Skip to main content

arrow_row/
lib.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! A comparable row-oriented representation of a collection of [`Array`].
19//!
20//! [`Row`]s are [normalized for sorting], and can therefore be very efficiently [compared],
21//! using [`memcmp`] under the hood, or used in [non-comparison sorts] such as [radix sort].
22//! This makes the row format ideal for implementing efficient multi-column sorting,
23//! grouping, aggregation, windowing and more, as described in more detail
24//! [in this blog post](https://arrow.apache.org/blog/2022/11/07/multi-column-sorts-in-arrow-rust-part-1/).
25//!
26//! For example, given three input [`Array`], [`RowConverter`] creates byte
27//! sequences that [compare] the same as when using [`lexsort`].
28//!
29//! ```text
30//!    ┌─────┐   ┌─────┐   ┌─────┐
31//!    │     │   │     │   │     │
32//!    ├─────┤ ┌ ┼─────┼ ─ ┼─────┼ ┐              ┏━━━━━━━━━━━━━┓
33//!    │     │   │     │   │     │  ─────────────▶┃             ┃
34//!    ├─────┤ └ ┼─────┼ ─ ┼─────┼ ┘              ┗━━━━━━━━━━━━━┛
35//!    │     │   │     │   │     │
36//!    └─────┘   └─────┘   └─────┘
37//!                ...
38//!    ┌─────┐ ┌ ┬─────┬ ─ ┬─────┬ ┐              ┏━━━━━━━━┓
39//!    │     │   │     │   │     │  ─────────────▶┃        ┃
40//!    └─────┘ └ ┴─────┴ ─ ┴─────┴ ┘              ┗━━━━━━━━┛
41//!     UInt64      Utf8     F64
42//!
43//!           Input Arrays                          Row Format
44//!     (Columns)
45//! ```
46//!
47//! _[`Rows`] must be generated by the same [`RowConverter`] for the comparison
48//! to be meaningful._
49//!
50//! # Basic Example
51//! ```
52//! # use std::sync::Arc;
53//! # use arrow_row::{RowConverter, SortField};
54//! # use arrow_array::{ArrayRef, Int32Array, StringArray};
55//! # use arrow_array::cast::{AsArray, as_string_array};
56//! # use arrow_array::types::Int32Type;
57//! # use arrow_schema::DataType;
58//!
59//! let a1 = Arc::new(Int32Array::from_iter_values([-1, -1, 0, 3, 3])) as ArrayRef;
60//! let a2 = Arc::new(StringArray::from_iter_values(["a", "b", "c", "d", "d"])) as ArrayRef;
61//! let arrays = vec![a1, a2];
62//!
63//! // Convert arrays to rows
64//! let converter = RowConverter::new(vec![
65//!     SortField::new(DataType::Int32),
66//!     SortField::new(DataType::Utf8),
67//! ]).unwrap();
68//! let rows = converter.convert_columns(&arrays).unwrap();
69//!
70//! // Compare rows
71//! for i in 0..4 {
72//!     assert!(rows.row(i) <= rows.row(i + 1));
73//! }
74//! assert_eq!(rows.row(3), rows.row(4));
75//!
76//! // Convert rows back to arrays
77//! let converted = converter.convert_rows(&rows).unwrap();
78//! assert_eq!(arrays, converted);
79//!
80//! // Compare rows from different arrays
81//! let a1 = Arc::new(Int32Array::from_iter_values([3, 4])) as ArrayRef;
82//! let a2 = Arc::new(StringArray::from_iter_values(["e", "f"])) as ArrayRef;
83//! let arrays = vec![a1, a2];
84//! let rows2 = converter.convert_columns(&arrays).unwrap();
85//!
86//! assert!(rows.row(4) < rows2.row(0));
87//! assert!(rows.row(4) < rows2.row(1));
88//!
89//! // Convert selection of rows back to arrays
90//! let selection = [rows.row(0), rows2.row(1), rows.row(2), rows2.row(0)];
91//! let converted = converter.convert_rows(selection).unwrap();
92//! let c1 = converted[0].as_primitive::<Int32Type>();
93//! assert_eq!(c1.values(), &[-1, 4, 0, 3]);
94//!
95//! let c2 = converted[1].as_string::<i32>();
96//! let c2_values: Vec<_> = c2.iter().flatten().collect();
97//! assert_eq!(&c2_values, &["a", "f", "c", "e"]);
98//! ```
99//!
100//! # Lexicographic Sorts (lexsort)
101//!
102//! The row format can also be used to implement a fast multi-column / lexicographic sort
103//!
104//! ```
105//! # use arrow_row::{RowConverter, SortField};
106//! # use arrow_array::{ArrayRef, UInt32Array};
107//! fn lexsort_to_indices(arrays: &[ArrayRef]) -> UInt32Array {
108//!     let fields = arrays
109//!         .iter()
110//!         .map(|a| SortField::new(a.data_type().clone()))
111//!         .collect();
112//!     let converter = RowConverter::new(fields).unwrap();
113//!     let rows = converter.convert_columns(arrays).unwrap();
114//!     let mut sort: Vec<_> = rows.iter().enumerate().collect();
115//!     sort.sort_unstable_by(|(_, a), (_, b)| a.cmp(b));
116//!     UInt32Array::from_iter_values(sort.iter().map(|(i, _)| *i as u32))
117//! }
118//! ```
119//!
120//! # Flattening Dictionaries
121//!
122//! For performance reasons, dictionary arrays are flattened ("hydrated") to their
123//! underlying values during row conversion. See [the issue] for more details.
124//!
125//! This means that the arrays that come out of [`RowConverter::convert_rows`]
126//! may not have the same data types as the input arrays. For example, encoding
127//! a `Dictionary<Int8, Utf8>` and then will come out as a `Utf8` array.
128//!
129//! ```
130//! # use arrow_array::{Array, ArrayRef, DictionaryArray};
131//! # use arrow_array::types::Int8Type;
132//! # use arrow_row::{RowConverter, SortField};
133//! # use arrow_schema::DataType;
134//! # use std::sync::Arc;
135//! // Input is a Dictionary array
136//! let dict: DictionaryArray::<Int8Type> = ["a", "b", "c", "a", "b"].into_iter().collect();
137//! let sort_fields = vec![SortField::new(dict.data_type().clone())];
138//! let arrays = vec![Arc::new(dict) as ArrayRef];
139//! let converter = RowConverter::new(sort_fields).unwrap();
140//! // Convert to rows
141//! let rows = converter.convert_columns(&arrays).unwrap();
142//! let converted = converter.convert_rows(&rows).unwrap();
143//! // result was a Utf8 array, not a Dictionary array
144//! assert_eq!(converted[0].data_type(), &DataType::Utf8);
145//! ```
146//!
147//! [non-comparison sorts]: https://en.wikipedia.org/wiki/Sorting_algorithm#Non-comparison_sorts
148//! [radix sort]: https://en.wikipedia.org/wiki/Radix_sort
149//! [normalized for sorting]: http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/courses/DBSREAL/SS2005/Vorlesungsunterlagen/Implementing_Sorting.pdf
150//! [`memcmp`]: https://www.man7.org/linux/man-pages/man3/memcmp.3.html
151//! [`lexsort`]: https://docs.rs/arrow-ord/latest/arrow_ord/sort/fn.lexsort.html
152//! [compared]: PartialOrd
153//! [compare]: PartialOrd
154//! [the issue]: https://github.com/apache/arrow-rs/issues/4811
155
156#![doc(
157    html_logo_url = "https://arrow.apache.org/img/arrow-logo_chevrons_black-txt_white-bg.svg",
158    html_favicon_url = "https://arrow.apache.org/img/arrow-logo_chevrons_black-txt_transparent-bg.svg"
159)]
160#![cfg_attr(docsrs, feature(doc_cfg))]
161#![warn(missing_docs)]
162use std::cmp::Ordering;
163use std::hash::{Hash, Hasher};
164use std::iter::Map;
165use std::slice::Windows;
166use std::sync::Arc;
167
168use arrow_array::cast::*;
169use arrow_array::types::{ArrowDictionaryKeyType, ByteArrayType, ByteViewType};
170use arrow_array::*;
171use arrow_buffer::{ArrowNativeType, Buffer, OffsetBuffer, ScalarBuffer};
172use arrow_data::{ArrayData, ArrayDataBuilder};
173use arrow_schema::*;
174use variable::{decode_binary_view, decode_string_view};
175
176use crate::fixed::{decode_bool, decode_fixed_size_binary, decode_primitive};
177use crate::list::{compute_lengths_fixed_size_list, encode_fixed_size_list};
178use crate::variable::{decode_binary, decode_string};
179use arrow_array::types::{Int16Type, Int32Type, Int64Type};
180
181mod fixed;
182mod list;
183mod run;
184mod variable;
185
186/// Converts [`ArrayRef`] columns into a [row-oriented](self) format.
187///
188/// *Note: The encoding of the row format may change from release to release.*
189///
190/// ## Overview
191///
192/// The row format is a variable length byte sequence created by
193/// concatenating the encoded form of each column. The encoding for
194/// each column depends on its datatype (and sort options).
195///
196/// The encoding is carefully designed in such a way that escaping is
197/// unnecessary: it is never ambiguous as to whether a byte is part of
198/// a sentinel (e.g. null) or a value.
199///
200/// ## Unsigned Integer Encoding
201///
202/// A null integer is encoded as a `0_u8`, followed by a zero-ed number of bytes corresponding
203/// to the integer's length.
204///
205/// A valid integer is encoded as `1_u8`, followed by the big-endian representation of the
206/// integer.
207///
208/// ```text
209///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
210///    3          │03│00│00│00│      │01│00│00│00│03│
211///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
212///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
213///   258         │02│01│00│00│      │01│00│00│01│02│
214///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
215///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
216///  23423        │7F│5B│00│00│      │01│00│00│5B│7F│
217///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
218///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
219///  NULL         │??│??│??│??│      │00│00│00│00│00│
220///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
221///
222///              32-bit (4 bytes)        Row Format
223///  Value        Little Endian
224/// ```
225///
226/// ## Signed Integer Encoding
227///
228/// Signed integers have their most significant sign bit flipped, and are then encoded in the
229/// same manner as an unsigned integer.
230///
231/// ```text
232///        ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┬──┐
233///     5  │05│00│00│00│       │05│00│00│80│       │01│80│00│00│05│
234///        └──┴──┴──┴──┘       └──┴──┴──┴──┘       └──┴──┴──┴──┴──┘
235///        ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┬──┐
236///    -5  │FB│FF│FF│FF│       │FB│FF│FF│7F│       │01│7F│FF│FF│FB│
237///        └──┴──┴──┴──┘       └──┴──┴──┴──┘       └──┴──┴──┴──┴──┘
238///
239///  Value  32-bit (4 bytes)    High bit flipped      Row Format
240///          Little Endian
241/// ```
242///
243/// ## Float Encoding
244///
245/// Floats are converted from IEEE 754 representation to a signed integer representation
246/// by flipping all bar the sign bit if they are negative.
247///
248/// They are then encoded in the same manner as a signed integer.
249///
250/// ## Fixed Length Bytes Encoding
251///
252/// Fixed length bytes are encoded in the same fashion as primitive types above.
253///
254/// For a fixed length array of length `n`:
255///
256/// A null is encoded as `0_u8` null sentinel followed by `n` `0_u8` bytes
257///
258/// A valid value is encoded as `1_u8` followed by the value bytes
259///
260/// ## Variable Length Bytes (including Strings) Encoding
261///
262/// A null is encoded as a `0_u8`.
263///
264/// An empty byte array is encoded as `1_u8`.
265///
266/// A non-null, non-empty byte array is encoded as `2_u8` followed by the byte array
267/// encoded using a block based scheme described below.
268///
269/// The byte array is broken up into fixed-width blocks, each block is written in turn
270/// to the output, followed by `0xFF_u8`. The final block is padded to 32-bytes
271/// with `0_u8` and written to the output, followed by the un-padded length in bytes
272/// of this final block as a `u8`. The first 4 blocks have a length of 8, with subsequent
273/// blocks using a length of 32, this is to reduce space amplification for small strings.
274///
275/// Note the following example encodings use a block size of 4 bytes for brevity:
276///
277/// ```text
278///                       ┌───┬───┬───┬───┬───┬───┐
279///  "MEEP"               │02 │'M'│'E'│'E'│'P'│04 │
280///                       └───┴───┴───┴───┴───┴───┘
281///
282///                       ┌───┐
283///  ""                   │01 |
284///                       └───┘
285///
286///  NULL                 ┌───┐
287///                       │00 │
288///                       └───┘
289///
290/// "Defenestration"      ┌───┬───┬───┬───┬───┬───┐
291///                       │02 │'D'│'e'│'f'│'e'│FF │
292///                       └───┼───┼───┼───┼───┼───┤
293///                           │'n'│'e'│'s'│'t'│FF │
294///                           ├───┼───┼───┼───┼───┤
295///                           │'r'│'a'│'t'│'r'│FF │
296///                           ├───┼───┼───┼───┼───┤
297///                           │'a'│'t'│'i'│'o'│FF │
298///                           ├───┼───┼───┼───┼───┤
299///                           │'n'│00 │00 │00 │01 │
300///                           └───┴───┴───┴───┴───┘
301/// ```
302///
303/// This approach is loosely inspired by [COBS] encoding, and chosen over more traditional
304/// [byte stuffing] as it is more amenable to vectorisation, in particular AVX-256.
305///
306/// ## Dictionary Encoding
307///
308/// Dictionary encoded arrays are hydrated to their underlying values
309///
310/// ## REE Encoding
311///
312/// REE (Run End Encoding) arrays, A form of Run Length Encoding, are hydrated to their underlying values.
313///
314/// ## Struct Encoding
315///
316/// A null is encoded as a `0_u8`.
317///
318/// A valid value is encoded as `1_u8` followed by the row encoding of each child.
319///
320/// This encoding effectively flattens the schema in a depth-first fashion.
321///
322/// For example
323///
324/// ```text
325/// ┌───────┬────────────────────────┬───────┐
326/// │ Int32 │ Struct[Int32, Float32] │ Int32 │
327/// └───────┴────────────────────────┴───────┘
328/// ```
329///
330/// Is encoded as
331///
332/// ```text
333/// ┌───────┬───────────────┬───────┬─────────┬───────┐
334/// │ Int32 │ Null Sentinel │ Int32 │ Float32 │ Int32 │
335/// └───────┴───────────────┴───────┴─────────┴───────┘
336/// ```
337///
338/// ## List Encoding
339///
340/// Lists are encoded by first encoding all child elements to the row format.
341///
342/// A list value is then encoded as the concatenation of each of the child elements,
343/// separately encoded using the variable length encoding described above, followed
344/// by the variable length encoding of an empty byte array.
345///
346/// For example given:
347///
348/// ```text
349/// [1_u8, 2_u8, 3_u8]
350/// [1_u8, null]
351/// []
352/// null
353/// ```
354///
355/// The elements would be converted to:
356///
357/// ```text
358///     ┌──┬──┐     ┌──┬──┐     ┌──┬──┐     ┌──┬──┐        ┌──┬──┐
359///  1  │01│01│  2  │01│02│  3  │01│03│  1  │01│01│  null  │00│00│
360///     └──┴──┘     └──┴──┘     └──┴──┘     └──┴──┘        └──┴──┘
361///```
362///
363/// Which would be encoded as
364///
365/// ```text
366///                         ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
367///  [1_u8, 2_u8, 3_u8]     │02│01│01│00│00│02│02│01│02│00│00│02│02│01│03│00│00│02│01│
368///                         └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
369///                          └──── 1_u8 ────┘   └──── 2_u8 ────┘  └──── 3_u8 ────┘
370///
371///                         ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
372///  [1_u8, null]           │02│01│01│00│00│02│02│00│00│00│00│02│01│
373///                         └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
374///                          └──── 1_u8 ────┘   └──── null ────┘
375///
376///```
377///
378/// With `[]` represented by an empty byte array, and `null` a null byte array.
