900])
364 // → batch_size=900 > 300, large batch path
365 // → buffered_rows=330 > 300 → Case 2: flush first
366 // → flush: output [330] (combined [150, 100, 80])
367 // → then bypass: output [900]
368 // Result: [330], [900] - prevents merge into [1230] which would be too large
369
370 // =============================================================================
371 // CASE 3: Small buffer + large batch → Normal coalescing (no bypass)
372 // =============================================================================
373 // When buffer is small enough, we still merge to maintain efficiency
374 // Example: target_batch_size=1000, biggest_coalesce_batch_size=Some(500)
375 // Input: [300, 1200]
376 //
377 // Step 1: push_batch([300])
378 // → batch_size=300 <= 500, normal path
379 // → buffer: [300], buffered_rows=300
380 //
381 // Step 2: push_batch([1200])
382 // → batch_size=1200 > 500, large batch path
383 // → buffered_rows=300 <= 500 → Case 3: normal merge
384 // → buffer: [300, 1200] (1500 total)
385 // → 1500 > target_batch_size → split: output [1000], buffer [500]
386 // Result: [1000], [500] - normal split/merge behavior maintained
387
388 // =============================================================================
389 // Comparison: Default vs Optimized Behavior
390 // =============================================================================
391 // target_batch_size=1000, biggest_coalesce_batch_size=Some(500)
392 // Input: [600, 1200, 300]
393 //
394 // DEFAULT BEHAVIOR (biggest_coalesce_batch_size=None):
395 // 600 → buffer: [600]
396 // 1200 → buffer: [600, 1200] (1800 rows total)
397 // → split: output [1000 rows], buffer [800 rows remaining]
398 // 300 → buffer: [800, 300] (1100 rows total)
399 // → split: output [1000 rows], buffer [100 rows remaining]
400 // Result: [1000], [1000], [100] - all outputs respect target_batch_size
401 //
402 // OPTIMIZED BEHAVIOR (biggest_coalesce_batch_size=Some(500)):
403 // 600 → Case 1: direct bypass → output: [600]
404 // 1200 → Case 1: direct bypass → output: [1200]
405 // 300 → normal path → buffer: [300]
406 // Result: [600], [1200], [300] - large batches preserved
407
408 // =============================================================================
409 // Benefits and Trade-offs
410 // =============================================================================
411 // Benefits of the optimization:
412 // - Large batches stay intact (better for downstream vectorized processing)
413 // - Fewer split/merge operations (better CPU performance)
414 // - More predictable memory usage patterns
415 // - Maintains streaming efficiency while preserving batch boundaries
416 //
417 // Trade-offs:
418 // - Output batch sizes become variable (not always target_batch_size)
419 // - May produce smaller partial batches when flushing before large batches
420 // - Requires tuning biggest_coalesce_batch_size parameter for optimal performance
421
422 // TODO, for unsorted batches, we may can filter all large batches, and coalesce all
423 // small batches together?
424
425 let batch_size = batch.num_rows();
426
427 // Fast path: skip empty batches
428 if batch_size == 0 {
429 return Ok(());
430 }
431
432 // Large batch optimization: bypass coalescing for oversized batches
433 if let Some(limit) = self.biggest_coalesce_batch_size {
434 if batch_size > limit {
435 // Case 1: No buffered data - emit large batch directly
436 // Example: [] + [1200] → output [1200], buffer []
437 if self.buffered_rows == 0 {
438 self.completed.push_back(batch);
439 return Ok(());
440 }
441
442 // Case 2: Buffer too large - flush then emit to avoid oversized merge
443 // Example: [850] + [1200] → output [850], then output [1200]
444 // This prevents creating batches much larger than both target_batch_size
445 // and biggest_coalesce_batch_size, which could cause memory issues
446 if self.buffered_rows > limit {
447 self.finish_buffered_batch()?;
448 self.completed.push_back(batch);
449 return Ok(());
450 }
451
452 // Case 3: Small buffer - proceed with normal coalescing
453 // Example: [300] + [1200] → split and merge normally
454 // This ensures small batches still get properly coalesced
455 // while allowing some controlled growth beyond the limit
456 }
457 }
458
459 let (_schema, arrays, mut num_rows) = batch.into_parts();
460
461 // setup input rows
462 assert_eq!(arrays.len(), self.in_progress_arrays.len());
463 self.in_progress_arrays
464 .iter_mut()
465 .zip(arrays)
466 .for_each(|(in_progress, array)| {
467 in_progress.set_source(Some(array));
468 });
469
470 // If pushing this batch would exceed the target batch size,
471 // finish the current batch and start a new one
472 let mut offset = 0;
473 while num_rows > (self.target_batch_size - self.buffered_rows) {
474 let remaining_rows = self.target_batch_size - self.buffered_rows;
475 debug_assert!(remaining_rows > 0);
476
477 // Copy remaining_rows from each array
478 for in_progress in self.in_progress_arrays.iter_mut() {
479 in_progress.copy_rows(offset, remaining_rows)?;
480 }
481
482 self.buffered_rows += remaining_rows;
483 offset += remaining_rows;
484 num_rows -= remaining_rows;
485
486 self.finish_buffered_batch()?;
487 }
488
489 // Add any the remaining rows to the buffer
490 self.buffered_rows += num_rows;
491 if num_rows > 0 {
492 for in_progress in self.in_progress_arrays.iter_mut() {
493 in_progress.copy_rows(offset, num_rows)?;
494 }
495 }
496
497 // If we have reached the target batch size, finalize the buffered batch
498 if self.buffered_rows >= self.target_batch_size {
499 self.finish_buffered_batch()?;
500 }
501
502 // clear in progress sources (to allow the memory to be freed)
503 for in_progress in self.in_progress_arrays.iter_mut() {
504 in_progress.set_source(None);
505 }
506
507 Ok(())
508 }
509
510 /// Returns the number of buffered rows
511 pub fn get_buffered_rows(&self) -> usize {
512 self.buffered_rows
513 }
514
515 /// Concatenates any buffered batches into a single `RecordBatch` and
516 /// clears any output buffers
517 ///
518 /// Normally this is called when the input stream is exhausted, and
519 /// we want to finalize the last batch of rows.
520 ///
521 /// See [`Self::next_completed_batch()`] for the completed batches.
522 pub fn finish_buffered_batch(&mut self) -> Result<(), ArrowError> {
523 if self.buffered_rows == 0 {
524 return Ok(());
525 }
526 let new_arrays = self
527 .in_progress_arrays
528 .iter_mut()
529 .map(|array| array.finish())
530 .collect::<Result<Vec<_>, ArrowError>>()?;
531
532 for (array, field) in new_arrays.iter().zip(self.schema.fields().iter()) {
533 debug_assert_eq!(array.data_type(), field.data_type());
534 debug_assert_eq!(array.len(), self.buffered_rows);
535 }
536
537 // SAFETY: each array was created of the correct type and length.
538 let batch = unsafe {
539 RecordBatch::new_unchecked(Arc::clone(&self.schema), new_arrays, self.buffered_rows)
540 };
541
542 self.buffered_rows = 0;
543 self.completed.push_back(batch);
544 Ok(())
545 }
546
547 /// Returns true if there is any buffered data
548 pub fn is_empty(&self) -> bool {
549 self.buffered_rows == 0 && self.completed.is_empty()
550 }
551
552 /// Returns true if there are any completed batches
553 pub fn has_completed_batch(&self) -> bool {
554 !self.completed.is_empty()
555 }
556
557 /// Removes and returns the next completed batch, if any.