379///
380/// ## Fixed Size List Encoding
381///
382/// Fixed Size Lists are encoded by first encoding all child elements to the row format.
383///
384/// A non-null list value is then encoded as 0x01 followed by the concatenation of each
385/// of the child elements. A null list value is encoded as a null marker.
386///
387/// For example given:
388///
389/// ```text
390/// [1_u8, 2_u8]
391/// [3_u8, null]
392/// null
393/// ```
394///
395/// The elements would be converted to:
396///
397/// ```text
398///     ┌──┬──┐     ┌──┬──┐     ┌──┬──┐        ┌──┬──┐
399///  1  │01│01│  2  │01│02│  3  │01│03│  null  │00│00│
400///     └──┴──┘     └──┴──┘     └──┴──┘        └──┴──┘
401///```
402///
403/// Which would be encoded as
404///
405/// ```text
406///                 ┌──┬──┬──┬──┬──┐
407///  [1_u8, 2_u8]   │01│01│01│01│02│
408///                 └──┴──┴──┴──┴──┘
409///                     └ 1 ┘ └ 2 ┘
410///                 ┌──┬──┬──┬──┬──┐
411///  [3_u8, null]   │01│01│03│00│00│
412///                 └──┴──┴──┴──┴──┘
413///                     └ 1 ┘ └null┘
414///                 ┌──┐
415///  null           │00│
416///                 └──┘
417///
418///```
419///
420/// ## ListView Encoding
421///
422/// ListView arrays differ from List arrays in their representation: instead of using
423/// consecutive offset pairs to define each list, ListView uses explicit offset and size
424/// pairs for each element. This allows ListView elements to reference arbitrary (potentially
425/// overlapping) regions of the child array.
426///
427/// Despite this structural difference, ListView uses the **same row encoding as List**.
428/// Each list value is encoded as the concatenation of its child elements (each separately
429/// variable-length encoded), followed by a variable-length encoded empty byte array terminator.
430///
431/// **Important**: When a ListView is decoded back from row format, it is still a
432/// ListView, but any child element sharing that may have existed in the original
433/// (where multiple list entries could reference overlapping regions of the child
434/// array) is **not preserved** - each list's children are decoded independently
435/// with sequential offsets.
436///
437/// For example, given a ListView with offset/size pairs:
438///
439/// ```text
440/// offsets: [0, 1, 0]
441/// sizes:   [2, 2, 0]
442/// values:  [1_u8, 2_u8, 3_u8]
443///
444/// Resulting lists:
445/// [1_u8, 2_u8]  (offset=0, size=2 -> values[0..2])
446/// [2_u8, 3_u8]  (offset=1, size=2 -> values[1..3])
447/// []            (offset=0, size=0 -> empty)
448/// ```
449///
450/// The elements would be encoded identically to List encoding:
451///
452/// ```text
453///                         ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
454///  [1_u8, 2_u8]           │02│01│01│00│00│02│02│01│02│00│00│02│01│
455///                         └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
456///                          └──── 1_u8 ────┘   └──── 2_u8 ────┘
457///
458///                         ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
459///  [2_u8, 3_u8]           │02│01│02│00│00│02│02│01│03│00│00│02│01│
460///                         └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
461///                          └──── 2_u8 ────┘   └──── 3_u8 ────┘
462///
463///```
464///
465/// Note that element `2_u8` appears in both encoded rows, even though it was shared
466/// in the original ListView, and `[]` is represented by an empty byte array.
467///
468/// ## Union Encoding
469///
470/// A union value is encoded as a single type-id byte followed by the row encoding of the selected child value.
471/// The type-id byte is always present; union arrays have no top-level null marker, so nulls are represented by the child encoding.
472///
473/// For example, given a union of Int32 (type_id = 0) and Utf8 (type_id = 1):
474///
475/// ```text
476///                           ┌──┬──────────────┐
477///  3                        │00│01│80│00│00│03│
478///                           └──┴──────────────┘
479///                            │  └─ signed integer encoding (non-null)
480///                            └──── type_id
481///
482///                           ┌──┬────────────────────────────────┐
483/// "abc"                     │01│02│'a'│'b'│'c'│00│00│00│00│00│03│
484///                           └──┴────────────────────────────────┘
485///                            │  └─ string encoding (non-null)
486///                            └──── type_id
487///
488///                           ┌──┬──────────────┐
489/// null Int32                │00│00│00│00│00│00│
490///                           └──┴──────────────┘
491///                            │  └─ signed integer encoding (null)
492///                            └──── type_id
493///
494///                           ┌──┬──┐
495/// null Utf8                 │01│00│
496///                           └──┴──┘
497///                            │  └─ string encoding (null)
498///                            └──── type_id
499/// ```
500///
501/// See [`UnionArray`] for more details on union types.
502///
503/// # Ordering
504///
505/// ## Float Ordering
506///
507/// Floats are totally ordered in accordance to the `totalOrder` predicate as defined
508/// in the IEEE 754 (2008 revision) floating point standard.
509///
510/// The ordering established by this does not always agree with the
511/// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example,
512/// they consider negative and positive zero equal, while this does not
513///
514/// ## Null Ordering
515///
516/// The encoding described above will order nulls first, this can be inverted by representing
517/// nulls as `0xFF_u8` instead of `0_u8`
518///
519/// ## Union Ordering
520///
521/// Values of the same type are ordered according to the ordering of that type.
522/// Values of different types are ordered by their type id.
523/// The type_id is negated when descending order is specified.
524///
525/// ## Reverse Column Ordering
526///
527/// The order of a given column can be reversed by negating the encoded bytes of non-null values
528///
529/// [COBS]: https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing
530/// [byte stuffing]: https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Asynchronous_framing
531#[derive(Debug)]
532pub struct RowConverter {
533    fields: Arc<[SortField]>,
534    /// State for codecs
535    codecs: Vec<Codec>,
536}
537
538#[derive(Debug)]
539enum Codec {
540    /// No additional codec state is necessary
541    Stateless,
542    /// A row converter for the dictionary values
543    /// and the encoding of a row containing only nulls
544    Dictionary(RowConverter, OwnedRow),
545    /// A row converter for the child fields
546    /// and the encoding of a row containing only nulls
547    Struct(RowConverter, OwnedRow),
548    /// A row converter for the child field
549    List(RowConverter),
550    /// A row converter for the values array of a run-end encoded array
551    RunEndEncoded(RowConverter),
552    /// Row converters for each union field (indexed by field position)
553    /// the type_ids for each field position, and the encoding of null rows for each field
554    Union(Vec<RowConverter>, Vec<i8>, Vec<OwnedRow>),
555}
556
557/// Computes the minimum offset and maximum end (offset + size) for a ListView array.
558/// Returns (min_offset, max_end) which can be used to slice the values array.
559fn compute_list_view_bounds<O: OffsetSizeTrait>(array: &GenericListViewArray<O>) -> (usize, usize) {
560    if array.is_empty() {
561        return (0, 0);
562    }
563
564    let offsets = array.value_offsets();
565    let sizes = array.value_sizes();
566    let values_len = array.values().len();
567
568    let mut min_offset = usize::MAX;
569    let mut max_end = 0usize;
570
571    for i in 0..array.len() {
572        let offset = offsets[i].as_usize();
573        let size = sizes[i].as_usize();
574        let end = offset + size;
575
576        if size > 0 {
577            min_offset = min_offset.min(offset);
578            max_end = max_end.max(end);
579        }
580
581        // Early exit if we've found the full range of the values array. This is possible with
582        // ListViews since offsets and sizes are arbitrary and the full range can be covered early
583        // in the iteration contrary to regular Lists.
584        if min_offset == 0 && max_end == values_len {
585            break;
586        }
587    }
588
589    if min_offset == usize::MAX {
590        // All lists are empty
591        (0, 0)
592    } else {
593        (min_offset, max_end)
594    }
595}
596
597impl Codec {
598    fn new(sort_field: &SortField) -> Result<Self, ArrowError> {
599        match &sort_field.data_type {
600            DataType::Dictionary(_, values) => {
601                let sort_field =
602                    SortField::new_with_options(values.as_ref().clone(), sort_field.options);
603
604                let converter = RowConverter::new(vec![sort_field])?;
605                let null_array = new_null_array(values.as_ref(), 1);
606                let nulls = converter.convert_columns(&[null_array])?;
607
608                let owned = OwnedRow {
609                    data: nulls.buffer.into(),
610                    config: nulls.config,
611                };
612                Ok(Self::Dictionary(converter, owned))
613            }
614            DataType::RunEndEncoded(_, values) => {
615                // Similar to List implementation
616                let options = SortOptions {
617                    descending: false,
618                    nulls_first: sort_field.options.nulls_first != sort_field.options.descending,
619                };
620
621                let field = SortField::new_with_options(values.data_type().clone(), options);
622                let converter = RowConverter::new(vec![field])?;
623                Ok(Self::RunEndEncoded(converter))
624            }
625            d if !d.is_nested() => Ok(Self::Stateless),
626            DataType::List(f)
627            | DataType::LargeList(f)
628            | DataType::ListView(f)
629            | DataType::LargeListView(f) => {
630                // The encoded contents will be inverted if descending is set to true
631                // As such we set `descending` to false and negate nulls first if it
632                // it set to true
633                let options = SortOptions {
634                    descending: false,
635                    nulls_first: sort_field.options.nulls_first != sort_field.options.descending,
636                };
637
638                let field = SortField::new_with_options(f.data_type().clone(), options);
639                let converter = RowConverter::new(vec![field])?;
640                Ok(Self::List(converter))
641            }
642            DataType::FixedSizeList(f, _) => {
643                let field = SortField::new_with_options(f.data_type().clone(), sort_field.options);
644                let converter = RowConverter::new(vec![field])?;
645                Ok(Self::List(converter))
646            }
647            DataType::Struct(f) => {
648                let sort_fields = f
649                    .iter()
650                    .map(|x| SortField::new_with_options(x.data_type().clone(), sort_field.options))
651                    .collect();
652
653                let converter = RowConverter::new(sort_fields)?;
654                let nulls: Vec<_> = f.iter().map(|x| new_null_array(x.data_type(), 1)).collect();
655
656                let nulls = converter.convert_columns(&nulls)?;
657                let owned = OwnedRow {
658                    data: nulls.buffer.into(),
659                    config: nulls.config,
660                };
661
662                Ok(Self::Struct(converter, owned))
663            }
664            DataType::Union(fields, _mode) => {
665                // similar to dictionaries and lists, we set descending to false and negate nulls_first
666                // since the encoded contents will be inverted if descending is set
667                let options = SortOptions {
668                    descending: false,
669                    nulls_first: sort_field.options.nulls_first != sort_field.options.descending,
670                };
671
672                let mut converters = Vec::with_capacity(fields.len());
673                let mut type_ids = Vec::with_capacity(fields.len());
674                let mut null_rows = Vec::with_capacity(fields.len());
675
676                for (type_id, field) in fields.iter() {
677                    let sort_field =
678                        SortField::new_with_options(field.data_type().clone(), options);
679                    let converter = RowConverter::new(vec![sort_field])?;
680
681                    let null_array = new_null_array(field.data_type(), 1);
682                    let nulls = converter.convert_columns(&[null_array])?;
683                    let owned = OwnedRow {
684                        data: nulls.buffer.into(),
685                        config: nulls.config,
686                    };
687
688                    converters.push(converter);
689                    type_ids.push(type_id);
690                    null_rows.push(owned);
691                }
692
693                Ok(Self::Union(converters, type_ids, null_rows))
694            }
695            _ => Err(ArrowError::NotYetImplemented(format!(
696                "not yet implemented: {:?}",
697                sort_field.data_type
698            ))),
699        }
700    }
701
702    fn encoder(&self, array: &dyn Array) -> Result<Encoder<'_>, ArrowError> {
703        match self {
704            Codec::Stateless => Ok(Encoder::Stateless),
705            Codec::Dictionary(converter, nulls) => {
706                let values = array.as_any_dictionary().values().clone();
707                let rows = converter.convert_columns(&[values])?;
708                Ok(Encoder::Dictionary(rows, nulls.row()))
709            }
710            Codec::Struct(converter, null) => {
711                let v = as_struct_array(array);
712                let rows = converter.convert_columns(v.columns())?;
713                Ok(Encoder::Struct(rows, null.row()))
714            }
715            Codec::List(converter) => {
716                let values = match array.data_type() {
717                    DataType::List(_) => {
718                        let list_array = as_list_array(array);
719                        let first_offset = list_array.offsets()[0] as usize;
720                        let last_offset =
721                            list_array.offsets()[list_array.offsets().len() - 1] as usize;
722
723                        // values can include more data than referenced in the ListArray, only encode
724                        // the referenced values.
725                        list_array
726                            .values()
727                            .slice(first_offset, last_offset - first_offset)
728                    }
729                    DataType::LargeList(_) => {
730                        let list_array = as_large_list_array(array);
731
732                        let first_offset = list_array.offsets()[0] as usize;
733                        let last_offset =
734                            list_array.offsets()[list_array.offsets().len() - 1] as usize;
735
736                        // values can include more data than referenced in the LargeListArray, only encode
737                        // the referenced values.
738                        list_array
739                            .values()
740                            .slice(first_offset, last_offset - first_offset)
741                    }
742                    DataType::ListView(_) => {
743                        let list_view_array = array.as_list_view::<i32>();
744                        let (min_offset, max_end) = compute_list_view_bounds(list_view_array);
745                        list_view_array
746                            .values()
747                            .slice(min_offset, max_end - min_offset)
748                    }
749                    DataType::LargeListView(_) => {
750                        let list_view_array = array.as_list_view::<i64>();
751                        let (min_offset, max_end) = compute_list_view_bounds(list_view_array);
752                        list_view_array
753                            .values()
754                            .slice(min_offset, max_end - min_offset)
755                    }
756                    DataType::FixedSizeList(_, _) => {
757                        as_fixed_size_list_array(array).values().clone()
758                    }
759                    _ => unreachable!(),
760                };
761                let rows = converter.convert_columns(&[values])?;
762                Ok(Encoder::List(rows))
763            }
764            Codec::RunEndEncoded(converter) => {
765                let values = match array.data_type() {
766                    DataType::RunEndEncoded(r, _) => match r.data_type() {
767                        DataType::Int16 => array.as_run::<Int16Type>().values_slice(),
768                        DataType::Int32 => array.as_run::<Int32Type>().values_slice(),
769                        DataType::Int64 => array.as_run::<Int64Type>().values_slice(),
770                        _ => unreachable!("Unsupported run end index type: {r:?}"),
771                    },
772                    _ => unreachable!(),
773                };
774                let rows = converter.convert_columns(std::slice::from_ref(&values))?;
775                Ok(Encoder::RunEndEncoded(rows))
776            }
777            Codec::Union(converters, field_to_type_ids, _) => {
778                let union_array = array
779                    .as_any()
780                    .downcast_ref::<UnionArray>()
781                    .expect("expected Union array");
782
783                let type_ids = union_array.type_ids().clone();
784                let offsets = union_array.offsets().cloned();
785
786                let mut child_rows = Vec::with_capacity(converters.len());
787                for (field_idx, converter) in converters.iter().enumerate() {
788                    let type_id = field_to_type_ids[field_idx];
789                    let child_array = union_array.child(type_id);
790                    let rows = converter.convert_columns(std::slice::from_ref(child_array))?;
791                    child_rows.push(rows);
792                }
793
794                Ok(Encoder::Union {
795                    child_rows,
796                    field_to_type_ids: field_to_type_ids.clone(),
797                    type_ids,
798                    offsets,
799                })
800            }
801        }
802    }
803
804    fn size(&self) -> usize {
805        match self {
806            Codec::Stateless => 0,
807            Codec::Dictionary(converter, nulls) => converter.size() + nulls.data.len(),
808            Codec::Struct(converter, nulls) => converter.size() + nulls.data.len(),
809            Codec::List(converter) => converter.size(),
810            Codec::RunEndEncoded(converter) => converter.size(),
811            Codec::Union(converters, _, null_rows) => {
812                converters.iter().map(|c| c.size()).sum::<usize>()
813                    + null_rows.iter().map(|n| n.data.len()).sum::<usize>()
814            }
815        }
816    }
817}
818
819#[derive(Debug)]
820enum Encoder<'a> {
821    /// No additional encoder state is necessary
822    Stateless,
823    /// The encoding of the child array and the encoding of a null row
824    Dictionary(Rows, Row<'a>),
825    /// The row encoding of the child arrays and the encoding of a null row
826    ///
827    /// It is necessary to encode to a temporary [`Rows`] to avoid serializing
828    /// values that are masked by a null in the parent StructArray, otherwise
829    /// this would establish an ordering between semantically null values
830    Struct(Rows, Row<'a>),
831    /// The row encoding of the child array
832    List(Rows),
833    /// The row encoding of the values array
834    RunEndEncoded(Rows),
835    /// The row encoding of each union field's child array, type_ids buffer, offsets buffer (for Dense), and mode
836    Union {
837        child_rows: Vec<Rows>,
838        field_to_type_ids: Vec<i8>,
839        type_ids: ScalarBuffer<i8>,
840        offsets: Option<ScalarBuffer<i32>>,
841    },
842}
843
844/// Configure the data type and sort order for a given column
845#[derive(Debug, Clone, PartialEq, Eq)]
846pub struct SortField {
847    /// Sort options
848    options: SortOptions,
849    /// Data type
850    data_type: DataType,
851}
852
853impl SortField {
854    /// Create a new column with the given data type
855    pub fn new(data_type: DataType) -> Self {
856        Self::new_with_options(data_type, Default::default())
857    }
858
859    /// Create a new column with the given data type and [`SortOptions`]
860    pub fn new_with_options(data_type: DataType, options: SortOptions) -> Self {
861        Self { options, data_type }
862    }
863
864    /// Return size of this instance in bytes.
865    ///
866    /// Includes the size of `Self`.
867    pub fn size(&self) -> usize {
868        self.data_type.size() + std::mem::size_of::<Self>() - std::mem::size_of::<DataType>()
869    }
870}
871
872impl RowConverter {
873    /// Create a new [`RowConverter`] with the provided schema
874    pub fn new(fields: Vec<SortField>) -> Result<Self, ArrowError> {
875        if !Self::supports_fields(&fields) {
876            return Err(ArrowError::NotYetImplemented(format!(
877                "Row format support not yet implemented for: {fields:?}"
878            )));
879        }
880
881        let codecs = fields.iter().map(Codec::new).collect::<Result<_, _>>()?;
882        Ok(Self {
883            fields: fields.into(),
884            codecs,
885        })
886    }
887
888    /// Check if the given fields are supported by the row format.
889    pub fn supports_fields(fields: &[SortField]) -> bool {
890        fields.iter().all(|x| Self::supports_datatype(&x.data_type))
891    }
892
893    fn supports_datatype(d: &DataType) -> bool {
894        match d {
895            _ if !d.is_nested() => true,
896            DataType::List(f)
897            | DataType::LargeList(f)
898            | DataType::ListView(f)
899            | DataType::LargeListView(f)
900            | DataType::FixedSizeList(f, _) => Self::supports_datatype(f.data_type()),
901            DataType::Struct(f) => f.iter().all(|x| Self::supports_datatype(x.data_type())),
902            DataType::RunEndEncoded(_, values) => Self::supports_datatype(values.data_type()),
903            DataType::Union(fs, _mode) => fs
904                .iter()
905                .all(|(_, f)| Self::supports_datatype(f.data_type())),
906            _ => false,
907        }
908    }
909
910    /// Convert [`ArrayRef`] columns into [`Rows`]
911    ///
912    /// See [`Row`] for information on when [`Row`] can be compared
913    ///
914    /// See [`Self::convert_rows`] for converting [`Rows`] back into [`ArrayRef`]
915    ///
916    /// # Panics
917    ///
918    /// Panics if the schema of `columns` does not match that provided to [`RowConverter::new`]
919    pub fn convert_columns(&self, columns: &[ArrayRef]) -> Result<Rows, ArrowError> {
920        let num_rows = columns.first().map(|x| x.len()).unwrap_or(0);
921        let mut rows = self.empty_rows(num_rows, 0);
922        self.append(&mut rows, columns)?;
923        Ok(rows)
924    }
925
926    /// Convert [`ArrayRef`] columns appending to an existing [`Rows`]
927    ///
928    /// See [`Row`] for information on when [`Row`] can be compared
929    ///
930    /// # Panics
931    ///
932    /// Panics if
933    /// * The schema of `columns` does not match that provided to [`RowConverter::new`]
934    /// * The provided [`Rows`] were not created by this [`RowConverter`]
935    ///
936    /// ```
937    /// # use std::sync::Arc;
938    /// # use std::collections::HashSet;
939    /// # use arrow_array::cast::AsArray;
940    /// # use arrow_array::StringArray;
941    /// # use arrow_row::{Row, RowConverter, SortField};
942    /// # use arrow_schema::DataType;
943    /// #
944    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
945    /// let a1 = StringArray::from(vec!["hello", "world"]);
946    /// let a2 = StringArray::from(vec!["a", "a", "hello"]);
947    ///
948    /// let mut rows = converter.empty_rows(5, 128);
949    /// converter.append(&mut rows, &[Arc::new(a1)]).unwrap();
950    /// converter.append(&mut rows, &[Arc::new(a2)]).unwrap();
951    ///
952    /// let back = converter.convert_rows(&rows).unwrap();
953    /// let values: Vec<_> = back[0].as_string::<i32>().iter().map(Option::unwrap).collect();
954    /// assert_eq!(&values, &["hello", "world", "a", "a", "hello"]);
955    /// ```
956    pub fn append(&self, rows: &mut Rows, columns: &[ArrayRef]) -> Result<(), ArrowError> {
957        assert!(
958            Arc::ptr_eq(&rows.config.fields, &self.fields),
959            "rows were not produced by this RowConverter"
960        );
961
962        if columns.len() != self.fields.len() {
963            return Err(ArrowError::InvalidArgumentError(format!(
964                "Incorrect number of arrays provided to RowConverter, expected {} got {}",
965                self.fields.len(),
966                columns.len()
967            )));
968        }
969        for colum in columns.iter().skip(1) {
970            if colum.len() != columns[0].len() {
971                return Err(ArrowError::InvalidArgumentError(format!(
972                    "RowConverter columns must all have the same length, expected {} got {}",
973                    columns[0].len(),
974                    colum.len()
975                )));
976            }
977        }
978
979        let encoders = columns
980            .iter()
981            .zip(&self.codecs)
982            .zip(self.fields.iter())
983            .map(|((column, codec), field)| {
984                if !column.data_type().equals_datatype(&field.data_type) {
985                    return Err(ArrowError::InvalidArgumentError(format!(
986                        "RowConverter column schema mismatch, expected {} got {}",
987                        field.data_type,
988                        column.data_type()
989                    )));
990                }
991                codec.encoder(column.as_ref())
992            })
993            .collect::<Result<Vec<_>, _>>()?;
994
995        let write_offset = rows.num_rows();
996        let lengths = row_lengths(columns, &encoders);
997        let total = lengths.extend_offsets(rows.offsets[write_offset], &mut rows.offsets);
998        rows.buffer.resize(total, 0);
999
1000        for ((column, field), encoder) in columns.iter().zip(self.fields.iter()).zip(encoders) {
1001            // We encode a column at a time to minimise dispatch overheads
1002            encode_column(
1003                &mut rows.buffer,
1004                &mut rows.offsets[write_offset..],
1005                column.as_ref(),
1006                field.options,
1007                &encoder,
1008            )
1009        }
1010
1011        if cfg!(debug_assertions) {
1012            assert_eq!(*rows.offsets.last().unwrap(), rows.buffer.len());
1013            rows.offsets
1014                .windows(2)
1015                .for_each(|w| assert!(w[0] <= w[1], "offsets should be monotonic"));
1016        }
1017
1018        Ok(())
1019    }
1020
1021    /// Convert [`Rows`] columns into [`ArrayRef`]
1022    ///
1023    /// See [`Self::convert_columns`] for converting [`ArrayRef`] into [`Rows`]
1024    ///
1025    /// # Panics
1026    ///
1027    /// Panics if the rows were not produced by this [`RowConverter`]
1028    pub fn convert_rows<'a, I>(&self, rows: I) -> Result<Vec<ArrayRef>, ArrowError>
1029    where
1030        I: IntoIterator<Item = Row<'a>>,
1031    {
1032        let mut validate_utf8 = false;
1033        let mut rows: Vec<_> = rows
1034            .into_iter()
1035            .map(|row| {
1036                assert!(
1037                    Arc::ptr_eq(&row.config.fields, &self.fields),
1038                    "rows were not produced by this RowConverter"
1039                );
1040                validate_utf8 |= row.config.validate_utf8;
1041                row.data
1042            })
1043            .collect();
1044
1045        // SAFETY
1046        // We have validated that the rows came from this [`RowConverter`]
1047        // and therefore must be valid
1048        let result = unsafe { self.convert_raw(&mut rows, validate_utf8) }?;
1049
1050        if cfg!(debug_assertions) {
1051            for (i, row) in rows.iter().enumerate() {
1052                if !row.is_empty() {
1053                    return Err(ArrowError::InvalidArgumentError(format!(
1054                        "Codecs {codecs:?} did not consume all bytes for row {i}, remaining bytes: {row:?}",
1055                        codecs = &self.codecs
1056                    )));
1057                }
1058            }
1059        }
1060
1061        Ok(result)
1062    }
1063
1064    /// Returns an empty [`Rows`] with capacity for `row_capacity` rows with
1065    /// a total length of `data_capacity`
1066    ///
1067    /// This can be used to buffer a selection of [`Row`]
1068    ///
1069    /// ```
1070    /// # use std::sync::Arc;
1071    /// # use std::collections::HashSet;
1072    /// # use arrow_array::cast::AsArray;
1073    /// # use arrow_array::StringArray;
1074    /// # use arrow_row::{Row, RowConverter, SortField};
1075    /// # use arrow_schema::DataType;
1076    /// #
1077    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
1078    /// let array = StringArray::from(vec!["hello", "world", "a", "a", "hello"]);
1079    ///
1080    /// // Convert to row format and deduplicate
1081    /// let converted = converter.convert_columns(&[Arc::new(array)]).unwrap();
1082    /// let mut distinct_rows = converter.empty_rows(3, 100);
1083    /// let mut dedup: HashSet<Row> = HashSet::with_capacity(3);
1084    /// converted.iter().filter(|row| dedup.insert(*row)).for_each(|row| distinct_rows.push(row));
1085    ///
1086    /// // Note: we could skip buffering and feed the filtered iterator directly
1087    /// // into convert_rows, this is done for demonstration purposes only
1088    /// let distinct = converter.convert_rows(&distinct_rows).unwrap();
1089    /// let values: Vec<_> = distinct[0].as_string::<i32>().iter().map(Option::unwrap).collect();
1090    /// assert_eq!(&values, &["hello", "world", "a"]);
1091    /// ```
1092    pub fn empty_rows(&self, row_capacity: usize, data_capacity: usize) -> Rows {
1093        let mut offsets = Vec::with_capacity(row_capacity.saturating_add(1));
1094        offsets.push(0);
1095
1096        Rows {
1097            offsets,
1098            buffer: Vec::with_capacity(data_capacity),
1099            config: RowConfig {
1100                fields: self.fields.clone(),
1101                validate_utf8: false,
1102            },
1103        }
1104    }
1105
1106    /// Create a new [Rows] instance from the given binary data.
1107    ///
1108    /// ```
1109    /// # use std::sync::Arc;
1110    /// # use std::collections::HashSet;
1111    /// # use arrow_array::cast::AsArray;
1112    /// # use arrow_array::StringArray;
1113    /// # use arrow_row::{OwnedRow, Row, RowConverter, RowParser, SortField};
1114    /// # use arrow_schema::DataType;
1115    /// #
1116    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
1117    /// let array = StringArray::from(vec!["hello", "world", "a", "a", "hello"]);
1118    /// let rows = converter.convert_columns(&[Arc::new(array)]).unwrap();
1119    ///
1120    /// // We can convert rows into binary format and back in batch.
1121    /// let values: Vec<OwnedRow> = rows.iter().map(|r| r.owned()).collect();
1122    /// let binary = rows.try_into_binary().expect("known-small array");
1123    /// let converted = converter.from_binary(binary.clone());
1124    /// assert!(converted.iter().eq(values.iter().map(|r| r.row())));
1125    /// ```
1126    ///
1127    /// # Panics
1128    ///
1129    /// This function expects the passed [BinaryArray] to contain valid row data as produced by this
1130    /// [RowConverter]. It will panic if any rows are null. Operations on the returned [Rows] may
1131    /// panic if the data is malformed.
1132    pub fn from_binary(&self, array: BinaryArray) -> Rows {
1133        assert_eq!(
1134            array.null_count(),
1135            0,
1136            "can't construct Rows instance from array with nulls"
1137        );
1138        let (offsets, values, _) = array.into_parts();
1139        let offsets = offsets.iter().map(|&i| i.as_usize()).collect();
1140        // Try zero-copy, if it does not succeed, fall back to copying the values.
1141        let buffer = values.into_vec().unwrap_or_else(|values| values.to_vec());
1142        Rows {
1143            buffer,
1144            offsets,
1145            config: RowConfig {
1146                fields: Arc::clone(&self.fields),
1147                validate_utf8: true,
1148            },
1149        }
1150    }
1151
1152    /// Convert raw bytes into [`ArrayRef`]
1153    ///
1154    /// # Safety
1155    ///
1156    /// `rows` must contain valid data for this [`RowConverter`]
1157    unsafe fn convert_raw(
1158        &self,
1159        rows: &mut [&[u8]],
1160        validate_utf8: bool,
1161    ) -> Result<Vec<ArrayRef>, ArrowError> {
1162        self.fields
1163            .iter()
1164            .zip(&self.codecs)
1165            .map(|(field, codec)| unsafe { decode_column(field, rows, codec, validate_utf8) })
1166            .collect()
1167    }
1168
1169    /// Returns a [`RowParser`] that can be used to parse [`Row`] from bytes
1170    pub fn parser(&self) -> RowParser {
1171        RowParser::new(Arc::clone(&self.fields))
1172    }
1173
1174    /// Returns the size of this instance in bytes
1175    ///
1176    /// Includes the size of `Self`.
1177    pub fn size(&self) -> usize {
1178        std::mem::size_of::<Self>()
1179            + self.fields.iter().map(|x| x.size()).sum::<usize>()
1180            + self.codecs.capacity() * std::mem::size_of::<Codec>()
1181            + self.codecs.iter().map(Codec::size).sum::<usize>()
1182    }
1183}
1184
1185/// A [`RowParser`] can be created from a [`RowConverter`] and used to parse bytes to [`Row`]
1186#[derive(Debug)]
1187pub struct RowParser {
1188    config: RowConfig,
1189}
1190
1191impl RowParser {
1192    fn new(fields: Arc<[SortField]>) -> Self {
1193        Self {
1194            config: RowConfig {
1195                fields,
1196                validate_utf8: true,
1197            },
1198        }
1199    }
1200
1201    /// Creates a [`Row`] from the provided `bytes`.
1202    ///
1203    /// `bytes` must be a [`Row`] produced by the [`RowConverter`] associated with
1204    /// this [`RowParser`], otherwise subsequent operations with the produced [`Row`] may panic
1205    pub fn parse<'a>(&'a self, bytes: &'a [u8]) -> Row<'a> {
1206        Row {
1207            data: bytes,
1208            config: &self.config,
1209        }
1210    }
1211}
1212
1213/// The config of a given set of [`Row`]
1214#[derive(Debug, Clone)]
1215struct RowConfig {
1216    /// The schema for these rows
1217    fields: Arc<[SortField]>,
1218    /// Whether to run UTF-8 validation when converting to arrow arrays
1219    validate_utf8: bool,
1220}
1221
1222/// A row-oriented representation of arrow data, that is normalized for comparison.