558 pub fn next_completed_batch(&mut self) -> Option<RecordBatch> {
559 self.completed.pop_front()
560 }
561}
562
563/// Return a new `InProgressArray` for the given data type
564fn create_in_progress_array(data_type: &DataType, batch_size: usize) -> Box<dyn InProgressArray> {
565 macro_rules! instantiate_primitive {
566 ($t:ty) => {
567 Box::new(InProgressPrimitiveArray::<$t>::new(
568 batch_size,
569 data_type.clone(),
570 ))
571 };
572 }
573
574 downcast_primitive! {
575 // Instantiate InProgressPrimitiveArray for each primitive type
576 data_type => (instantiate_primitive),
577 DataType::Utf8View => Box::new(InProgressByteViewArray::<StringViewType>::new(batch_size)),
578 DataType::BinaryView => {
579 Box::new(InProgressByteViewArray::<BinaryViewType>::new(batch_size))
580 }
581 _ => Box::new(GenericInProgressArray::new()),
582 }
583}
584
585/// Incrementally builds up arrays
586///
587/// [`GenericInProgressArray`] is the default implementation that buffers
588/// arrays and uses other kernels concatenates them when finished.
589///
590/// Some types have specialized implementations for this array types (e.g.,
591/// [`StringViewArray`], etc.).
592///
593/// [`StringViewArray`]: arrow_array::StringViewArray
594trait InProgressArray: std::fmt::Debug + Send + Sync {
595 /// Set the source array.
596 ///
597 /// Calls to [`Self::copy_rows`] will copy rows from this array into the
598 /// current in-progress array
599 fn set_source(&mut self, source: Option<ArrayRef>);
600
601 /// Copy rows from the current source array into the in-progress array
602 ///
603 /// The source array is set by [`Self::set_source`].
604 ///
605 /// Return an error if the source array is not set
606 fn copy_rows(&mut self, offset: usize, len: usize) -> Result<(), ArrowError>;
607
608 /// Finish the currently in-progress array and return it as an `ArrayRef`
609 fn finish(&mut self) -> Result<ArrayRef, ArrowError>;
610}
611
612#[cfg(test)]
613mod tests {
614 use super::*;
615 use crate::concat::concat_batches;
616 use arrow_array::builder::StringViewBuilder;
617 use arrow_array::cast::AsArray;
618 use arrow_array::{
619 BinaryViewArray, Int32Array, Int64Array, RecordBatchOptions, StringArray, StringViewArray,
620 TimestampNanosecondArray, UInt32Array, UInt64Array,
621 };
622 use arrow_schema::{DataType, Field, Schema};
623 use rand::{Rng, SeedableRng};
624 use std::ops::Range;
625
626 #[test]
627 fn test_coalesce() {
628 let batch = uint32_batch(0..8);
629 Test::new()
630 .with_batches(std::iter::repeat_n(batch, 10))
631 // expected output is exactly 21 rows (except for the final batch)
632 .with_batch_size(21)
633 .with_expected_output_sizes(vec![21, 21, 21, 17])
634 .run();
635 }
636
637 #[test]
638 fn test_coalesce_one_by_one() {
639 let batch = uint32_batch(0..1); // single row input
640 Test::new()
641 .with_batches(std::iter::repeat_n(batch, 97))
642 // expected output is exactly 20 rows (except for the final batch)
643 .with_batch_size(20)
644 .with_expected_output_sizes(vec![20, 20, 20, 20, 17])
645 .run();
646 }
647
648 #[test]
649 fn test_coalesce_empty() {
650 let schema = Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)]));
651
652 Test::new()
653 .with_batches(vec![])
654 .with_schema(schema)
655 .with_batch_size(21)
656 .with_expected_output_sizes(vec![])
657 .run();
658 }
659
660 #[test]
661 fn test_single_large_batch_greater_than_target() {
662 // test a single large batch
663 let batch = uint32_batch(0..4096);
664 Test::new()
665 .with_batch(batch)
666 .with_batch_size(1000)
667 .with_expected_output_sizes(vec![1000, 1000, 1000, 1000, 96])
668 .run();
669 }
670
671 #[test]
672 fn test_single_large_batch_smaller_than_target() {
673 // test a single large batch
674 let batch = uint32_batch(0..4096);
675 Test::new()
676 .with_batch(batch)
677 .with_batch_size(8192)
678 .with_expected_output_sizes(vec![4096])
679 .run();
680 }
681
682 #[test]
683 fn test_single_large_batch_equal_to_target() {
684 // test a single large batch
685 let batch = uint32_batch(0..4096);
686 Test::new()
687 .with_batch(batch)
688 .with_batch_size(4096)
689 .with_expected_output_sizes(vec![4096])
690 .run();
691 }
692
693 #[test]
694 fn test_single_large_batch_equally_divisible_in_target() {
695 // test a single large batch
696 let batch = uint32_batch(0..4096);
697 Test::new()
698 .with_batch(batch)
699 .with_batch_size(1024)
700 .with_expected_output_sizes(vec![1024, 1024, 1024, 1024])
701 .run();
702 }
703
704 #[test]
705 fn test_empty_schema() {
706 let schema = Schema::empty();
707 let batch = RecordBatch::new_empty(schema.into());
708 Test::new()
709 .with_batch(batch)
710 .with_expected_output_sizes(vec![])
711 .run();
712 }
713
714 /// Coalesce multiple batches, 80k rows, with a 0.1% selectivity filter
715 #[test]
716 fn test_coalesce_filtered_001() {
717 let mut filter_builder = RandomFilterBuilder {
718 num_rows: 8000,
719 selectivity: 0.001,
720 seed: 0,
721 };
722
723 // add 10 batches of 8000 rows each
724 // 80k rows, selecting 0.1% means 80 rows
725 // not exactly 80 as the rows are random;
726 let mut test = Test::new();
727 for _ in 0..10 {
728 test = test
729 .with_batch(multi_column_batch(0..8000))
730 .with_filter(filter_builder.next_filter())
731 }
732 test.with_batch_size(15)
733 .with_expected_output_sizes(vec![15, 15, 15, 13])
734 .run();
735 }
736
737 /// Coalesce multiple batches, 80k rows, with a 1% selectivity filter
738 #[test]
739 fn test_coalesce_filtered_01() {
740 let mut filter_builder = RandomFilterBuilder {
741 num_rows: 8000,
742 selectivity: 0.01,
743 seed: 0,
744 };
745
746 // add 10 batches of 8000 rows each
747 // 80k rows, selecting 1% means 800 rows
748 // not exactly 800 as the rows are random;
749 let mut test = Test::new();
750 for _ in 0..10 {
751 test = test
752 .with_batch(multi_column_batch(0..8000))
753 .with_filter(filter_builder.next_filter())
754 }
755 test.with_batch_size(128)
756 .with_expected_output_sizes(vec![128, 128, 128, 128, 128, 128, 15])
757 .run();
758 }
759
760 /// Coalesce multiple batches, 80k rows, with a 10% selectivity filter
761 #[test]
762 fn test_coalesce_filtered_1() {
763 let mut filter_builder = RandomFilterBuilder {
764 num_rows: 8000,
765 selectivity: 0.1,
766 seed: 0,
767 };
768
769 // add 10 batches of 8000 rows each
770 // 80k rows, selecting 10% means 8000 rows
771 // not exactly 800 as the rows are random;
772 let mut test = Test::new();
773 for _ in 0..10 {
774 test = test
775 .with_batch(multi_column_batch(0..8000))
776 .with_filter(filter_builder.next_filter())
777 }
778 test.with_batch_size(1024)
779 .with_expected_output_sizes(vec![1024, 1024, 1024, 1024, 1024, 1024, 1024, 840])
780 .run();
781 }
782
783 /// Coalesce multiple batches, 8k rows, with a 90% selectivity filter
784 #[test]