1223///
1224/// See the [module level documentation](self) and [`RowConverter`] for more details.
1225#[derive(Debug)]
1226pub struct Rows {
1227    /// Underlying row bytes
1228    buffer: Vec<u8>,
1229    /// Row `i` has data `&buffer[offsets[i]..offsets[i+1]]`
1230    offsets: Vec<usize>,
1231    /// The config for these rows
1232    config: RowConfig,
1233}
1234
1235/// The iterator type for [`Rows::lengths`]
1236pub type RowLengthIter<'a> = Map<Windows<'a, usize>, fn(&'a [usize]) -> usize>;
1237
1238impl Rows {
1239    /// Append a [`Row`] to this [`Rows`]
1240    pub fn push(&mut self, row: Row<'_>) {
1241        assert!(
1242            Arc::ptr_eq(&row.config.fields, &self.config.fields),
1243            "row was not produced by this RowConverter"
1244        );
1245        self.config.validate_utf8 |= row.config.validate_utf8;
1246        self.buffer.extend_from_slice(row.data);
1247        self.offsets.push(self.buffer.len())
1248    }
1249
1250    /// Reserve capacity for `row_capacity` rows with a total length of `data_capacity`
1251    pub fn reserve(&mut self, row_capacity: usize, data_capacity: usize) {
1252        self.buffer.reserve(data_capacity);
1253        self.offsets.reserve(row_capacity);
1254    }
1255
1256    /// Returns the row at index `row`
1257    pub fn row(&self, row: usize) -> Row<'_> {
1258        assert!(row + 1 < self.offsets.len());
1259        unsafe { self.row_unchecked(row) }
1260    }
1261
1262    /// Returns the row at `index` without bounds checking
1263    ///
1264    /// # Safety
1265    /// Caller must ensure that `index` is less than the number of offsets (#rows + 1)
1266    pub unsafe fn row_unchecked(&self, index: usize) -> Row<'_> {
1267        let end = unsafe { self.offsets.get_unchecked(index + 1) };
1268        let start = unsafe { self.offsets.get_unchecked(index) };
1269        let data = unsafe { self.buffer.get_unchecked(*start..*end) };
1270        Row {
1271            data,
1272            config: &self.config,
1273        }
1274    }
1275
1276    /// Returns the number of bytes the row at index `row` is occupying,
1277    /// that is, what is the length of the returned [`Row::data`] will be.
1278    pub fn row_len(&self, row: usize) -> usize {
1279        assert!(row + 1 < self.offsets.len());
1280
1281        self.offsets[row + 1] - self.offsets[row]
1282    }
1283
1284    /// Get an iterator over the lengths of each row in this [`Rows`]
1285    pub fn lengths(&self) -> RowLengthIter<'_> {
1286        self.offsets.windows(2).map(|w| w[1] - w[0])
1287    }
1288
1289    /// Sets the length of this [`Rows`] to 0
1290    pub fn clear(&mut self) {
1291        self.offsets.truncate(1);
1292        self.buffer.clear();
1293    }
1294
1295    /// Returns the number of [`Row`] in this [`Rows`]
1296    pub fn num_rows(&self) -> usize {
1297        self.offsets.len() - 1
1298    }
1299
1300    /// Returns an iterator over the [`Row`] in this [`Rows`]
1301    pub fn iter(&self) -> RowsIter<'_> {
1302        self.into_iter()
1303    }
1304
1305    /// Returns the size of this instance in bytes
1306    ///
1307    /// Includes the size of `Self`.
1308    pub fn size(&self) -> usize {
1309        // Size of fields is accounted for as part of RowConverter
1310        std::mem::size_of::<Self>()
1311            + self.buffer.capacity()
1312            + self.offsets.capacity() * std::mem::size_of::<usize>()
1313    }
1314
1315    /// Create a [BinaryArray] from the [Rows] data without reallocating the
1316    /// underlying bytes.
1317    ///
1318    ///
1319    /// ```
1320    /// # use std::sync::Arc;
1321    /// # use std::collections::HashSet;
1322    /// # use arrow_array::cast::AsArray;
1323    /// # use arrow_array::StringArray;
1324    /// # use arrow_row::{OwnedRow, Row, RowConverter, RowParser, SortField};
1325    /// # use arrow_schema::DataType;
1326    /// #
1327    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
1328    /// let array = StringArray::from(vec!["hello", "world", "a", "a", "hello"]);
1329    /// let rows = converter.convert_columns(&[Arc::new(array)]).unwrap();
1330    ///
1331    /// // We can convert rows into binary format and back.
1332    /// let values: Vec<OwnedRow> = rows.iter().map(|r| r.owned()).collect();
1333    /// let binary = rows.try_into_binary().expect("known-small array");
1334    /// let parser = converter.parser();
1335    /// let parsed: Vec<OwnedRow> =
1336    ///   binary.iter().flatten().map(|b| parser.parse(b).owned()).collect();
1337    /// assert_eq!(values, parsed);
1338    /// ```
1339    ///
1340    /// # Errors
1341    ///
1342    /// This function will return an error if there is more data than can be stored in
1343    /// a [BinaryArray] -- i.e. if the total data size is more than 2GiB.
1344    pub fn try_into_binary(self) -> Result<BinaryArray, ArrowError> {
1345        if self.buffer.len() > i32::MAX as usize {
1346            return Err(ArrowError::InvalidArgumentError(format!(
1347                "{}-byte rows buffer too long to convert into a i32-indexed BinaryArray",
1348                self.buffer.len()
1349            )));
1350        }
1351        // We've checked that the buffer length fits in an i32; so all offsets into that buffer should fit as well.
1352        let offsets_scalar = ScalarBuffer::from_iter(self.offsets.into_iter().map(i32::usize_as));
1353        // SAFETY: offsets buffer is nonempty, monotonically increasing, and all represent valid indexes into buffer.
1354        let array = unsafe {
1355            BinaryArray::new_unchecked(
1356                OffsetBuffer::new_unchecked(offsets_scalar),
1357                Buffer::from_vec(self.buffer),
1358                None,
1359            )
1360        };
1361        Ok(array)
1362    }
1363}
1364
1365impl<'a> IntoIterator for &'a Rows {
1366    type Item = Row<'a>;
1367    type IntoIter = RowsIter<'a>;
1368
1369    fn into_iter(self) -> Self::IntoIter {
1370        RowsIter {
1371            rows: self,
1372            start: 0,
1373            end: self.num_rows(),
1374        }
1375    }
1376}
1377
1378/// An iterator over [`Rows`]
1379#[derive(Debug)]
1380pub struct RowsIter<'a> {
1381    rows: &'a Rows,
1382    start: usize,
1383    end: usize,
1384}
1385
1386impl<'a> Iterator for RowsIter<'a> {
1387    type Item = Row<'a>;
1388
1389    fn next(&mut self) -> Option<Self::Item> {
1390        if self.end == self.start {
1391            return None;
1392        }
1393
1394        // SAFETY: We have checked that `start` is less than `end`
1395        let row = unsafe { self.rows.row_unchecked(self.start) };
1396        self.start += 1;
1397        Some(row)
1398    }
1399
1400    fn size_hint(&self) -> (usize, Option<usize>) {
1401        let len = self.len();
1402        (len, Some(len))
1403    }
1404}
1405
1406impl ExactSizeIterator for RowsIter<'_> {
1407    fn len(&self) -> usize {
1408        self.end - self.start
1409    }
1410}
1411
1412impl DoubleEndedIterator for RowsIter<'_> {
1413    fn next_back(&mut self) -> Option<Self::Item> {
1414        if self.end == self.start {
1415            return None;
1416        }
1417        // Safety: We have checked that `start` is less than `end`
1418        let row = unsafe { self.rows.row_unchecked(self.end) };
1419        self.end -= 1;
1420        Some(row)
1421    }
1422}
1423
1424/// A comparable representation of a row.
1425///
1426/// See the [module level documentation](self) for more details.
1427///
1428/// Two [`Row`] can only be compared if they both belong to [`Rows`]
1429/// returned by calls to [`RowConverter::convert_columns`] on the same
1430/// [`RowConverter`]. If different [`RowConverter`]s are used, any
1431/// ordering established by comparing the [`Row`] is arbitrary.
1432#[derive(Debug, Copy, Clone)]
1433pub struct Row<'a> {
1434    data: &'a [u8],
1435    config: &'a RowConfig,
1436}
1437
1438impl<'a> Row<'a> {
1439    /// Create owned version of the row to detach it from the shared [`Rows`].
1440    pub fn owned(&self) -> OwnedRow {
1441        OwnedRow {
1442            data: self.data.into(),
1443            config: self.config.clone(),
1444        }
1445    }
1446
1447    /// The row's bytes, with the lifetime of the underlying data.
1448    pub fn data(&self) -> &'a [u8] {
1449        self.data
1450    }
1451}
1452
1453// Manually derive these as don't wish to include `fields`
1454
1455impl PartialEq for Row<'_> {
1456    #[inline]
1457    fn eq(&self, other: &Self) -> bool {
1458        self.data.eq(other.data)
1459    }
1460}
1461
1462impl Eq for Row<'_> {}
1463
1464impl PartialOrd for Row<'_> {
1465    #[inline]
1466    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1467        Some(self.cmp(other))
1468    }
1469}
1470
1471impl Ord for Row<'_> {
1472    #[inline]
1473    fn cmp(&self, other: &Self) -> Ordering {
1474        self.data.cmp(other.data)
1475    }
1476}
1477
1478impl Hash for Row<'_> {
1479    #[inline]
1480    fn hash<H: Hasher>(&self, state: &mut H) {
1481        self.data.hash(state)
1482    }
1483}
1484
1485impl AsRef<[u8]> for Row<'_> {
1486    #[inline]
1487    fn as_ref(&self) -> &[u8] {
1488        self.data
1489    }
1490}
1491
1492/// Owned version of a [`Row`] that can be moved/cloned freely.
1493///
1494/// This contains the data for the one specific row (not the entire buffer of all rows).
1495#[derive(Debug, Clone)]
1496pub struct OwnedRow {
1497    data: Box<[u8]>,
1498    config: RowConfig,
1499}
1500
1501impl OwnedRow {
1502    /// Get borrowed [`Row`] from owned version.
1503    ///
1504    /// This is helpful if you want to compare an [`OwnedRow`] with a [`Row`].
1505    pub fn row(&self) -> Row<'_> {
1506        Row {
1507            data: &self.data,
1508            config: &self.config,
1509        }
1510    }
1511}
1512
1513// Manually derive these as don't wish to include `fields`. Also we just want to use the same `Row` implementations here.
1514
1515impl PartialEq for OwnedRow {
1516    #[inline]
1517    fn eq(&self, other: &Self) -> bool {
1518        self.row().eq(&other.row())
1519    }
1520}
1521
1522impl Eq for OwnedRow {}
1523
1524impl PartialOrd for OwnedRow {
1525    #[inline]
1526    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1527        Some(self.cmp(other))
1528    }
1529}
1530
1531impl Ord for OwnedRow {
1532    #[inline]
1533    fn cmp(&self, other: &Self) -> Ordering {
1534        self.row().cmp(&other.row())
1535    }
1536}
1537
1538impl Hash for OwnedRow {
1539    #[inline]
1540    fn hash<H: Hasher>(&self, state: &mut H) {
1541        self.row().hash(state)
1542    }
1543}
1544
1545impl AsRef<[u8]> for OwnedRow {
1546    #[inline]
1547    fn as_ref(&self) -> &[u8] {
1548        &self.data
1549    }
1550}
1551
1552/// Returns the null sentinel, negated if `invert` is true
1553#[inline]
1554fn null_sentinel(options: SortOptions) -> u8 {
1555    match options.nulls_first {
1556        true => 0,
1557        false => 0xFF,
1558    }
1559}
1560
1561/// Stores the lengths of the rows. Lazily materializes lengths for columns with fixed-size types.
1562enum LengthTracker {
1563    /// Fixed state: All rows have length `length`
1564    Fixed { length: usize, num_rows: usize },
1565    /// Variable state: The length of row `i` is `lengths[i] + fixed_length`
1566    Variable {
1567        fixed_length: usize,
1568        lengths: Vec<usize>,
1569    },
1570}
1571
1572impl LengthTracker {
1573    fn new(num_rows: usize) -> Self {
1574        Self::Fixed {
1575            length: 0,
1576            num_rows,
1577        }
1578    }
1579
1580    /// Adds a column of fixed-length elements, each of size `new_length` to the LengthTracker
1581    fn push_fixed(&mut self, new_length: usize) {
1582        match self {
1583            LengthTracker::Fixed { length, .. } => *length += new_length,
1584            LengthTracker::Variable { fixed_length, .. } => *fixed_length += new_length,
1585        }
1586    }
1587
1588    /// Adds a column of possibly variable-length elements, element `i` has length `new_lengths.nth(i)`
1589    fn push_variable(&mut self, new_lengths: impl ExactSizeIterator<Item = usize>) {
1590        match self {
1591            LengthTracker::Fixed { length, .. } => {
1592                *self = LengthTracker::Variable {
1593                    fixed_length: *length,
1594                    lengths: new_lengths.collect(),
1595                }
1596            }
1597            LengthTracker::Variable { lengths, .. } => {
1598                assert_eq!(lengths.len(), new_lengths.len());
1599                lengths
1600                    .iter_mut()
1601                    .zip(new_lengths)
1602                    .for_each(|(length, new_length)| *length += new_length);
1603            }
1604        }
1605    }
1606
1607    /// Returns the tracked row lengths as a slice
1608    fn materialized(&mut self) -> &mut [usize] {
1609        if let LengthTracker::Fixed { length, num_rows } = *self {
1610            *self = LengthTracker::Variable {
1611                fixed_length: length,
1612                lengths: vec![0; num_rows],
1613            };
1614        }
1615
1616        match self {
1617            LengthTracker::Variable { lengths, .. } => lengths,
1618            LengthTracker::Fixed { .. } => unreachable!(),
1619        }
1620    }
1621
1622    /// Initializes the offsets using the tracked lengths. Returns the sum of the
1623    /// lengths of the rows added.
1624    ///
1625    /// We initialize the offsets shifted down by one row index.
1626    ///
1627    /// As the rows are appended to the offsets will be incremented to match
1628    ///
1629    /// For example, consider the case of 3 rows of length 3, 4, and 6 respectively.