785 fn test_coalesce_filtered_90() {
786 let mut filter_builder = RandomFilterBuilder {
787 num_rows: 800,
788 selectivity: 0.90,
789 seed: 0,
790 };
791
792 // add 10 batches of 800 rows each
793 // 8k rows, selecting 99% means 7200 rows
794 // not exactly 7200 as the rows are random;
795 let mut test = Test::new();
796 for _ in 0..10 {
797 test = test
798 .with_batch(multi_column_batch(0..800))
799 .with_filter(filter_builder.next_filter())
800 }
801 test.with_batch_size(1024)
802 .with_expected_output_sizes(vec![1024, 1024, 1024, 1024, 1024, 1024, 1024, 13])
803 .run();
804 }
805
806 #[test]
807 fn test_coalesce_non_null() {
808 Test::new()
809 // 4040 rows of unit32
810 .with_batch(uint32_batch_non_null(0..3000))
811 .with_batch(uint32_batch_non_null(0..1040))
812 .with_batch_size(1024)
813 .with_expected_output_sizes(vec![1024, 1024, 1024, 968])
814 .run();
815 }
816 #[test]
817 fn test_utf8_split() {
818 Test::new()
819 // 4040 rows of utf8 strings in total, split into batches of 1024
820 .with_batch(utf8_batch(0..3000))
821 .with_batch(utf8_batch(0..1040))
822 .with_batch_size(1024)
823 .with_expected_output_sizes(vec![1024, 1024, 1024, 968])
824 .run();
825 }
826
827 #[test]
828 fn test_string_view_no_views() {
829 let output_batches = Test::new()
830 // both input batches have no views, so no need to compact
831 .with_batch(stringview_batch([Some("foo"), Some("bar")]))
832 .with_batch(stringview_batch([Some("baz"), Some("qux")]))
833 .with_expected_output_sizes(vec![4])
834 .run();
835
836 expect_buffer_layout(
837 col_as_string_view("c0", output_batches.first().unwrap()),
838 vec![],
839 );
840 }
841
842 #[test]
843 fn test_string_view_batch_small_no_compact() {
844 // view with only short strings (no buffers) --> no need to compact
845 let batch = stringview_batch_repeated(1000, [Some("a"), Some("b"), Some("c")]);
846 let output_batches = Test::new()
847 .with_batch(batch.clone())
848 .with_expected_output_sizes(vec![1000])
849 .run();
850
851 let array = col_as_string_view("c0", &batch);
852 let gc_array = col_as_string_view("c0", output_batches.first().unwrap());
853 assert_eq!(array.data_buffers().len(), 0);
854 assert_eq!(array.data_buffers().len(), gc_array.data_buffers().len()); // no compaction
855
856 expect_buffer_layout(gc_array, vec![]);
857 }
858
859 #[test]
860 fn test_string_view_batch_large_no_compact() {
861 // view with large strings (has buffers) but full --> no need to compact
862 let batch = stringview_batch_repeated(1000, [Some("This string is longer than 12 bytes")]);
863 let output_batches = Test::new()
864 .with_batch(batch.clone())
865 .with_batch_size(1000)
866 .with_expected_output_sizes(vec![1000])
867 .run();
868
869 let array = col_as_string_view("c0", &batch);
870 let gc_array = col_as_string_view("c0", output_batches.first().unwrap());
871 assert_eq!(array.data_buffers().len(), 5);
872 assert_eq!(array.data_buffers().len(), gc_array.data_buffers().len()); // no compaction
873
874 expect_buffer_layout(
875 gc_array,
876 vec![
877 ExpectedLayout {
878 len: 8190,
879 capacity: 8192,
880 },
881 ExpectedLayout {
882 len: 8190,
883 capacity: 8192,
884 },
885 ExpectedLayout {
886 len: 8190,
887 capacity: 8192,
888 },
889 ExpectedLayout {
890 len: 8190,
891 capacity: 8192,
892 },
893 ExpectedLayout {
894 len: 2240,
895 capacity: 8192,
896 },
897 ],
898 );
899 }
900
901 #[test]
902 fn test_string_view_batch_small_with_buffers_no_compact() {
903 // view with buffers but only short views
904 let short_strings = std::iter::repeat(Some("SmallString"));
905 let long_strings = std::iter::once(Some("This string is longer than 12 bytes"));
906 // 20 short strings, then a long ones
907 let values = short_strings.take(20).chain(long_strings);
908 let batch = stringview_batch_repeated(1000, values)
909 // take only 10 short strings (no long ones)
910 .slice(5, 10);
911 let output_batches = Test::new()
912 .with_batch(batch.clone())
913 .with_batch_size(1000)
914 .with_expected_output_sizes(vec![10])
915 .run();
916
917 let array = col_as_string_view("c0", &batch);
918 let gc_array = col_as_string_view("c0", output_batches.first().unwrap());
919 assert_eq!(array.data_buffers().len(), 1); // input has one buffer
920 assert_eq!(gc_array.data_buffers().len(), 0); // output has no buffers as only short strings
921 }
922
923 #[test]
924 fn test_string_view_batch_large_slice_compact() {
925 // view with large strings (has buffers) and only partially used --> no need to compact
926 let batch = stringview_batch_repeated(1000, [Some("This string is longer than 12 bytes")])
927 // slice only 22 rows, so most of the buffer is not used
928 .slice(11, 22);
929
930 let output_batches = Test::new()
931 .with_batch(batch.clone())
932 .with_batch_size(1000)
933 .with_expected_output_sizes(vec![22])
934 .run();
935
936 let array = col_as_string_view("c0", &batch);
937 let gc_array = col_as_string_view("c0", output_batches.first().unwrap());
938 assert_eq!(array.data_buffers().len(), 5);
939
940 expect_buffer_layout(
941 gc_array,
942 vec![ExpectedLayout {
943 len: 770,
944 capacity: 8192,
945 }],
946 );
947 }
948
949 #[test]
950 fn test_string_view_mixed() {
951 let large_view_batch =
952 stringview_batch_repeated(1000, [Some("This string is longer than 12 bytes")]);
953 let small_view_batch = stringview_batch_repeated(1000, [Some("SmallString")]);
954 let mixed_batch = stringview_batch_repeated(
955 1000,
956 [Some("This string is longer than 12 bytes"), Some("Small")],
957 );
958 let mixed_batch_nulls = stringview_batch_repeated(
959 1000,
960 [
961 Some("This string is longer than 12 bytes"),
962 Some("Small"),
963 None,
964 ],
965 );
966
967 // Several batches with mixed inline / non inline
968 // 4k rows in
969 let output_batches = Test::new()
970 .with_batch(large_view_batch.clone())
971 .with_batch(small_view_batch)
972 // this batch needs to be compacted (less than 1/2 full)
973 .with_batch(large_view_batch.slice(10, 20))
974 .with_batch(mixed_batch_nulls)
975 // this batch needs to be compacted (less than 1/2 full)
976 .with_batch(large_view_batch.slice(10, 20))
977 .with_batch(mixed_batch)
978 .with_expected_output_sizes(vec![1024, 1024, 1024, 968])
979 .run();
980
981 expect_buffer_layout(
982 col_as_string_view("c0", output_batches.first().unwrap()),
983 vec![
984 ExpectedLayout {
985 len: 8190,
986 capacity: 8192,
987 },
988 ExpectedLayout {
989 len: 8190,
990 capacity: 8192,
991 },
992 ExpectedLayout {
993 len: 8190,
994 capacity: 8192,
995 },
996 ExpectedLayout {
997 len: 8190,
998 capacity: 8192,
999 },
1000 ExpectedLayout {
1001 len: 2240,
1002 capacity: 8192,
1003 },
1004 ],
1005 );
1006 }
1007
1008 #[test]
1009 fn test_string_view_many_small_compact() {
1010 // 200 rows alternating long (28) and short (≤12) strings.
1011 // Only the 100 long strings go into data buffers: 100 × 28 = 2800.
1012 let batch = stringview_batch_repeated(
1013 200,
1014 [Some("This string is 28 bytes long"), Some("small string")],
1015 );
1016 let output_batches = Test::new()
1017 // First allocated buffer is 8kb.
1018 // Appending 10 batches of 2800 bytes will use 2800 * 10 = 14kb (8kb, an 16kb and 32kbkb)
1019 .with_batch(batch.clone())
1020 .with_batch(batch.clone())
1021 .with_batch(batch.clone())
1022 .with_batch(batch.clone())
1023 .with_batch(batch.clone())
1024 .with_batch(batch.clone())
1025 .with_batch(batch.clone())
1026 .with_batch(batch.clone())
1027 .with_batch(batch.clone())
1028 .with_batch(batch.clone())
1029 .with_batch_size(8000)
1030 .with_expected_output_sizes(vec![2000]) // only 1000 rows total
1031 .run();
1032
1033 // expect a nice even distribution of buffers
1034 expect_buffer_layout(
1035 col_as_string_view("c0", output_batches.first().unwrap()),
1036 vec![
1037 ExpectedLayout {
1038 len: 8176,
1039 capacity: 8192,
1040 },
1041 ExpectedLayout {
1042 len: 16380,
1043 capacity: 16384,
1044 },
1045 ExpectedLayout {
1046 len: 3444,
1047 capacity: 32768,
1048 },
1049 ],
1050 );
1051 }
1052
1053 #[test]
1054 fn test_string_view_many_small_boundary() {
1055 // The strings are designed to exactly fit into buffers that are powers of 2 long
1056 let batch = stringview_batch_repeated(100, [Some("This string is a power of two=32")]);
1057 let output_batches = Test::new()
1058 .with_batches(std::iter::repeat_n(batch, 20))
1059 .with_batch_size(900)
1060 .with_expected_output_sizes(vec![900, 900, 200])
1061 .run();
1062
1063 // expect each buffer to be entirely full except the last one
1064 expect_buffer_layout(
1065 col_as_string_view("c0", output_batches.first().unwrap()),
1066 vec![
1067 ExpectedLayout {
1068 len: 8192,
1069 capacity: 8192,
1070 },
1071 ExpectedLayout {
1072 len: 16384,
1073 capacity: 16384,
1074 },
1075 ExpectedLayout {
1076 len: 4224,
1077 capacity: 32768,
1078 },
1079 ],
1080 );
1081 }
1082
1083 #[test]
1084 fn test_string_view_large_small() {
1085 // The strings are 37 bytes long, so each batch has 100 * 28 = 2800 bytes
1086 let mixed_batch = stringview_batch_repeated(
1087 200,
1088 [Some("This string is 28 bytes long"), Some("small string")],
1089 );
1090 // These strings aren't copied, this array has an 8k buffer
1091 let all_large = stringview_batch_repeated(
1092 50,
1093 [Some(
1094 "This buffer has only large strings in it so there are no buffer copies",
1095 )],
1096 );
1097
1098 let output_batches = Test::new()
1099 // First allocated buffer is 8kb.
1100 // Appending five batches of 2800 bytes will use 2800 * 10 = 28kb (8kb, an 16kb and 32kbkb)
1101 .with_batch(mixed_batch.clone())
1102 .with_batch(mixed_batch.clone())
1103 .with_batch(all_large.clone())
1104 .with_batch(mixed_batch.clone())
1105 .with_batch(all_large.clone())
1106 .with_batch(mixed_batch.clone())
1107 .with_batch(mixed_batch.clone())
1108 .with_batch(all_large.clone())
1109 .with_batch(mixed_batch.clone())
1110 .with_batch(all_large.clone())
1111 .with_batch_size(8000)
1112 .with_expected_output_sizes(vec![1400])
1113 .run();
1114
1115 expect_buffer_layout(
1116 col_as_string_view("c0", output_batches.first().unwrap()),
1117 vec![
1118 ExpectedLayout {
1119 len: 8190,
1120 capacity: 8192,
1121 },
1122 ExpectedLayout {
1123 len: 16366,
1124 capacity: 16384,
1125 },
1126 ExpectedLayout {
1127 len: 6244,
1128 capacity: 32768,
1129 },
1130 ],
1131 );
1132 }
1133
1134 #[test]
1135 fn test_binary_view() {
1136 let values: Vec<Option<&[u8]>> = vec![
1137 Some(b"foo"),
1138 None,
1139 Some(b"A longer string that is more than 12 bytes"),
1140 ];
1141
1142 let binary_view =
1143 BinaryViewArray::from_iter(std::iter::repeat(values.iter()).flatten().take(1000));
1144 let batch =
1145 RecordBatch::try_from_iter(vec![("c0", Arc::new(binary_view) as ArrayRef)]).unwrap();
1146
1147 Test::new()
1148 .with_batch(batch.clone())
1149 .with_batch(batch.clone())
1150 .with_batch_size(512)
1151 .with_expected_output_sizes(vec![512, 512, 512, 464])
1152 .run();
1153 }
1154
1155 #[derive(Debug, Clone, PartialEq)]
1156 struct ExpectedLayout {
1157 len: usize,
1158 capacity: usize,
1159 }
1160
1161 /// Asserts that the buffer layout of the specified StringViewArray matches the expected layout
1162 fn expect_buffer_layout(array: &StringViewArray, expected: Vec<ExpectedLayout>) {
1163 let actual = array
1164 .data_buffers()
1165 .iter()
1166 .map(|b| ExpectedLayout {
1167 len: b.len(),
1168 capacity: b.capacity(),
1169 })
1170 .collect::<Vec<_>>();
1171
1172 assert_eq!(
1173 actual, expected,
1174 "Expected buffer layout {expected:#?} but got {actual:#?}"
1175 );
1176 }
1177
1178 /// Test for [`BatchCoalescer`]
1179 ///
1180 /// Pushes the input batches to the coalescer and verifies that the resulting
1181 /// batches have the expected number of rows and contents.
1182 #[derive(Debug, Clone)]
1183 struct Test {
1184 /// Batches to feed to the coalescer.
1185 input_batches: Vec<RecordBatch>,
1186 /// Filters to apply to the corresponding input batches.
1187 ///
1188 /// If there are no filters for the input batches, the batch will be
1189 /// pushed as is.
1190 filters: Vec<BooleanArray>,
1191 /// The schema. If not provided, the first batch's schema is used.