1630    /// The offsets would be initialized to `0, 0, 3, 7`
1631    ///
1632    /// Writing the first row entirely would yield `0, 3, 3, 7`
1633    /// The second, `0, 3, 7, 7`
1634    /// The third, `0, 3, 7, 13`
1635    //
1636    /// This would be the final offsets for reading
1637    //
1638    /// In this way offsets tracks the position during writing whilst eventually serving
1639    fn extend_offsets(&self, initial_offset: usize, offsets: &mut Vec<usize>) -> usize {
1640        match self {
1641            LengthTracker::Fixed { length, num_rows } => {
1642                offsets.extend((0..*num_rows).map(|i| initial_offset + i * length));
1643
1644                initial_offset + num_rows * length
1645            }
1646            LengthTracker::Variable {
1647                fixed_length,
1648                lengths,
1649            } => {
1650                let mut acc = initial_offset;
1651
1652                offsets.extend(lengths.iter().map(|length| {
1653                    let current = acc;
1654                    acc += length + fixed_length;
1655                    current
1656                }));
1657
1658                acc
1659            }
1660        }
1661    }
1662}
1663
1664/// Computes the length of each encoded [`Rows`] and returns an empty [`Rows`]
1665fn row_lengths(cols: &[ArrayRef], encoders: &[Encoder]) -> LengthTracker {
1666    use fixed::FixedLengthEncoding;
1667
1668    let num_rows = cols.first().map(|x| x.len()).unwrap_or(0);
1669    let mut tracker = LengthTracker::new(num_rows);
1670
1671    for (array, encoder) in cols.iter().zip(encoders) {
1672        match encoder {
1673            Encoder::Stateless => {
1674                downcast_primitive_array! {
1675                    array => tracker.push_fixed(fixed::encoded_len(array)),
1676                    DataType::Null => {},
1677                    DataType::Boolean => tracker.push_fixed(bool::ENCODED_LEN),
1678                    DataType::Binary => push_generic_byte_array_lengths(&mut tracker, as_generic_binary_array::<i32>(array)),
1679                    DataType::LargeBinary => push_generic_byte_array_lengths(&mut tracker, as_generic_binary_array::<i64>(array)),
1680                    DataType::BinaryView => push_byte_view_array_lengths(&mut tracker, array.as_binary_view()),
1681                    DataType::Utf8 => push_generic_byte_array_lengths(&mut tracker, array.as_string::<i32>()),
1682                    DataType::LargeUtf8 => push_generic_byte_array_lengths(&mut tracker, array.as_string::<i64>()),
1683                    DataType::Utf8View => push_byte_view_array_lengths(&mut tracker, array.as_string_view()),
1684                    DataType::FixedSizeBinary(len) => {
1685                        let len = len.to_usize().unwrap();
1686                        tracker.push_fixed(1 + len)
1687                    }
1688                    _ => unimplemented!("unsupported data type: {}", array.data_type()),
1689                }
1690            }
1691            Encoder::Dictionary(values, null) => {
1692                downcast_dictionary_array! {
1693                    array => {
1694                        tracker.push_variable(
1695                            array.keys().iter().map(|v| match v {
1696                                Some(k) => values.row_len(k.as_usize()),
1697                                None => null.data.len(),
1698                            })
1699                        )
1700                    }
1701                    _ => unreachable!(),
1702                }
1703            }
1704            Encoder::Struct(rows, null) => {
1705                let array = as_struct_array(array);
1706                if rows.num_rows() > 0 {
1707                    // Only calculate row length if there are rows
1708                    tracker.push_variable((0..array.len()).map(|idx| match array.is_valid(idx) {
1709                        true => 1 + rows.row_len(idx),
1710                        false => 1 + null.data.len(),
1711                    }));
1712                } else {
1713                    // Edge case for Struct([]) arrays (no child fields)
1714                    tracker.push_variable((0..array.len()).map(|idx| match array.is_valid(idx) {
1715                        true => 1,
1716                        false => 1 + null.data.len(),
1717                    }));
1718                }
1719            }
1720            Encoder::List(rows) => match array.data_type() {
1721                DataType::List(_) => {
1722                    list::compute_lengths(tracker.materialized(), rows, as_list_array(array))
1723                }
1724                DataType::LargeList(_) => {
1725                    list::compute_lengths(tracker.materialized(), rows, as_large_list_array(array))
1726                }
1727                DataType::ListView(_) => {
1728                    let list_view = array.as_list_view::<i32>();
1729                    let (min_offset, _) = compute_list_view_bounds(list_view);
1730                    list::compute_lengths_list_view(
1731                        tracker.materialized(),
1732                        rows,
1733                        list_view,
1734                        min_offset,
1735                    )
1736                }
1737                DataType::LargeListView(_) => {
1738                    let list_view = array.as_list_view::<i64>();
1739                    let (min_offset, _) = compute_list_view_bounds(list_view);
1740                    list::compute_lengths_list_view(
1741                        tracker.materialized(),
1742                        rows,
1743                        list_view,
1744                        min_offset,
1745                    )
1746                }
1747                DataType::FixedSizeList(_, _) => compute_lengths_fixed_size_list(
1748                    &mut tracker,
1749                    rows,
1750                    as_fixed_size_list_array(array),
1751                ),
1752                _ => unreachable!(),
1753            },
1754            Encoder::RunEndEncoded(rows) => match array.data_type() {
1755                DataType::RunEndEncoded(r, _) => match r.data_type() {
1756                    DataType::Int16 => run::compute_lengths(
1757                        tracker.materialized(),
1758                        rows,
1759                        array.as_run::<Int16Type>(),
1760                    ),
1761                    DataType::Int32 => run::compute_lengths(
1762                        tracker.materialized(),
1763                        rows,
1764                        array.as_run::<Int32Type>(),
1765                    ),
1766                    DataType::Int64 => run::compute_lengths(
1767                        tracker.materialized(),
1768                        rows,
1769                        array.as_run::<Int64Type>(),
1770                    ),
1771                    _ => unreachable!("Unsupported run end index type: {r:?}"),
1772                },
1773                _ => unreachable!(),
1774            },
1775            Encoder::Union {
1776                child_rows,
1777                field_to_type_ids,
1778                type_ids,
1779                offsets,
1780            } => {
1781                let union_array = array
1782                    .as_any()
1783                    .downcast_ref::<UnionArray>()
1784                    .expect("expected UnionArray");
1785
1786                let mut type_id_to_field_idx = [0usize; 128];
1787                for (field_idx, &type_id) in field_to_type_ids.iter().enumerate() {
1788                    type_id_to_field_idx[type_id as usize] = field_idx;
1789                }
1790
1791                let lengths = (0..union_array.len()).map(|i| {
1792                    let type_id = type_ids[i];
1793                    let field_idx = type_id_to_field_idx[type_id as usize];
1794                    let child_row_i = offsets.as_ref().map(|o| o[i] as usize).unwrap_or(i);
1795                    let child_row_len = child_rows[field_idx].row_len(child_row_i);
1796
1797                    // length: 1 byte type_id + child row bytes
1798                    1 + child_row_len
1799                });
1800
1801                tracker.push_variable(lengths);
1802            }
1803        }
1804    }
1805
1806    tracker
1807}
1808
1809/// Add to [`LengthTracker`] the encoded length of each item in the [`GenericByteArray`]
1810fn push_generic_byte_array_lengths<T: ByteArrayType>(
1811    tracker: &mut LengthTracker,
1812    array: &GenericByteArray<T>,
1813) {
1814    if let Some(nulls) = array.nulls().filter(|n| n.null_count() > 0) {
1815        tracker.push_variable(
1816            array
1817                .offsets()
1818                .lengths()
1819                .zip(nulls.iter())
1820                .map(|(length, is_valid)| if is_valid { Some(length) } else { None })
1821                .map(variable::padded_length),
1822        )
1823    } else {
1824        tracker.push_variable(
1825            array
1826                .offsets()
1827                .lengths()
1828                .map(variable::non_null_padded_length),
1829        )
1830    }
1831}
1832
1833/// Add to [`LengthTracker`] the encoded length of each item in the [`GenericByteViewArray`]
1834fn push_byte_view_array_lengths<T: ByteViewType>(
1835    tracker: &mut LengthTracker,
1836    array: &GenericByteViewArray<T>,
1837) {
1838    if let Some(nulls) = array.nulls().filter(|n| n.null_count() > 0) {
1839        tracker.push_variable(
1840            array
1841                .lengths()
1842                .zip(nulls.iter())
1843                .map(|(length, is_valid)| {
1844                    if is_valid {
1845                        Some(length as usize)
1846                    } else {
1847                        None
1848                    }
1849                })
1850                .map(variable::padded_length),
1851        )
1852    } else {
1853        tracker.push_variable(
1854            array
1855                .lengths()
1856                .map(|len| variable::padded_length(Some(len as usize))),
1857        )
1858    }
1859}
1860
1861/// Encodes a column to the provided [`Rows`] incrementing the offsets as it progresses
1862fn encode_column(
1863    data: &mut [u8],
1864    offsets: &mut [usize],
1865    column: &dyn Array,
1866    opts: SortOptions,
1867    encoder: &Encoder<'_>,
1868) {
1869    match encoder {
1870        Encoder::Stateless => {
1871            downcast_primitive_array! {
1872                column => {
1873                    if let Some(nulls) = column.nulls().filter(|n| n.null_count() > 0){
1874                        fixed::encode(data, offsets, column.values(), nulls, opts)
1875                    } else {
1876                        fixed::encode_not_null(data, offsets, column.values(), opts)
1877                    }
1878                }
1879                DataType::Null => {}
1880                DataType::Boolean => {
1881                    if let Some(nulls) = column.nulls().filter(|n| n.null_count() > 0){
1882                        fixed::encode_boolean(data, offsets, column.as_boolean().values(), nulls, opts)
1883                    } else {
1884                        fixed::encode_boolean_not_null(data, offsets, column.as_boolean().values(), opts)
1885                    }
1886                }
1887                DataType::Binary => {
1888                    variable::encode_generic_byte_array(data, offsets, as_generic_binary_array::<i32>(column), opts)
1889                }
1890                DataType::BinaryView => {
1891                    variable::encode(data, offsets, column.as_binary_view().iter(), opts)
1892                }
1893                DataType::LargeBinary => {
1894                    variable::encode_generic_byte_array(data, offsets, as_generic_binary_array::<i64>(column), opts)
1895                }
1896                DataType::Utf8 => variable::encode_generic_byte_array(
1897                    data, offsets,
1898                    column.as_string::<i32>(),
1899                    opts,
1900                ),
1901                DataType::LargeUtf8 => variable::encode_generic_byte_array(
1902                    data, offsets,
1903                    column.as_string::<i64>(),
1904                    opts,
1905                ),
1906                DataType::Utf8View => variable::encode(
1907                    data, offsets,
1908                    column.as_string_view().iter().map(|x| x.map(|x| x.as_bytes())),
1909                    opts,
1910                ),
1911                DataType::FixedSizeBinary(_) => {
1912                    let array = column.as_any().downcast_ref().unwrap();
1913                    fixed::encode_fixed_size_binary(data, offsets, array, opts)
1914                }
1915                _ => unimplemented!("unsupported data type: {}", column.data_type()),
1916            }
1917        }
1918        Encoder::Dictionary(values, nulls) => {
1919            downcast_dictionary_array! {
1920                column => encode_dictionary_values(data, offsets, column, values, nulls),
1921                _ => unreachable!()
1922            }
1923        }
1924        Encoder::Struct(rows, null) => {
1925            fn struct_encode_helper<const NO_CHILD_FIELDS: bool>(
1926                array: &StructArray,
1927                offsets: &mut [usize],
1928                null_sentinel: u8,
1929                rows: &Rows,
1930                null: &Row<'_>,
1931                data: &mut [u8],
1932            ) {
1933                let empty_row = Row {
1934                    data: &[],
1935                    config: &rows.config,
1936                };
1937
1938                offsets
1939                    .iter_mut()
1940                    .skip(1)
1941                    .enumerate()
1942                    .for_each(|(idx, offset)| {
1943                        let (row, sentinel) = match array.is_valid(idx) {
1944                            true => (
1945                                if NO_CHILD_FIELDS {
1946                                    empty_row
1947                                } else {
1948                                    rows.row(idx)
1949                                },
1950                                0x01,
1951                            ),
1952                            false => (*null, null_sentinel),
1953                        };
1954                        let end_offset = *offset + 1 + row.as_ref().len();
1955                        data[*offset] = sentinel;
1956                        data[*offset + 1..end_offset].copy_from_slice(row.as_ref());
1957                        *offset = end_offset;
1958                    })
1959            }
1960
1961            let array = as_struct_array(column);
1962            let null_sentinel = null_sentinel(opts);
1963            if rows.num_rows() == 0 {
1964                // Edge case for Struct([]) arrays (no child fields)
1965                struct_encode_helper::<true>(array, offsets, null_sentinel, rows, null, data);
1966            } else {
1967                struct_encode_helper::<false>(array, offsets, null_sentinel, rows, null, data);
1968            }
1969        }
1970        Encoder::List(rows) => match column.data_type() {
1971            DataType::List(_) => list::encode(data, offsets, rows, opts, as_list_array(column)),
1972            DataType::LargeList(_) => {
1973                list::encode(data, offsets, rows, opts, as_large_list_array(column))
1974            }
1975            DataType::ListView(_) => {
1976                let list_view = column.as_list_view::<i32>();
1977                let (min_offset, _) = compute_list_view_bounds(list_view);
1978                list::encode_list_view(data, offsets, rows, opts, list_view, min_offset)
1979            }
1980            DataType::LargeListView(_) => {
1981                let list_view = column.as_list_view::<i64>();
1982                let (min_offset, _) = compute_list_view_bounds(list_view);
1983                list::encode_list_view(data, offsets, rows, opts, list_view, min_offset)
1984            }
1985            DataType::FixedSizeList(_, _) => {
1986                encode_fixed_size_list(data, offsets, rows, opts, as_fixed_size_list_array(column))
1987            }
1988            _ => unreachable!(),
1989        },
1990        Encoder::RunEndEncoded(rows) => match column.data_type() {
1991            DataType::RunEndEncoded(r, _) => match r.data_type() {
1992                DataType::Int16 => {
1993                    run::encode(data, offsets, rows, opts, column.as_run::<Int16Type>())
1994                }
1995                DataType::Int32 => {
1996                    run::encode(data, offsets, rows, opts, column.as_run::<Int32Type>())
1997                }
1998                DataType::Int64 => {
1999                    run::encode(data, offsets, rows, opts, column.as_run::<Int64Type>())
2000                }
2001                _ => unreachable!("Unsupported run end index type: {r:?}"),
2002            },
2003            _ => unreachable!(),
2004        },
2005        Encoder::Union {
2006            child_rows,
2007            field_to_type_ids,
2008            type_ids,
2009            offsets: offsets_buf,
2010        } => {
2011            let mut type_id_to_field_idx = [0usize; 128];
2012            for (field_idx, &type_id) in field_to_type_ids.iter().enumerate() {
2013                type_id_to_field_idx[type_id as usize] = field_idx;
2014            }
2015
2016            offsets
2017                .iter_mut()
2018                .skip(1)
2019                .enumerate()
2020                .for_each(|(i, offset)| {
2021                    let type_id = type_ids[i];
2022                    let field_idx = type_id_to_field_idx[type_id as usize];
2023
2024                    let child_row_idx = offsets_buf.as_ref().map(|o| o[i] as usize).unwrap_or(i);
2025                    let child_row = child_rows[field_idx].row(child_row_idx);
2026                    let child_bytes = child_row.as_ref();
2027
2028                    let type_id_byte = if opts.descending {
2029                        !(type_id as u8)
2030                    } else {
2031                        type_id as u8
2032                    };
2033                    data[*offset] = type_id_byte;
2034
2035                    let child_start = *offset + 1;
2036                    let child_end = child_start + child_bytes.len();
2037                    data[child_start..child_end].copy_from_slice(child_bytes);
2038
2039                    *offset = child_end;
2040                });
2041        }
2042    }
2043}
2044
2045/// Encode dictionary values not preserving the dictionary encoding
2046pub fn encode_dictionary_values<K: ArrowDictionaryKeyType>(
2047    data: &mut [u8],
2048    offsets: &mut [usize],
2049    column: &DictionaryArray<K>,
2050    values: &Rows,
2051    null: &Row<'_>,
2052) {
2053    for (offset, k) in offsets.iter_mut().skip(1).zip(column.keys()) {
2054        let row = match k {
2055            Some(k) => values.row(k.as_usize()).data,
2056            None => null.data,
2057        };
2058        let end_offset = *offset + row.len();
2059        data[*offset..end_offset].copy_from_slice(row);
2060        *offset = end_offset;
2061    }
2062}
2063
2064macro_rules! decode_primitive_helper {
2065    ($t:ty, $rows:ident, $data_type:ident, $options:ident) => {
2066        Arc::new(decode_primitive::<$t>($rows, $data_type, $options))
2067    };
2068}
2069
2070/// Decodes a the provided `field` from `rows`
2071///
2072/// # Safety
2073///
2074/// Rows must contain valid data for the provided field
2075unsafe fn decode_column(
2076    field: &SortField,
2077    rows: &mut [&[u8]],
2078    codec: &Codec,
2079    validate_utf8: bool,
2080) -> Result<ArrayRef, ArrowError> {
2081    let options = field.options;
2082
2083    let array: ArrayRef = match codec {
2084        Codec::Stateless => {
2085            let data_type = field.data_type.clone();
2086            downcast_primitive! {
2087                data_type => (decode_primitive_helper, rows, data_type, options),
2088                DataType::Null => Arc::new(NullArray::new(rows.len())),
2089                DataType::Boolean => Arc::new(decode_bool(rows, options)),
2090                DataType::Binary => Arc::new(decode_binary::<i32>(rows, options)),
2091                DataType::LargeBinary => Arc::new(decode_binary::<i64>(rows, options)),
2092                DataType::BinaryView => Arc::new(decode_binary_view(rows, options)),
2093                DataType::FixedSizeBinary(size) => Arc::new(decode_fixed_size_binary(rows, size, options)),
2094                DataType::Utf8 => Arc::new(unsafe{ decode_string::<i32>(rows, options, validate_utf8) }),
2095                DataType::LargeUtf8 => Arc::new(unsafe { decode_string::<i64>(rows, options, validate_utf8) }),
2096                DataType::Utf8View => Arc::new(unsafe { decode_string_view(rows, options, validate_utf8) }),
2097                _ => return Err(ArrowError::NotYetImplemented(format!("unsupported data type: {data_type}" )))
2098            }
2099        }
2100        Codec::Dictionary(converter, _) => {
2101            let cols = unsafe { converter.convert_raw(rows, validate_utf8) }?;
2102            cols.into_iter().next().unwrap()
2103        }
2104        Codec::Struct(converter, _) => {
2105            let (null_count, nulls) = fixed::decode_nulls(rows);
2106            rows.iter_mut().for_each(|row| *row = &row[1..]);
2107            let children = unsafe { converter.convert_raw(rows, validate_utf8) }?;
2108
2109            let child_data: Vec<ArrayData> = children.iter().map(|c| c.to_data()).collect();
2110            // Since RowConverter flattens certain data types (i.e. Dictionary),
2111            // we need to use updated data type instead of original field
2112            let corrected_fields: Vec<Field> = match &field.data_type {
2113                DataType::Struct(struct_fields) => struct_fields
2114                    .iter()
2115                    .zip(child_data.iter())
2116                    .map(|(orig_field, child_array)| {
2117                        orig_field
2118                            .as_ref()
2119                            .clone()
2120                            .with_data_type(child_array.data_type().clone())
2121                    })
2122                    .collect(),
2123                _ => unreachable!("Only Struct types should be corrected here"),
2124            };
2125            let corrected_struct_type = DataType::Struct(corrected_fields.into());
2126            let builder = ArrayDataBuilder::new(corrected_struct_type)
2127                .len(rows.len())
2128                .null_count(null_count)
2129                .null_bit_buffer(Some(nulls))
2130                .child_data(child_data);