1192 schema: Option<SchemaRef>,
1193 /// Expected output sizes of the resulting batches
1194 expected_output_sizes: Vec<usize>,
1195 /// target batch size (default to 1024)
1196 target_batch_size: usize,
1197 }
1198
1199 impl Default for Test {
1200 fn default() -> Self {
1201 Self {
1202 input_batches: vec![],
1203 filters: vec![],
1204 schema: None,
1205 expected_output_sizes: vec![],
1206 target_batch_size: 1024,
1207 }
1208 }
1209 }
1210
1211 impl Test {
1212 fn new() -> Self {
1213 Self::default()
1214 }
1215
1216 /// Set the target batch size
1217 fn with_batch_size(mut self, target_batch_size: usize) -> Self {
1218 self.target_batch_size = target_batch_size;
1219 self
1220 }
1221
1222 /// Extend the input batches with `batch`
1223 fn with_batch(mut self, batch: RecordBatch) -> Self {
1224 self.input_batches.push(batch);
1225 self
1226 }
1227
1228 /// Extend the filters with `filter`
1229 fn with_filter(mut self, filter: BooleanArray) -> Self {
1230 self.filters.push(filter);
1231 self
1232 }
1233
1234 /// Extends the input batches with `batches`
1235 fn with_batches(mut self, batches: impl IntoIterator<Item = RecordBatch>) -> Self {
1236 self.input_batches.extend(batches);
1237 self
1238 }
1239
1240 /// Specifies the schema for the test
1241 fn with_schema(mut self, schema: SchemaRef) -> Self {
1242 self.schema = Some(schema);
1243 self
1244 }
1245
1246 /// Extends `sizes` to expected output sizes
1247 fn with_expected_output_sizes(mut self, sizes: impl IntoIterator<Item = usize>) -> Self {
1248 self.expected_output_sizes.extend(sizes);
1249 self
1250 }
1251
1252 /// Runs the test -- see documentation on [`Test`] for details
1253 ///
1254 /// Returns the resulting output batches
1255 fn run(self) -> Vec<RecordBatch> {
1256 let expected_output = self.expected_output();
1257 let schema = self.schema();
1258
1259 let Self {
1260 input_batches,
1261 filters,
1262 schema: _,
1263 target_batch_size,
1264 expected_output_sizes,
1265 } = self;
1266
1267 let had_input = input_batches.iter().any(|b| b.num_rows() > 0);
1268
1269 let mut coalescer = BatchCoalescer::new(Arc::clone(&schema), target_batch_size);
1270
1271 // feed input batches and filters to the coalescer
1272 let mut filters = filters.into_iter();
1273 for batch in input_batches {
1274 if let Some(filter) = filters.next() {
1275 coalescer.push_batch_with_filter(batch, &filter).unwrap();
1276 } else {
1277 coalescer.push_batch(batch).unwrap();
1278 }
1279 }
1280 assert_eq!(schema, coalescer.schema());
1281
1282 if had_input {
1283 assert!(!coalescer.is_empty(), "Coalescer should not be empty");
1284 } else {
1285 assert!(coalescer.is_empty(), "Coalescer should be empty");
1286 }
1287
1288 coalescer.finish_buffered_batch().unwrap();
1289 if had_input {
1290 assert!(
1291 coalescer.has_completed_batch(),
1292 "Coalescer should have completed batches"
1293 );
1294 }
1295
1296 let mut output_batches = vec![];
1297 while let Some(batch) = coalescer.next_completed_batch() {
1298 output_batches.push(batch);
1299 }
1300
1301 // make sure we got the expected number of output batches and content
1302 let mut starting_idx = 0;
1303 let actual_output_sizes: Vec<usize> =
1304 output_batches.iter().map(|b| b.num_rows()).collect();
1305 assert_eq!(
1306 expected_output_sizes, actual_output_sizes,
1307 "Unexpected number of rows in output batches\n\
1308 Expected\n{expected_output_sizes:#?}\nActual:{actual_output_sizes:#?}"
1309 );
1310 let iter = expected_output_sizes
1311 .iter()
1312 .zip(output_batches.iter())
1313 .enumerate();
1314
1315 for (i, (expected_size, batch)) in iter {
1316 // compare the contents of the batch after normalization (using
1317 // `==` compares the underlying memory layout too)
1318 let expected_batch = expected_output.slice(starting_idx, *expected_size);
1319 let expected_batch = normalize_batch(expected_batch);
1320 let batch = normalize_batch(batch.clone());
1321 assert_eq!(
1322 expected_batch, batch,
1323 "Unexpected content in batch {i}:\
1324 \n\nExpected:\n{expected_batch:#?}\n\nActual:\n{batch:#?}"
1325 );
1326 starting_idx += *expected_size;
1327 }
1328 output_batches
1329 }
1330
1331 /// Return the expected output schema. If not overridden by `with_schema`, it
1332 /// returns the schema of the first input batch.
1333 fn schema(&self) -> SchemaRef {
1334 self.schema
1335 .clone()
1336 .unwrap_or_else(|| Arc::clone(&self.input_batches[0].schema()))
1337 }
1338
1339 /// Returns the expected output as a single `RecordBatch`
1340 fn expected_output(&self) -> RecordBatch {
1341 let schema = self.schema();
1342 if self.filters.is_empty() {
1343 return concat_batches(&schema, &self.input_batches).unwrap();
1344 }
1345
1346 let mut filters = self.filters.iter();
1347 let filtered_batches = self
1348 .input_batches
1349 .iter()
1350 .map(|batch| {
1351 if let Some(filter) = filters.next() {
1352 filter_record_batch(batch, filter).unwrap()
1353 } else {
1354 batch.clone()
1355 }
1356 })
1357 .collect::<Vec<_>>();
1358 concat_batches(&schema, &filtered_batches).unwrap()
1359 }
1360 }
1361
1362 /// Return a RecordBatch with a UInt32Array with the specified range and
1363 /// every third value is null.
1364 fn uint32_batch<T: std::iter::Iterator<Item = u32>>(range: T) -> RecordBatch {
1365 let schema = Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, true)]));
1366
1367 let array = UInt32Array::from_iter(range.map(|i| if i % 3 == 0 { None } else { Some(i) }));
1368 RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(array)]).unwrap()
1369 }
1370
1371 /// Return a RecordBatch with a UInt32Array with no nulls specified range
1372 fn uint32_batch_non_null<T: std::iter::Iterator<Item = u32>>(range: T) -> RecordBatch {
1373 let schema = Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)]));
1374
1375 let array = UInt32Array::from_iter_values(range);
1376 RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(array)]).unwrap()
1377 }
1378
1379 /// Return a RecordBatch with a UInt64Array with no nulls specified range
1380 fn uint64_batch_non_null<T: std::iter::Iterator<Item = u64>>(range: T) -> RecordBatch {
1381 let schema = Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt64, false)]));
1382
1383 let array = UInt64Array::from_iter_values(range);
1384 RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(array)]).unwrap()
1385 }
1386
1387 /// Return a RecordBatch with a StringArrary with values `value0`, `value1`, ...
1388 /// and every third value is `None`.
1389 fn utf8_batch(range: Range<u32>) -> RecordBatch {
1390 let schema = Arc::new(Schema::new(vec![Field::new("c0", DataType::Utf8, true)]));
1391
1392 let array = StringArray::from_iter(range.map(|i| {
1393 if i % 3 == 0 {
1394 None
1395 } else {
1396 Some(format!("value{i}"))
1397 }
1398 }));
1399
1400 RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(array)]).unwrap()
1401 }
1402
1403 /// Return a RecordBatch with a StringViewArray with (only) the specified values
1404 fn stringview_batch<'a>(values: impl IntoIterator<Item = Option<&'a str>>) -> RecordBatch {
1405 let schema = Arc::new(Schema::new(vec![Field::new(
1406 "c0",
1407 DataType::Utf8View,
1408 false,
1409 )]));
1410
1411 let array = StringViewArray::from_iter(values);
1412 RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(array)]).unwrap()
1413 }
1414
1415 /// Return a RecordBatch with a StringViewArray with num_rows by repeating
1416 /// values over and over.