2131
2132            Arc::new(StructArray::from(unsafe { builder.build_unchecked() }))
2133        }
2134        Codec::List(converter) => match &field.data_type {
2135            DataType::List(_) => {
2136                Arc::new(unsafe { list::decode::<i32>(converter, rows, field, validate_utf8) }?)
2137            }
2138            DataType::LargeList(_) => {
2139                Arc::new(unsafe { list::decode::<i64>(converter, rows, field, validate_utf8) }?)
2140            }
2141            DataType::ListView(_) => Arc::new(unsafe {
2142                list::decode_list_view::<i32>(converter, rows, field, validate_utf8)
2143            }?),
2144            DataType::LargeListView(_) => Arc::new(unsafe {
2145                list::decode_list_view::<i64>(converter, rows, field, validate_utf8)
2146            }?),
2147            DataType::FixedSizeList(_, value_length) => Arc::new(unsafe {
2148                list::decode_fixed_size_list(
2149                    converter,
2150                    rows,
2151                    field,
2152                    validate_utf8,
2153                    value_length.as_usize(),
2154                )
2155            }?),
2156            _ => unreachable!(),
2157        },
2158        Codec::RunEndEncoded(converter) => match &field.data_type {
2159            DataType::RunEndEncoded(run_ends, _) => match run_ends.data_type() {
2160                DataType::Int16 => Arc::new(unsafe {
2161                    run::decode::<Int16Type>(converter, rows, field, validate_utf8)
2162                }?),
2163                DataType::Int32 => Arc::new(unsafe {
2164                    run::decode::<Int32Type>(converter, rows, field, validate_utf8)
2165                }?),
2166                DataType::Int64 => Arc::new(unsafe {
2167                    run::decode::<Int64Type>(converter, rows, field, validate_utf8)
2168                }?),
2169                _ => unreachable!(),
2170            },
2171            _ => unreachable!(),
2172        },
2173        Codec::Union(converters, field_to_type_ids, null_rows) => {
2174            let len = rows.len();
2175
2176            let DataType::Union(union_fields, mode) = &field.data_type else {
2177                unreachable!()
2178            };
2179
2180            let mut type_id_to_field_idx = [0usize; 128];
2181            for (field_idx, &type_id) in field_to_type_ids.iter().enumerate() {
2182                type_id_to_field_idx[type_id as usize] = field_idx;
2183            }
2184
2185            let mut type_ids = Vec::with_capacity(len);
2186            let mut rows_by_field: Vec<Vec<(usize, &[u8])>> = vec![Vec::new(); converters.len()];
2187
2188            for (idx, row) in rows.iter_mut().enumerate() {
2189                let type_id_byte = {
2190                    let id = row[0];
2191                    if options.descending { !id } else { id }
2192                };
2193
2194                let type_id = type_id_byte as i8;
2195                type_ids.push(type_id);
2196
2197                let field_idx = type_id_to_field_idx[type_id as usize];
2198
2199                let child_row = &row[1..];
2200                rows_by_field[field_idx].push((idx, child_row));
2201            }
2202
2203            let mut child_arrays: Vec<ArrayRef> = Vec::with_capacity(converters.len());
2204            let mut offsets = (*mode == UnionMode::Dense).then(|| Vec::with_capacity(len));
2205
2206            for (field_idx, converter) in converters.iter().enumerate() {
2207                let field_rows = &rows_by_field[field_idx];
2208
2209                match &mode {
2210                    UnionMode::Dense => {
2211                        if field_rows.is_empty() {
2212                            let (_, field) = union_fields.iter().nth(field_idx).unwrap();
2213                            child_arrays.push(arrow_array::new_empty_array(field.data_type()));
2214                            continue;
2215                        }
2216
2217                        let mut child_data = field_rows
2218                            .iter()
2219                            .map(|(_, bytes)| *bytes)
2220                            .collect::<Vec<_>>();
2221
2222                        let child_array =
2223                            unsafe { converter.convert_raw(&mut child_data, validate_utf8) }?;
2224
2225                        // advance row slices by the bytes consumed
2226                        for ((row_idx, original_bytes), remaining_bytes) in
2227                            field_rows.iter().zip(child_data)
2228                        {
2229                            let consumed_length = 1 + original_bytes.len() - remaining_bytes.len();
2230                            rows[*row_idx] = &rows[*row_idx][consumed_length..];
2231                        }
2232
2233                        child_arrays.push(child_array.into_iter().next().unwrap());
2234                    }
2235                    UnionMode::Sparse => {
2236                        let mut sparse_data: Vec<&[u8]> = Vec::with_capacity(len);
2237                        let mut field_row_iter = field_rows.iter().peekable();
2238                        let null_row_bytes: &[u8] = &null_rows[field_idx].data;
2239
2240                        for idx in 0..len {
2241                            if let Some((next_idx, bytes)) = field_row_iter.peek() {
2242                                if *next_idx == idx {
2243                                    sparse_data.push(*bytes);
2244
2245                                    field_row_iter.next();
2246                                    continue;
2247                                }
2248                            }
2249                            sparse_data.push(null_row_bytes);
2250                        }
2251
2252                        let child_array =
2253                            unsafe { converter.convert_raw(&mut sparse_data, validate_utf8) }?;
2254
2255                        // advance row slices by the bytes consumed for rows that belong to this field
2256                        for (row_idx, child_row) in field_rows.iter() {
2257                            let remaining_len = sparse_data[*row_idx].len();
2258                            let consumed_length = 1 + child_row.len() - remaining_len;
2259                            rows[*row_idx] = &rows[*row_idx][consumed_length..];
2260                        }
2261
2262                        child_arrays.push(child_array.into_iter().next().unwrap());
2263                    }
2264                }
2265            }
2266
2267            // build offsets for dense unions
2268            if let Some(ref mut offsets_vec) = offsets {
2269                let mut count = vec![0i32; converters.len()];
2270                for type_id in &type_ids {
2271                    let field_idx = *type_id as usize;
2272                    offsets_vec.push(count[field_idx]);
2273
2274                    count[field_idx] += 1;
2275                }
2276            }
2277
2278            let type_ids_buffer = ScalarBuffer::from(type_ids);
2279            let offsets_buffer = offsets.map(ScalarBuffer::from);
2280
2281            let union_array = UnionArray::try_new(
2282                union_fields.clone(),
2283                type_ids_buffer,
2284                offsets_buffer,
2285                child_arrays,
2286            )?;
2287
2288            // note: union arrays don't support physical null buffers
2289            // nulls are represented logically though child arrays
2290            Arc::new(union_array)
2291        }
2292    };
2293    Ok(array)
2294}
2295
2296#[cfg(test)]
2297mod tests {
2298    use arrow_array::builder::*;
2299    use arrow_array::types::*;
2300    use arrow_array::*;
2301    use arrow_buffer::{Buffer, OffsetBuffer};
2302    use arrow_buffer::{NullBuffer, i256};
2303    use arrow_cast::display::{ArrayFormatter, FormatOptions};
2304    use arrow_ord::sort::{LexicographicalComparator, SortColumn};
2305    use rand::distr::uniform::SampleUniform;
2306    use rand::distr::{Distribution, StandardUniform};
2307    use rand::prelude::StdRng;
2308    use rand::{Rng, RngCore, SeedableRng};
2309
2310    use super::*;
2311
2312    #[test]
2313    fn test_fixed_width() {
2314        let cols = [
2315            Arc::new(Int16Array::from_iter([
2316                Some(1),
2317                Some(2),
2318                None,
2319                Some(-5),
2320                Some(2),
2321                Some(2),
2322                Some(0),
2323            ])) as ArrayRef,
2324            Arc::new(Float32Array::from_iter([
2325                Some(1.3),
2326                Some(2.5),
2327                None,
2328                Some(4.),
2329                Some(0.1),
2330                Some(-4.),
2331                Some(-0.),
2332            ])) as ArrayRef,
2333        ];
2334
2335        let converter = RowConverter::new(vec![
2336            SortField::new(DataType::Int16),
2337            SortField::new(DataType::Float32),
2338        ])
2339        .unwrap();
2340        let rows = converter.convert_columns(&cols).unwrap();
2341
2342        assert_eq!(rows.offsets, &[0, 8, 16, 24, 32, 40, 48, 56]);
2343        assert_eq!(
2344            rows.buffer,
2345            &[
2346                1, 128, 1, //
2347                1, 191, 166, 102, 102, //
2348                1, 128, 2, //
2349                1, 192, 32, 0, 0, //
2350                0, 0, 0, //
2351                0, 0, 0, 0, 0, //
2352                1, 127, 251, //
2353                1, 192, 128, 0, 0, //
2354                1, 128, 2, //
2355                1, 189, 204, 204, 205, //
2356                1, 128, 2, //
2357                1, 63, 127, 255, 255, //
2358                1, 128, 0, //
2359                1, 127, 255, 255, 255 //
2360            ]
2361        );
2362
2363        assert!(rows.row(3) < rows.row(6));
2364        assert!(rows.row(0) < rows.row(1));
2365        assert!(rows.row(3) < rows.row(0));
2366        assert!(rows.row(4) < rows.row(1));
2367        assert!(rows.row(5) < rows.row(4));
2368
2369        let back = converter.convert_rows(&rows).unwrap();
2370        for (expected, actual) in cols.iter().zip(&back) {
2371            assert_eq!(expected, actual);
2372        }
2373    }
2374
2375    #[test]
2376    fn test_decimal32() {
2377        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal32(
2378            DECIMAL32_MAX_PRECISION,
2379            7,
2380        ))])
2381        .unwrap();
2382        let col = Arc::new(
2383            Decimal32Array::from_iter([
2384                None,
2385                Some(i32::MIN),
2386                Some(-13),
2387                Some(46_i32),
2388                Some(5456_i32),
2389                Some(i32::MAX),
2390            ])
2391            .with_precision_and_scale(9, 7)
2392            .unwrap(),
2393        ) as ArrayRef;
2394
2395        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2396        for i in 0..rows.num_rows() - 1 {
2397            assert!(rows.row(i) < rows.row(i + 1));
2398        }
2399
2400        let back = converter.convert_rows(&rows).unwrap();
2401        assert_eq!(back.len(), 1);
2402        assert_eq!(col.as_ref(), back[0].as_ref())
2403    }
2404
2405    #[test]
2406    fn test_decimal64() {
2407        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal64(
2408            DECIMAL64_MAX_PRECISION,
2409            7,
2410        ))])
2411        .unwrap();
2412        let col = Arc::new(
2413            Decimal64Array::from_iter([
2414                None,
2415                Some(i64::MIN),
2416                Some(-13),
2417                Some(46_i64),
2418                Some(5456_i64),
2419                Some(i64::MAX),
2420            ])
2421            .with_precision_and_scale(18, 7)
2422            .unwrap(),
2423        ) as ArrayRef;
2424
2425        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2426        for i in 0..rows.num_rows() - 1 {
2427            assert!(rows.row(i) < rows.row(i + 1));
2428        }
2429
2430        let back = converter.convert_rows(&rows).unwrap();
2431        assert_eq!(back.len(), 1);
2432        assert_eq!(col.as_ref(), back[0].as_ref())
2433    }
2434
2435    #[test]
2436    fn test_decimal128() {
2437        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal128(
2438            DECIMAL128_MAX_PRECISION,
2439            7,
2440        ))])
2441        .unwrap();
2442        let col = Arc::new(
2443            Decimal128Array::from_iter([
2444                None,
2445                Some(i128::MIN),
2446                Some(-13),
2447                Some(46_i128),
2448                Some(5456_i128),
2449                Some(i128::MAX),
2450            ])
2451            .with_precision_and_scale(38, 7)
2452            .unwrap(),
2453        ) as ArrayRef;
2454
2455        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2456        for i in 0..rows.num_rows() - 1 {
2457            assert!(rows.row(i) < rows.row(i + 1));
2458        }
2459
2460        let back = converter.convert_rows(&rows).unwrap();
2461        assert_eq!(back.len(), 1);
2462        assert_eq!(col.as_ref(), back[0].as_ref())
2463    }
2464
2465    #[test]
2466    fn test_decimal256() {
2467        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal256(
2468            DECIMAL256_MAX_PRECISION,
2469            7,
2470        ))])
2471        .unwrap();
2472        let col = Arc::new(
2473            Decimal256Array::from_iter([
2474                None,
2475                Some(i256::MIN),
2476                Some(i256::from_parts(0, -1)),
2477                Some(i256::from_parts(u128::MAX, -1)),
2478                Some(i256::from_parts(u128::MAX, 0)),
2479                Some(i256::from_parts(0, 46_i128)),
2480                Some(i256::from_parts(5, 46_i128)),
2481                Some(i256::MAX),
2482            ])
2483            .with_precision_and_scale(DECIMAL256_MAX_PRECISION, 7)
2484            .unwrap(),
2485        ) as ArrayRef;
2486
2487        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2488        for i in 0..rows.num_rows() - 1 {
2489            assert!(rows.row(i) < rows.row(i + 1));
2490        }
2491
2492        let back = converter.convert_rows(&rows).unwrap();
2493        assert_eq!(back.len(), 1);
2494        assert_eq!(col.as_ref(), back[0].as_ref())
2495    }
2496
2497    #[test]
2498    fn test_bool() {
2499        let converter = RowConverter::new(vec![SortField::new(DataType::Boolean)]).unwrap();
2500
2501        let col = Arc::new(BooleanArray::from_iter([None, Some(false), Some(true)])) as ArrayRef;
2502
2503        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2504        assert!(rows.row(2) > rows.row(1));
2505        assert!(rows.row(2) > rows.row(0));
2506        assert!(rows.row(1) > rows.row(0));
2507
2508        let cols = converter.convert_rows(&rows).unwrap();
2509        assert_eq!(&cols[0], &col);
2510
2511        let converter = RowConverter::new(vec![SortField::new_with_options(
2512            DataType::Boolean,
2513            SortOptions::default().desc().with_nulls_first(false),
2514        )])
2515        .unwrap();
2516
2517        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2518        assert!(rows.row(2) < rows.row(1));
2519        assert!(rows.row(2) < rows.row(0));
2520        assert!(rows.row(1) < rows.row(0));
2521        let cols = converter.convert_rows(&rows).unwrap();
2522        assert_eq!(&cols[0], &col);
2523    }
2524
2525    #[test]
2526    fn test_timezone() {
2527        let a =
2528            TimestampNanosecondArray::from(vec![1, 2, 3, 4, 5]).with_timezone("+01:00".to_string());