1417 fn stringview_batch_repeated<'a>(
1418 num_rows: usize,
1419 values: impl IntoIterator<Item = Option<&'a str>>,
1420 ) -> RecordBatch {
1421 let schema = Arc::new(Schema::new(vec![Field::new(
1422 "c0",
1423 DataType::Utf8View,
1424 true,
1425 )]));
1426
1427 // Repeat the values to a total of num_rows
1428 let values: Vec<_> = values.into_iter().collect();
1429 let values_iter = std::iter::repeat(values.iter())
1430 .flatten()
1431 .cloned()
1432 .take(num_rows);
1433
1434 let mut builder = StringViewBuilder::with_capacity(100).with_fixed_block_size(8192);
1435 for val in values_iter {
1436 builder.append_option(val);
1437 }
1438
1439 let array = builder.finish();
1440 RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(array)]).unwrap()
1441 }
1442
1443 /// Return a RecordBatch of 100 rows
1444 fn multi_column_batch(range: Range<i32>) -> RecordBatch {
1445 let int64_array = Int64Array::from_iter(
1446 range
1447 .clone()
1448 .map(|v| if v % 5 == 0 { None } else { Some(v as i64) }),
1449 );
1450 let string_view_array = StringViewArray::from_iter(range.clone().map(|v| {
1451 if v % 5 == 0 {
1452 None
1453 } else if v % 7 == 0 {
1454 Some(format!("This is a string longer than 12 bytes{v}"))
1455 } else {
1456 Some(format!("Short {v}"))
1457 }
1458 }));
1459 let string_array = StringArray::from_iter(range.clone().map(|v| {
1460 if v % 11 == 0 {
1461 None
1462 } else {
1463 Some(format!("Value {v}"))
1464 }
1465 }));
1466 let timestamp_array = TimestampNanosecondArray::from_iter(range.map(|v| {
1467 if v % 3 == 0 {
1468 None
1469 } else {
1470 Some(v as i64 * 1000) // simulate a timestamp in milliseconds
1471 }
1472 }))
1473 .with_timezone("America/New_York");
1474
1475 RecordBatch::try_from_iter(vec![
1476 ("int64", Arc::new(int64_array) as ArrayRef),
1477 ("stringview", Arc::new(string_view_array) as ArrayRef),
1478 ("string", Arc::new(string_array) as ArrayRef),
1479 ("timestamp", Arc::new(timestamp_array) as ArrayRef),
1480 ])
1481 .unwrap()
1482 }
1483
1484 /// Return a boolean array that filters out randomly selected rows
1485 /// from the input batch with a `selectivity`.
1486 ///
1487 /// For example a `selectivity` of 0.1 will filter out
1488 /// 90% of the rows.
1489 #[derive(Debug)]
1490 struct RandomFilterBuilder {
1491 num_rows: usize,
1492 selectivity: f64,
1493 /// seed for random number generator, increases by one each time
1494 /// `next_filter` is called
1495 seed: u64,
1496 }
1497 impl RandomFilterBuilder {
1498 /// Build the next filter with the current seed and increment the seed
1499 /// by one.
1500 fn next_filter(&mut self) -> BooleanArray {
1501 assert!(self.selectivity >= 0.0 && self.selectivity <= 1.0);
1502 let mut rng = rand::rngs::StdRng::seed_from_u64(self.seed);
1503 self.seed += 1;
1504 BooleanArray::from_iter(
1505 (0..self.num_rows)
1506 .map(|_| rng.random_bool(self.selectivity))
1507 .map(Some),
1508 )
1509 }
1510 }
1511
1512 /// Returns the named column as a StringViewArray
1513 fn col_as_string_view<'b>(name: &str, batch: &'b RecordBatch) -> &'b StringViewArray {
1514 batch
1515 .column_by_name(name)
1516 .expect("column not found")
1517 .as_string_view_opt()
1518 .expect("column is not a string view")
1519 }
1520
1521 /// Normalize the `RecordBatch` so that the memory layout is consistent
1522 /// (e.g. StringArray is compacted).
1523 fn normalize_batch(batch: RecordBatch) -> RecordBatch {
1524 // Only need to normalize StringViews (as == also tests for memory layout)
1525 let (schema, mut columns, row_count) = batch.into_parts();
1526
1527 for column in columns.iter_mut() {
1528 let Some(string_view) = column.as_string_view_opt() else {
1529 continue;
1530 };
1531
1532 // Re-create the StringViewArray to ensure memory layout is
1533 // consistent
1534 let mut builder = StringViewBuilder::new();
1535 for s in string_view.iter() {
1536 builder.append_option(s);
1537 }
1538 // Update the column with the new StringViewArray
1539 *column = Arc::new(builder.finish());
1540 }
1541
1542 let options = RecordBatchOptions::new().with_row_count(Some(row_count));
1543 RecordBatch::try_new_with_options(schema, columns, &options).unwrap()
1544 }
1545
1546 /// Helper function to create a test batch with specified number of rows
1547 fn create_test_batch(num_rows: usize) -> RecordBatch {
1548 let schema = Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)]));
1549 let array = Int32Array::from_iter_values(0..num_rows as i32);
1550 RecordBatch::try_new(schema, vec![Arc::new(array)]).unwrap()
1551 }
1552 #[test]
1553 fn test_biggest_coalesce_batch_size_none_default() {
1554 // Test that default behavior (None) coalesces all batches
1555 let mut coalescer = BatchCoalescer::new(
1556 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1557 100,
1558 );
1559
1560 // Push a large batch (1000 rows) - should be coalesced normally
1561 let large_batch = create_test_batch(1000);
1562 coalescer.push_batch(large_batch).unwrap();
1563
1564 // Should produce multiple batches of target size (100)
1565 let mut output_batches = vec![];
1566 while let Some(batch) = coalescer.next_completed_batch() {
1567 output_batches.push(batch);
1568 }
1569
1570 coalescer.finish_buffered_batch().unwrap();
1571 while let Some(batch) = coalescer.next_completed_batch() {
1572 output_batches.push(batch);
1573 }
1574
1575 // Should have 10 batches of 100 rows each
1576 assert_eq!(output_batches.len(), 10);
1577 for batch in output_batches {
1578 assert_eq!(batch.num_rows(), 100);
1579 }
1580 }
1581
1582 #[test]
1583 fn test_biggest_coalesce_batch_size_bypass_large_batch() {
1584 // Test that batches larger than biggest_coalesce_batch_size bypass coalescing
1585 let mut coalescer = BatchCoalescer::new(
1586 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1587 100,
1588 );
1589 coalescer.set_biggest_coalesce_batch_size(Some(500));
1590
1591 // Push a large batch (1000 rows) - should bypass coalescing
1592 let large_batch = create_test_batch(1000);
1593 coalescer.push_batch(large_batch.clone()).unwrap();
1594
1595 // Should have one completed batch immediately (the original large batch)
1596 assert!(coalescer.has_completed_batch());
1597 let output_batch = coalescer.next_completed_batch().unwrap();
1598 assert_eq!(output_batch.num_rows(), 1000);
1599
1600 // Should be no more completed batches
1601 assert!(!coalescer.has_completed_batch());
1602 assert_eq!(coalescer.get_buffered_rows(), 0);
1603 }
1604
1605 #[test]
1606 fn test_biggest_coalesce_batch_size_coalesce_small_batch() {
1607 // Test that batches smaller than biggest_coalesce_batch_size are coalesced normally
1608 let mut coalescer = BatchCoalescer::new(
1609 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1610 100,
1611 );
1612 coalescer.set_biggest_coalesce_batch_size(Some(500));
1613
1614 // Push small batches that should be coalesced
1615 let small_batch = create_test_batch(50);
1616 coalescer.push_batch(small_batch.clone()).unwrap();
1617
1618 // Should not have completed batch yet (only 50 rows, target is 100)
1619 assert!(!coalescer.has_completed_batch());
1620 assert_eq!(coalescer.get_buffered_rows(), 50);
1621
1622 // Push another small batch
1623 coalescer.push_batch(small_batch).unwrap();
1624
1625 // Now should have a completed batch (100 rows total)
1626 assert!(coalescer.has_completed_batch());
1627 let output_batch = coalescer.next_completed_batch().unwrap();
1628 assert_eq!(output_batch.num_rows(), 100);
1629
1630 assert_eq!(coalescer.get_buffered_rows(), 0);
1631 }
1632
1633 #[test]
1634 fn test_biggest_coalesce_batch_size_equal_boundary() {
1635 // Test behavior when batch size equals biggest_coalesce_batch_size
1636 let mut coalescer = BatchCoalescer::new(
1637 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1638 100,
1639 );
1640 coalescer.set_biggest_coalesce_batch_size(Some(500));
1641
1642 // Push a batch exactly equal to the limit
1643 let boundary_batch = create_test_batch(500);
1644 coalescer.push_batch(boundary_batch).unwrap();
1645
1646 // Should be coalesced (not bypass) since it's equal, not greater
1647 let mut output_count = 0;
1648 while coalescer.next_completed_batch().is_some() {
1649 output_count += 1;
1650 }
1651
1652 coalescer.finish_buffered_batch().unwrap();
1653 while coalescer.next_completed_batch().is_some() {
1654 output_count += 1;
1655 }
1656
1657 // Should have 5 batches of 100 rows each
1658 assert_eq!(output_count, 5);
1659 }
1660
1661 #[test]
1662 fn test_biggest_coalesce_batch_size_first_large_then_consecutive_bypass() {
1663 // Test the new consecutive large batch bypass behavior
1664 // Pattern: small batches -> first large batch (coalesced) -> consecutive large batches (bypass)
1665 let mut coalescer = BatchCoalescer::new(
1666 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1667 100,
1668 );
1669 coalescer.set_biggest_coalesce_batch_size(Some(200));
1670
1671 let small_batch = create_test_batch(50);
1672
1673 // Push small batch first to create buffered data
1674 coalescer.push_batch(small_batch).unwrap();
1675 assert_eq!(coalescer.get_buffered_rows(), 50);
1676 assert!(!coalescer.has_completed_batch());
1677
1678 // Push first large batch - should go through normal coalescing due to buffered data
1679 let large_batch1 = create_test_batch(250);
1680 coalescer.push_batch(large_batch1).unwrap();
1681
1682 // 50 + 250 = 300 -> 3 complete batches of 100, 0 rows buffered
1683 let mut completed_batches = vec![];
1684 while let Some(batch) = coalescer.next_completed_batch() {
1685 completed_batches.push(batch);
1686 }
1687 assert_eq!(completed_batches.len(), 3);
1688 assert_eq!(coalescer.get_buffered_rows(), 0);
1689
1690 // Now push consecutive large batches - they should bypass
1691 let large_batch2 = create_test_batch(300);
1692 let large_batch3 = create_test_batch(400);
1693
1694 // Push second large batch - should bypass since it's consecutive and buffer is empty
1695 coalescer.push_batch(large_batch2).unwrap();
1696 assert!(coalescer.has_completed_batch());
1697 let output = coalescer.next_completed_batch().unwrap();
1698 assert_eq!(output.num_rows(), 300); // bypassed with original size
1699 assert_eq!(coalescer.get_buffered_rows(), 0);
1700
1701 // Push third large batch - should also bypass
1702 coalescer.push_batch(large_batch3).unwrap();
1703 assert!(coalescer.has_completed_batch());
1704 let output = coalescer.next_completed_batch().unwrap();
1705 assert_eq!(output.num_rows(), 400); // bypassed with original size
1706 assert_eq!(coalescer.get_buffered_rows(), 0);
1707 }
1708
1709 #[test]
1710 fn test_biggest_coalesce_batch_size_empty_batch() {
1711 // Test that empty batches don't trigger the bypass logic
1712 let mut coalescer = BatchCoalescer::new(
1713 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1714 100,
1715 );
1716 coalescer.set_biggest_coalesce_batch_size(Some(50));
1717
1718 let empty_batch = create_test_batch(0);
1719 coalescer.push_batch(empty_batch).unwrap();
1720
1721 // Empty batch should be handled normally (no effect)
1722 assert!(!coalescer.has_completed_batch());
1723 assert_eq!(coalescer.get_buffered_rows(), 0);
1724 }
1725
1726 #[test]
1727 fn test_biggest_coalesce_batch_size_with_buffered_data_no_bypass() {
1728 // Test that when there is buffered data, large batches do NOT bypass (unless consecutive)
1729 let mut coalescer = BatchCoalescer::new(
1730 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1731 100,
1732 );
1733 coalescer.set_biggest_coalesce_batch_size(Some(200));
1734
1735 // Add some buffered data first
1736 let small_batch = create_test_batch(30);
1737 coalescer.push_batch(small_batch.clone()).unwrap();
1738 coalescer.push_batch(small_batch).unwrap();
1739 assert_eq!(coalescer.get_buffered_rows(), 60);
1740
1741 // Push large batch that would normally bypass, but shouldn't because buffered_rows > 0
1742 let large_batch = create_test_batch(250);
1743 coalescer.push_batch(large_batch).unwrap();
1744
1745 // The large batch should be processed through normal coalescing logic
1746 // Total: 60 (buffered) + 250 (new) = 310 rows
1747 // Output: 3 complete batches of 100 rows each, 10 rows remain buffered
1748
1749 let mut completed_batches = vec![];
1750 while let Some(batch) = coalescer.next_completed_batch() {
1751 completed_batches.push(batch);
1752 }
1753
1754 assert_eq!(completed_batches.len(), 3);
1755 for batch in &completed_batches {
1756 assert_eq!(batch.num_rows(), 100);
1757 }
1758 assert_eq!(coalescer.get_buffered_rows(), 10);
1759 }
1760
1761 #[test]
1762 fn test_biggest_coalesce_batch_size_zero_limit() {
1763 // Test edge case where limit is 0 (all batches bypass when no buffered data)
1764 let mut coalescer = BatchCoalescer::new(
1765 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1766 100,
1767 );
1768 coalescer.set_biggest_coalesce_batch_size(Some(0));
1769
1770 // Even a 1-row batch should bypass when there's no buffered data
1771 let tiny_batch = create_test_batch(1);
1772 coalescer.push_batch(tiny_batch).unwrap();
1773
1774 assert!(coalescer.has_completed_batch());
1775 let output = coalescer.next_completed_batch().unwrap();
1776 assert_eq!(output.num_rows(), 1);
1777 }
1778
1779 #[test]
1780 fn test_biggest_coalesce_batch_size_bypass_only_when_no_buffer() {
1781 // Test that bypass only occurs when buffered_rows == 0
1782 let mut coalescer = BatchCoalescer::new(
1783 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1784 100,
1785 );
1786 coalescer.set_biggest_coalesce_batch_size(Some(200));
1787
1788 // First, push a large batch with no buffered data - should bypass
1789 let large_batch = create_test_batch(300);
1790 coalescer.push_batch(large_batch.clone()).unwrap();
1791
1792 assert!(coalescer.has_completed_batch());
1793 let output = coalescer.next_completed_batch().unwrap();
1794 assert_eq!(output.num_rows(), 300); // bypassed
1795 assert_eq!(coalescer.get_buffered_rows(), 0);
1796
1797 // Now add some buffered data
1798 let small_batch = create_test_batch(50);
1799 coalescer.push_batch(small_batch).unwrap();
1800 assert_eq!(coalescer.get_buffered_rows(), 50);
1801
1802 // Push the same large batch again - should NOT bypass this time (not consecutive)
1803 coalescer.push_batch(large_batch).unwrap();
1804