2529        let d = a.data_type().clone();
2530
2531        let converter = RowConverter::new(vec![SortField::new(a.data_type().clone())]).unwrap();
2532        let rows = converter.convert_columns(&[Arc::new(a) as _]).unwrap();
2533        let back = converter.convert_rows(&rows).unwrap();
2534        assert_eq!(back.len(), 1);
2535        assert_eq!(back[0].data_type(), &d);
2536
2537        // Test dictionary
2538        let mut a = PrimitiveDictionaryBuilder::<Int32Type, TimestampNanosecondType>::new();
2539        a.append(34).unwrap();
2540        a.append_null();
2541        a.append(345).unwrap();
2542
2543        // Construct dictionary with a timezone
2544        let dict = a.finish();
2545        let values = TimestampNanosecondArray::from(dict.values().to_data());
2546        let dict_with_tz = dict.with_values(Arc::new(values.with_timezone("+02:00")));
2547        let v = DataType::Timestamp(TimeUnit::Nanosecond, Some("+02:00".into()));
2548        let d = DataType::Dictionary(Box::new(DataType::Int32), Box::new(v.clone()));
2549
2550        assert_eq!(dict_with_tz.data_type(), &d);
2551        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
2552        let rows = converter
2553            .convert_columns(&[Arc::new(dict_with_tz) as _])
2554            .unwrap();
2555        let back = converter.convert_rows(&rows).unwrap();
2556        assert_eq!(back.len(), 1);
2557        assert_eq!(back[0].data_type(), &v);
2558    }
2559
2560    #[test]
2561    fn test_null_encoding() {
2562        let col = Arc::new(NullArray::new(10));
2563        let converter = RowConverter::new(vec![SortField::new(DataType::Null)]).unwrap();
2564        let rows = converter.convert_columns(&[col]).unwrap();
2565        assert_eq!(rows.num_rows(), 10);
2566        assert_eq!(rows.row(1).data.len(), 0);
2567    }
2568
2569    #[test]
2570    fn test_variable_width() {
2571        let col = Arc::new(StringArray::from_iter([
2572            Some("hello"),
2573            Some("he"),
2574            None,
2575            Some("foo"),
2576            Some(""),
2577        ])) as ArrayRef;
2578
2579        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2580        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2581
2582        assert!(rows.row(1) < rows.row(0));
2583        assert!(rows.row(2) < rows.row(4));
2584        assert!(rows.row(3) < rows.row(0));
2585        assert!(rows.row(3) < rows.row(1));
2586
2587        let cols = converter.convert_rows(&rows).unwrap();
2588        assert_eq!(&cols[0], &col);
2589
2590        let col = Arc::new(BinaryArray::from_iter([
2591            None,
2592            Some(vec![0_u8; 0]),
2593            Some(vec![0_u8; 6]),
2594            Some(vec![0_u8; variable::MINI_BLOCK_SIZE]),
2595            Some(vec![0_u8; variable::MINI_BLOCK_SIZE + 1]),
2596            Some(vec![0_u8; variable::BLOCK_SIZE]),
2597            Some(vec![0_u8; variable::BLOCK_SIZE + 1]),
2598            Some(vec![1_u8; 6]),
2599            Some(vec![1_u8; variable::MINI_BLOCK_SIZE]),
2600            Some(vec![1_u8; variable::MINI_BLOCK_SIZE + 1]),
2601            Some(vec![1_u8; variable::BLOCK_SIZE]),
2602            Some(vec![1_u8; variable::BLOCK_SIZE + 1]),
2603            Some(vec![0xFF_u8; 6]),
2604            Some(vec![0xFF_u8; variable::MINI_BLOCK_SIZE]),
2605            Some(vec![0xFF_u8; variable::MINI_BLOCK_SIZE + 1]),
2606            Some(vec![0xFF_u8; variable::BLOCK_SIZE]),
2607            Some(vec![0xFF_u8; variable::BLOCK_SIZE + 1]),
2608        ])) as ArrayRef;
2609
2610        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
2611        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2612
2613        for i in 0..rows.num_rows() {
2614            for j in i + 1..rows.num_rows() {
2615                assert!(
2616                    rows.row(i) < rows.row(j),
2617                    "{} < {} - {:?} < {:?}",
2618                    i,
2619                    j,
2620                    rows.row(i),
2621                    rows.row(j)
2622                );
2623            }
2624        }
2625
2626        let cols = converter.convert_rows(&rows).unwrap();
2627        assert_eq!(&cols[0], &col);
2628
2629        let converter = RowConverter::new(vec![SortField::new_with_options(
2630            DataType::Binary,
2631            SortOptions::default().desc().with_nulls_first(false),
2632        )])
2633        .unwrap();
2634        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2635
2636        for i in 0..rows.num_rows() {
2637            for j in i + 1..rows.num_rows() {
2638                assert!(
2639                    rows.row(i) > rows.row(j),
2640                    "{} > {} - {:?} > {:?}",
2641                    i,
2642                    j,
2643                    rows.row(i),
2644                    rows.row(j)
2645                );
2646            }
2647        }
2648
2649        let cols = converter.convert_rows(&rows).unwrap();
2650        assert_eq!(&cols[0], &col);
2651    }
2652
2653    /// If `exact` is false performs a logical comparison between a and dictionary-encoded b
2654    fn dictionary_eq(a: &dyn Array, b: &dyn Array) {
2655        match b.data_type() {
2656            DataType::Dictionary(_, v) => {
2657                assert_eq!(a.data_type(), v.as_ref());
2658                let b = arrow_cast::cast(b, v).unwrap();
2659                assert_eq!(a, b.as_ref())
2660            }
2661            _ => assert_eq!(a, b),
2662        }
2663    }
2664
2665    #[test]
2666    fn test_string_dictionary() {
2667        let a = Arc::new(DictionaryArray::<Int32Type>::from_iter([
2668            Some("foo"),
2669            Some("hello"),
2670            Some("he"),
2671            None,
2672            Some("hello"),
2673            Some(""),
2674            Some("hello"),
2675            Some("hello"),
2676        ])) as ArrayRef;
2677
2678        let field = SortField::new(a.data_type().clone());
2679        let converter = RowConverter::new(vec![field]).unwrap();
2680        let rows_a = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2681
2682        assert!(rows_a.row(3) < rows_a.row(5));
2683        assert!(rows_a.row(2) < rows_a.row(1));
2684        assert!(rows_a.row(0) < rows_a.row(1));
2685        assert!(rows_a.row(3) < rows_a.row(0));
2686
2687        assert_eq!(rows_a.row(1), rows_a.row(4));
2688        assert_eq!(rows_a.row(1), rows_a.row(6));
2689        assert_eq!(rows_a.row(1), rows_a.row(7));
2690
2691        let cols = converter.convert_rows(&rows_a).unwrap();
2692        dictionary_eq(&cols[0], &a);
2693
2694        let b = Arc::new(DictionaryArray::<Int32Type>::from_iter([
2695            Some("hello"),
2696            None,
2697            Some("cupcakes"),
2698        ])) as ArrayRef;
2699
2700        let rows_b = converter.convert_columns(&[Arc::clone(&b)]).unwrap();
2701        assert_eq!(rows_a.row(1), rows_b.row(0));
2702        assert_eq!(rows_a.row(3), rows_b.row(1));
2703        assert!(rows_b.row(2) < rows_a.row(0));
2704
2705        let cols = converter.convert_rows(&rows_b).unwrap();
2706        dictionary_eq(&cols[0], &b);
2707
2708        let converter = RowConverter::new(vec![SortField::new_with_options(
2709            a.data_type().clone(),
2710            SortOptions::default().desc().with_nulls_first(false),
2711        )])
2712        .unwrap();
2713
2714        let rows_c = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2715        assert!(rows_c.row(3) > rows_c.row(5));
2716        assert!(rows_c.row(2) > rows_c.row(1));
2717        assert!(rows_c.row(0) > rows_c.row(1));
2718        assert!(rows_c.row(3) > rows_c.row(0));
2719
2720        let cols = converter.convert_rows(&rows_c).unwrap();
2721        dictionary_eq(&cols[0], &a);
2722
2723        let converter = RowConverter::new(vec![SortField::new_with_options(
2724            a.data_type().clone(),
2725            SortOptions::default().desc().with_nulls_first(true),
2726        )])
2727        .unwrap();
2728
2729        let rows_c = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2730        assert!(rows_c.row(3) < rows_c.row(5));
2731        assert!(rows_c.row(2) > rows_c.row(1));
2732        assert!(rows_c.row(0) > rows_c.row(1));
2733        assert!(rows_c.row(3) < rows_c.row(0));
2734
2735        let cols = converter.convert_rows(&rows_c).unwrap();
2736        dictionary_eq(&cols[0], &a);
2737    }
2738
2739    #[test]
2740    fn test_struct() {
2741        // Test basic
2742        let a = Arc::new(Int32Array::from(vec![1, 1, 2, 2])) as ArrayRef;
2743        let a_f = Arc::new(Field::new("int", DataType::Int32, false));
2744        let u = Arc::new(StringArray::from(vec!["a", "b", "c", "d"])) as ArrayRef;
2745        let u_f = Arc::new(Field::new("s", DataType::Utf8, false));
2746        let s1 = Arc::new(StructArray::from(vec![(a_f, a), (u_f, u)])) as ArrayRef;
2747
2748        let sort_fields = vec![SortField::new(s1.data_type().clone())];
2749        let converter = RowConverter::new(sort_fields).unwrap();
2750        let r1 = converter.convert_columns(&[Arc::clone(&s1)]).unwrap();
2751
2752        for (a, b) in r1.iter().zip(r1.iter().skip(1)) {
2753            assert!(a < b);
2754        }
2755
2756        let back = converter.convert_rows(&r1).unwrap();
2757        assert_eq!(back.len(), 1);
2758        assert_eq!(&back[0], &s1);
2759
2760        // Test struct nullability
2761        let data = s1
2762            .to_data()
2763            .into_builder()
2764            .null_bit_buffer(Some(Buffer::from_slice_ref([0b00001010])))
2765            .null_count(2)
2766            .build()
2767            .unwrap();
2768
2769        let s2 = Arc::new(StructArray::from(data)) as ArrayRef;
2770        let r2 = converter.convert_columns(&[Arc::clone(&s2)]).unwrap();
2771        assert_eq!(r2.row(0), r2.row(2)); // Nulls equal
2772        assert!(r2.row(0) < r2.row(1)); // Nulls first
2773        assert_ne!(r1.row(0), r2.row(0)); // Value does not equal null
2774        assert_eq!(r1.row(1), r2.row(1)); // Values equal
2775
2776        let back = converter.convert_rows(&r2).unwrap();
2777        assert_eq!(back.len(), 1);
2778        assert_eq!(&back[0], &s2);
2779
2780        back[0].to_data().validate_full().unwrap();
2781    }
2782
2783    #[test]
2784    fn test_dictionary_in_struct() {
2785        let builder = StringDictionaryBuilder::<Int32Type>::new();
2786        let mut struct_builder = StructBuilder::new(
2787            vec![Field::new_dictionary(
2788                "foo",
2789                DataType::Int32,
2790                DataType::Utf8,
2791                true,
2792            )],
2793            vec![Box::new(builder)],
2794        );
2795
2796        let dict_builder = struct_builder
2797            .field_builder::<StringDictionaryBuilder<Int32Type>>(0)
2798            .unwrap();
2799
2800        // Flattened: ["a", null, "a", "b"]
2801        dict_builder.append_value("a");
2802        dict_builder.append_null();
2803        dict_builder.append_value("a");
2804        dict_builder.append_value("b");
2805
2806        for _ in 0..4 {
2807            struct_builder.append(true);
2808        }
2809
2810        let s = Arc::new(struct_builder.finish()) as ArrayRef;
2811        let sort_fields = vec![SortField::new(s.data_type().clone())];
2812        let converter = RowConverter::new(sort_fields).unwrap();
2813        let r = converter.convert_columns(&[Arc::clone(&s)]).unwrap();
2814
2815        let back = converter.convert_rows(&r).unwrap();
2816        let [s2] = back.try_into().unwrap();
2817
2818        // RowConverter flattens Dictionary
2819        // s.ty = Struct("foo": Dictionary(Int32, Utf8)), s2.ty = Struct("foo": Utf8)
2820        assert_ne!(&s.data_type(), &s2.data_type());
2821        s2.to_data().validate_full().unwrap();
2822
2823        // Check if the logical data remains the same
2824        // Keys: [0, null, 0, 1]
2825        // Values: ["a", "b"]
2826        let s1_struct = s.as_struct();
2827        let s1_0 = s1_struct.column(0);
2828        let s1_idx_0 = s1_0.as_dictionary::<Int32Type>();
2829        let keys = s1_idx_0.keys();
2830        let values = s1_idx_0.values().as_string::<i32>();
2831        // Flattened: ["a", null, "a", "b"]
2832        let s2_struct = s2.as_struct();
2833        let s2_0 = s2_struct.column(0);
2834        let s2_idx_0 = s2_0.as_string::<i32>();
2835
2836        for i in 0..keys.len() {
2837            if keys.is_null(i) {
2838                assert!(s2_idx_0.is_null(i));
2839            } else {
2840                let dict_index = keys.value(i) as usize;
2841                assert_eq!(values.value(dict_index), s2_idx_0.value(i));
2842            }
2843        }
2844    }
2845
2846    #[test]
2847    fn test_dictionary_in_struct_empty() {
2848        let ty = DataType::Struct(
2849            vec![Field::new_dictionary(
2850                "foo",
2851                DataType::Int32,
2852                DataType::Int32,
2853                false,
2854            )]
2855            .into(),
2856        );
2857        let s = arrow_array::new_empty_array(&ty);
2858
2859        let sort_fields = vec![SortField::new(s.data_type().clone())];
2860        let converter = RowConverter::new(sort_fields).unwrap();
2861        let r = converter.convert_columns(&[Arc::clone(&s)]).unwrap();
2862
2863        let back = converter.convert_rows(&r).unwrap();
2864        let [s2] = back.try_into().unwrap();
2865
2866        // RowConverter flattens Dictionary
2867        // s.ty = Struct("foo": Dictionary(Int32, Int32)), s2.ty = Struct("foo": Int32)
2868        assert_ne!(&s.data_type(), &s2.data_type());
2869        s2.to_data().validate_full().unwrap();
2870        assert_eq!(s.len(), 0);
2871        assert_eq!(s2.len(), 0);
2872    }
2873
2874    #[test]
2875    fn test_list_of_string_dictionary() {
2876        let mut builder = ListBuilder::<StringDictionaryBuilder<Int32Type>>::default();
2877        // List[0] = ["a", "b", "zero", null, "c", "b", "d" (dict)]
2878        builder.values().append("a").unwrap();
2879        builder.values().append("b").unwrap();
2880        builder.values().append("zero").unwrap();
2881        builder.values().append_null();
2882        builder.values().append("c").unwrap();
2883        builder.values().append("b").unwrap();
2884        builder.values().append("d").unwrap();
2885        builder.append(true);
2886        // List[1] = null
2887        builder.append(false);
2888        // List[2] = ["e", "zero", "a" (dict)]
2889        builder.values().append("e").unwrap();
2890        builder.values().append("zero").unwrap();
2891        builder.values().append("a").unwrap();
2892        builder.append(true);
2893
2894        let a = Arc::new(builder.finish()) as ArrayRef;
2895        let data_type = a.data_type().clone();
2896
2897        let field = SortField::new(data_type.clone());
2898        let converter = RowConverter::new(vec![field]).unwrap();
2899        let rows = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2900
2901        let back = converter.convert_rows(&rows).unwrap();
2902        assert_eq!(back.len(), 1);
2903        let [a2] = back.try_into().unwrap();
2904
2905        // RowConverter flattens Dictionary
2906        // a.ty: List(Dictionary(Int32, Utf8)), a2.ty: List(Utf8)
2907        assert_ne!(&a.data_type(), &a2.data_type());
2908
2909        a2.to_data().validate_full().unwrap();
2910
2911        let a2_list = a2.as_list::<i32>();
2912        let a1_list = a.as_list::<i32>();
2913
2914        // Check if the logical data remains the same
2915        // List[0] = ["a", "b", "zero", null, "c", "b", "d" (dict)]