1805 // Should process through normal coalescing: 50 + 300 = 350 rows
1806 // Output: 3 complete batches of 100 rows, 50 rows buffered
1807 let mut completed_batches = vec![];
1808 while let Some(batch) = coalescer.next_completed_batch() {
1809 completed_batches.push(batch);
1810 }
1811
1812 assert_eq!(completed_batches.len(), 3);
1813 for batch in &completed_batches {
1814 assert_eq!(batch.num_rows(), 100);
1815 }
1816 assert_eq!(coalescer.get_buffered_rows(), 50);
1817 }
1818
1819 #[test]
1820 fn test_biggest_coalesce_batch_size_consecutive_large_batches_scenario() {
1821 // Test your exact scenario: 20, 20, 30, 700, 600, 700, 900, 700, 600
1822 let mut coalescer = BatchCoalescer::new(
1823 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1824 1000,
1825 );
1826 coalescer.set_biggest_coalesce_batch_size(Some(500));
1827
1828 // Push small batches first
1829 coalescer.push_batch(create_test_batch(20)).unwrap();
1830 coalescer.push_batch(create_test_batch(20)).unwrap();
1831 coalescer.push_batch(create_test_batch(30)).unwrap();
1832
1833 assert_eq!(coalescer.get_buffered_rows(), 70);
1834 assert!(!coalescer.has_completed_batch());
1835
1836 // Push first large batch (700) - should coalesce due to buffered data
1837 coalescer.push_batch(create_test_batch(700)).unwrap();
1838
1839 // 70 + 700 = 770 rows, not enough for 1000, so all stay buffered
1840 assert_eq!(coalescer.get_buffered_rows(), 770);
1841 assert!(!coalescer.has_completed_batch());
1842
1843 // Push second large batch (600) - should bypass since previous was large
1844 coalescer.push_batch(create_test_batch(600)).unwrap();
1845
1846 // Should flush buffer (770 rows) and bypass the 600
1847 let mut outputs = vec![];
1848 while let Some(batch) = coalescer.next_completed_batch() {
1849 outputs.push(batch);
1850 }
1851 assert_eq!(outputs.len(), 2); // one flushed buffer batch (770) + one bypassed (600)
1852 assert_eq!(outputs[0].num_rows(), 770);
1853 assert_eq!(outputs[1].num_rows(), 600);
1854 assert_eq!(coalescer.get_buffered_rows(), 0);
1855
1856 // Push remaining large batches - should all bypass
1857 let remaining_batches = [700, 900, 700, 600];
1858 for &size in &remaining_batches {
1859 coalescer.push_batch(create_test_batch(size)).unwrap();
1860
1861 assert!(coalescer.has_completed_batch());
1862 let output = coalescer.next_completed_batch().unwrap();
1863 assert_eq!(output.num_rows(), size);
1864 assert_eq!(coalescer.get_buffered_rows(), 0);
1865 }
1866 }
1867
1868 #[test]
1869 fn test_biggest_coalesce_batch_size_truly_consecutive_large_bypass() {
1870 // Test truly consecutive large batches that should all bypass
1871 // This test ensures buffer is completely empty between large batches
1872 let mut coalescer = BatchCoalescer::new(
1873 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1874 100,
1875 );
1876 coalescer.set_biggest_coalesce_batch_size(Some(200));
1877
1878 // Push consecutive large batches with no prior buffered data
1879 let large_batches = vec![
1880 create_test_batch(300),
1881 create_test_batch(400),
1882 create_test_batch(350),
1883 create_test_batch(500),
1884 ];
1885
1886 let mut all_outputs = vec![];
1887
1888 for (i, large_batch) in large_batches.into_iter().enumerate() {
1889 let expected_size = large_batch.num_rows();
1890
1891 // Buffer should be empty before each large batch
1892 assert_eq!(
1893 coalescer.get_buffered_rows(),
1894 0,
1895 "Buffer should be empty before batch {}",
1896 i
1897 );
1898
1899 coalescer.push_batch(large_batch).unwrap();
1900
1901 // Each large batch should bypass and produce exactly one output batch
1902 assert!(
1903 coalescer.has_completed_batch(),
1904 "Should have completed batch after pushing batch {}",
1905 i
1906 );
1907
1908 let output = coalescer.next_completed_batch().unwrap();
1909 assert_eq!(
1910 output.num_rows(),
1911 expected_size,
1912 "Batch {} should have bypassed with original size",
1913 i
1914 );
1915
1916 // Should be no more batches and buffer should be empty
1917 assert!(
1918 !coalescer.has_completed_batch(),
1919 "Should have no more completed batches after batch {}",
1920 i
1921 );
1922 assert_eq!(
1923 coalescer.get_buffered_rows(),
1924 0,
1925 "Buffer should be empty after batch {}",
1926 i
1927 );
1928
1929 all_outputs.push(output);
1930 }
1931
1932 // Verify we got exactly 4 output batches with original sizes
1933 assert_eq!(all_outputs.len(), 4);
1934 assert_eq!(all_outputs[0].num_rows(), 300);
1935 assert_eq!(all_outputs[1].num_rows(), 400);
1936 assert_eq!(all_outputs[2].num_rows(), 350);
1937 assert_eq!(all_outputs[3].num_rows(), 500);
1938 }
1939
1940 #[test]
1941 fn test_biggest_coalesce_batch_size_reset_consecutive_on_small_batch() {
1942 // Test that small batches reset the consecutive large batch tracking
1943 let mut coalescer = BatchCoalescer::new(
1944 Arc::new(Schema::new(vec![Field::new("c0", DataType::Int32, false)])),
1945 100,
1946 );
1947 coalescer.set_biggest_coalesce_batch_size(Some(200));
1948
1949 // Push first large batch - should bypass (no buffered data)
1950 coalescer.push_batch(create_test_batch(300)).unwrap();
1951 let output = coalescer.next_completed_batch().unwrap();
1952 assert_eq!(output.num_rows(), 300);
1953
1954 // Push second large batch - should bypass (consecutive)
1955 coalescer.push_batch(create_test_batch(400)).unwrap();
1956 let output = coalescer.next_completed_batch().unwrap();
1957 assert_eq!(output.num_rows(), 400);
1958
1959 // Push small batch - resets consecutive tracking
1960 coalescer.push_batch(create_test_batch(50)).unwrap();
1961 assert_eq!(coalescer.get_buffered_rows(), 50);
1962
1963 // Push large batch again - should NOT bypass due to buffered data
1964 coalescer.push_batch(create_test_batch(350)).unwrap();
1965
1966 // Should coalesce: 50 + 350 = 400 -> 4 complete batches of 100
1967 let mut outputs = vec![];
1968 while let Some(batch) = coalescer.next_completed_batch() {
1969 outputs.push(batch);
1970 }
1971 assert_eq!(outputs.len(), 4);
1972 for batch in outputs {
1973 assert_eq!(batch.num_rows(), 100);
1974 }
1975 assert_eq!(coalescer.get_buffered_rows(), 0);
1976 }
1977
1978 #[test]
1979 fn test_coalasce_push_batch_with_indices() {
1980 const MID_POINT: u32 = 2333;
1981 const TOTAL_ROWS: u32 = 23333;
1982 let batch1 = uint32_batch_non_null(0..MID_POINT);
1983 let batch2 = uint32_batch_non_null((MID_POINT..TOTAL_ROWS).rev());
1984
1985 let mut coalescer = BatchCoalescer::new(
1986 Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)])),
1987 TOTAL_ROWS as usize,
1988 );
1989 coalescer.push_batch(batch1).unwrap();
1990
1991 let rev_indices = (0..((TOTAL_ROWS - MID_POINT) as u64)).rev();
1992 let reversed_indices_batch = uint64_batch_non_null(rev_indices);
1993
1994 let reverse_indices = UInt64Array::from(reversed_indices_batch.column(0).to_data());
1995 coalescer
1996 .push_batch_with_indices(batch2, &reverse_indices)
1997 .unwrap();
1998
1999 coalescer.finish_buffered_batch().unwrap();
2000 let actual = coalescer.next_completed_batch().unwrap();
2001
2002 let expected = uint32_batch_non_null(0..TOTAL_ROWS);
2003
2004 assert_eq!(expected, actual);
2005 }
2006}