2916        let a1_0 = a1_list.value(0);
2917        let a1_idx_0 = a1_0.as_dictionary::<Int32Type>();
2918        let keys = a1_idx_0.keys();
2919        let values = a1_idx_0.values().as_string::<i32>();
2920        let a2_0 = a2_list.value(0);
2921        let a2_idx_0 = a2_0.as_string::<i32>();
2922
2923        for i in 0..keys.len() {
2924            if keys.is_null(i) {
2925                assert!(a2_idx_0.is_null(i));
2926            } else {
2927                let dict_index = keys.value(i) as usize;
2928                assert_eq!(values.value(dict_index), a2_idx_0.value(i));
2929            }
2930        }
2931
2932        // List[1] = null
2933        assert!(a1_list.is_null(1));
2934        assert!(a2_list.is_null(1));
2935
2936        // List[2] = ["e", "zero", "a" (dict)]
2937        let a1_2 = a1_list.value(2);
2938        let a1_idx_2 = a1_2.as_dictionary::<Int32Type>();
2939        let keys = a1_idx_2.keys();
2940        let values = a1_idx_2.values().as_string::<i32>();
2941        let a2_2 = a2_list.value(2);
2942        let a2_idx_2 = a2_2.as_string::<i32>();
2943
2944        for i in 0..keys.len() {
2945            if keys.is_null(i) {
2946                assert!(a2_idx_2.is_null(i));
2947            } else {
2948                let dict_index = keys.value(i) as usize;
2949                assert_eq!(values.value(dict_index), a2_idx_2.value(i));
2950            }
2951        }
2952    }
2953
2954    #[test]
2955    fn test_primitive_dictionary() {
2956        let mut builder = PrimitiveDictionaryBuilder::<Int32Type, Int32Type>::new();
2957        builder.append(2).unwrap();
2958        builder.append(3).unwrap();
2959        builder.append(0).unwrap();
2960        builder.append_null();
2961        builder.append(5).unwrap();
2962        builder.append(3).unwrap();
2963        builder.append(-1).unwrap();
2964
2965        let a = builder.finish();
2966        let data_type = a.data_type().clone();
2967        let columns = [Arc::new(a) as ArrayRef];
2968
2969        let field = SortField::new(data_type.clone());
2970        let converter = RowConverter::new(vec![field]).unwrap();
2971        let rows = converter.convert_columns(&columns).unwrap();
2972        assert!(rows.row(0) < rows.row(1));
2973        assert!(rows.row(2) < rows.row(0));
2974        assert!(rows.row(3) < rows.row(2));
2975        assert!(rows.row(6) < rows.row(2));
2976        assert!(rows.row(3) < rows.row(6));
2977
2978        let back = converter.convert_rows(&rows).unwrap();
2979        assert_eq!(back.len(), 1);
2980        back[0].to_data().validate_full().unwrap();
2981    }
2982
2983    #[test]
2984    fn test_dictionary_nulls() {
2985        let values = Int32Array::from_iter([Some(1), Some(-1), None, Some(4), None]).into_data();
2986        let keys =
2987            Int32Array::from_iter([Some(0), Some(0), Some(1), Some(2), Some(4), None]).into_data();
2988
2989        let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Int32));
2990        let data = keys
2991            .into_builder()
2992            .data_type(data_type.clone())
2993            .child_data(vec![values])
2994            .build()
2995            .unwrap();
2996
2997        let columns = [Arc::new(DictionaryArray::<Int32Type>::from(data)) as ArrayRef];
2998        let field = SortField::new(data_type.clone());
2999        let converter = RowConverter::new(vec![field]).unwrap();
3000        let rows = converter.convert_columns(&columns).unwrap();
3001
3002        assert_eq!(rows.row(0), rows.row(1));
3003        assert_eq!(rows.row(3), rows.row(4));
3004        assert_eq!(rows.row(4), rows.row(5));
3005        assert!(rows.row(3) < rows.row(0));
3006    }
3007
3008    #[test]
3009    fn test_from_binary_shared_buffer() {
3010        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
3011        let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
3012        let rows = converter.convert_columns(&[array]).unwrap();
3013        let binary_rows = rows.try_into_binary().expect("known-small rows");
3014        let _binary_rows_shared_buffer = binary_rows.clone();
3015
3016        let parsed = converter.from_binary(binary_rows);
3017
3018        converter.convert_rows(parsed.iter()).unwrap();
3019    }
3020
3021    #[test]
3022    #[should_panic(expected = "Encountered non UTF-8 data")]
3023    fn test_invalid_utf8() {
3024        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
3025        let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
3026        let rows = converter.convert_columns(&[array]).unwrap();
3027        let binary_row = rows.row(0);
3028
3029        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
3030        let parser = converter.parser();
3031        let utf8_row = parser.parse(binary_row.as_ref());
3032
3033        converter.convert_rows(std::iter::once(utf8_row)).unwrap();
3034    }
3035
3036    #[test]
3037    #[should_panic(expected = "Encountered non UTF-8 data")]
3038    fn test_invalid_utf8_array() {
3039        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
3040        let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
3041        let rows = converter.convert_columns(&[array]).unwrap();
3042        let binary_rows = rows.try_into_binary().expect("known-small rows");
3043
3044        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
3045        let parsed = converter.from_binary(binary_rows);
3046
3047        converter.convert_rows(parsed.iter()).unwrap();
3048    }
3049
3050    #[test]
3051    #[should_panic(expected = "index out of bounds")]
3052    fn test_invalid_empty() {
3053        let binary_row: &[u8] = &[];
3054
3055        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
3056        let parser = converter.parser();
3057        let utf8_row = parser.parse(binary_row.as_ref());
3058
3059        converter.convert_rows(std::iter::once(utf8_row)).unwrap();
3060    }
3061
3062    #[test]
3063    #[should_panic(expected = "index out of bounds")]
3064    fn test_invalid_empty_array() {
3065        let row: &[u8] = &[];
3066        let binary_rows = BinaryArray::from(vec![row]);
3067
3068        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
3069        let parsed = converter.from_binary(binary_rows);
3070
3071        converter.convert_rows(parsed.iter()).unwrap();
3072    }
3073
3074    #[test]
3075    #[should_panic(expected = "index out of bounds")]
3076    fn test_invalid_truncated() {
3077        let binary_row: &[u8] = &[0x02];
3078
3079        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
3080        let parser = converter.parser();
3081        let utf8_row = parser.parse(binary_row.as_ref());
3082
3083        converter.convert_rows(std::iter::once(utf8_row)).unwrap();
3084    }
3085
3086    #[test]
3087    #[should_panic(expected = "index out of bounds")]
3088    fn test_invalid_truncated_array() {
3089        let row: &[u8] = &[0x02];
3090        let binary_rows = BinaryArray::from(vec![row]);
3091
3092        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
3093        let parsed = converter.from_binary(binary_rows);
3094
3095        converter.convert_rows(parsed.iter()).unwrap();
3096    }
3097
3098    #[test]
3099    #[should_panic(expected = "rows were not produced by this RowConverter")]
3100    fn test_different_converter() {
3101        let values = Arc::new(Int32Array::from_iter([Some(1), Some(-1)]));
3102        let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
3103        let rows = converter.convert_columns(&[values]).unwrap();
3104
3105        let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
3106        let _ = converter.convert_rows(&rows);
3107    }
3108
3109    fn test_single_list<O: OffsetSizeTrait>() {
3110        let mut builder = GenericListBuilder::<O, _>::new(Int32Builder::new());
3111        builder.values().append_value(32);
3112        builder.values().append_value(52);
3113        builder.values().append_value(32);
3114        builder.append(true);
3115        builder.values().append_value(32);
3116        builder.values().append_value(52);
3117        builder.values().append_value(12);
3118        builder.append(true);
3119        builder.values().append_value(32);
3120        builder.values().append_value(52);
3121        builder.append(true);
3122        builder.values().append_value(32); // MASKED
3123        builder.values().append_value(52); // MASKED
3124        builder.append(false);
3125        builder.values().append_value(32);
3126        builder.values().append_null();
3127        builder.append(true);
3128        builder.append(true);
3129        builder.values().append_value(17); // MASKED
3130        builder.values().append_null(); // MASKED
3131        builder.append(false);
3132
3133        let list = Arc::new(builder.finish()) as ArrayRef;
3134        let d = list.data_type().clone();
3135
3136        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
3137
3138        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3139        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
3140        assert!(rows.row(2) < rows.row(1)); // [32, 52] < [32, 52, 12]
3141        assert!(rows.row(3) < rows.row(2)); // null < [32, 52]
3142        assert!(rows.row(4) < rows.row(2)); // [32, null] < [32, 52]
3143        assert!(rows.row(5) < rows.row(2)); // [] < [32, 52]
3144        assert!(rows.row(3) < rows.row(5)); // null < []
3145        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3146
3147        let back = converter.convert_rows(&rows).unwrap();
3148        assert_eq!(back.len(), 1);
3149        back[0].to_data().validate_full().unwrap();
3150        assert_eq!(&back[0], &list);
3151
3152        let options = SortOptions::default().asc().with_nulls_first(false);
3153        let field = SortField::new_with_options(d.clone(), options);
3154        let converter = RowConverter::new(vec![field]).unwrap();
3155        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3156
3157        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
3158        assert!(rows.row(2) < rows.row(1)); // [32, 52] < [32, 52, 12]
3159        assert!(rows.row(3) > rows.row(2)); // null > [32, 52]
3160        assert!(rows.row(4) > rows.row(2)); // [32, null] > [32, 52]
3161        assert!(rows.row(5) < rows.row(2)); // [] < [32, 52]
3162        assert!(rows.row(3) > rows.row(5)); // null > []
3163        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3164
3165        let back = converter.convert_rows(&rows).unwrap();
3166        assert_eq!(back.len(), 1);
3167        back[0].to_data().validate_full().unwrap();
3168        assert_eq!(&back[0], &list);
3169
3170        let options = SortOptions::default().desc().with_nulls_first(false);
3171        let field = SortField::new_with_options(d.clone(), options);
3172        let converter = RowConverter::new(vec![field]).unwrap();
3173        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3174
3175        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
3176        assert!(rows.row(2) > rows.row(1)); // [32, 52] > [32, 52, 12]
3177        assert!(rows.row(3) > rows.row(2)); // null > [32, 52]
3178        assert!(rows.row(4) > rows.row(2)); // [32, null] > [32, 52]
3179        assert!(rows.row(5) > rows.row(2)); // [] > [32, 52]
3180        assert!(rows.row(3) > rows.row(5)); // null > []
3181        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3182
3183        let back = converter.convert_rows(&rows).unwrap();
3184        assert_eq!(back.len(), 1);
3185        back[0].to_data().validate_full().unwrap();
3186        assert_eq!(&back[0], &list);
3187
3188        let options = SortOptions::default().desc().with_nulls_first(true);
3189        let field = SortField::new_with_options(d, options);
3190        let converter = RowConverter::new(vec![field]).unwrap();
3191        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3192
3193        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
3194        assert!(rows.row(2) > rows.row(1)); // [32, 52] > [32, 52, 12]
3195        assert!(rows.row(3) < rows.row(2)); // null < [32, 52]
3196        assert!(rows.row(4) < rows.row(2)); // [32, null] < [32, 52]
3197        assert!(rows.row(5) > rows.row(2)); // [] > [32, 52]
3198        assert!(rows.row(3) < rows.row(5)); // null < []
3199        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3200
3201        let back = converter.convert_rows(&rows).unwrap();
3202        assert_eq!(back.len(), 1);
3203        back[0].to_data().validate_full().unwrap();
3204        assert_eq!(&back[0], &list);
3205
3206        let sliced_list = list.slice(1, 5);
3207        let rows_on_sliced_list = converter
3208            .convert_columns(&[Arc::clone(&sliced_list)])
3209            .unwrap();
3210
3211        assert!(rows_on_sliced_list.row(1) > rows_on_sliced_list.row(0)); // [32, 52] > [32, 52, 12]
3212        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(1)); // null < [32, 52]
3213        assert!(rows_on_sliced_list.row(3) < rows_on_sliced_list.row(1)); // [32, null] < [32, 52]
3214        assert!(rows_on_sliced_list.row(4) > rows_on_sliced_list.row(1)); // [] > [32, 52]
3215        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(4)); // null < []
3216
3217        let back = converter.convert_rows(&rows_on_sliced_list).unwrap();
3218        assert_eq!(back.len(), 1);
3219        back[0].to_data().validate_full().unwrap();
3220        assert_eq!(&back[0], &sliced_list);
3221    }
3222
3223    fn test_nested_list<O: OffsetSizeTrait>() {
3224        let mut builder =
3225            GenericListBuilder::<O, _>::new(GenericListBuilder::<O, _>::new(Int32Builder::new()));
3226
3227        builder.values().values().append_value(1);
3228        builder.values().values().append_value(2);
3229        builder.values().append(true);
3230        builder.values().values().append_value(1);
3231        builder.values().values().append_null();
3232        builder.values().append(true);
3233        builder.append(true);
3234
3235        builder.values().values().append_value(1);
3236        builder.values().values().append_null();
3237        builder.values().append(true);
3238        builder.values().values().append_value(1);
3239        builder.values().values().append_null();
3240        builder.values().append(true);
3241        builder.append(true);
3242
3243        builder.values().values().append_value(1);
3244        builder.values().values().append_null();
3245        builder.values().append(true);
3246        builder.values().append(false);
3247        builder.append(true);
3248        builder.append(false);
3249
3250        builder.values().values().append_value(1);
3251        builder.values().values().append_value(2);
3252        builder.values().append(true);
3253        builder.append(true);
3254
3255        let list = Arc::new(builder.finish()) as ArrayRef;
3256        let d = list.data_type().clone();
3257
3258        // [
3259        //   [[1, 2], [1, null]],
3260        //   [[1, null], [1, null]],
3261        //   [[1, null], null]
3262        //   null
3263        //   [[1, 2]]
3264        // ]
3265        let options = SortOptions::default().asc().with_nulls_first(true);
3266        let field = SortField::new_with_options(d.clone(), options);
3267        let converter = RowConverter::new(vec![field]).unwrap();
3268        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3269
3270        assert!(rows.row(0) > rows.row(1));
3271        assert!(rows.row(1) > rows.row(2));
3272        assert!(rows.row(2) > rows.row(3));
3273        assert!(rows.row(4) < rows.row(0));
3274        assert!(rows.row(4) > rows.row(1));
3275
3276        let back = converter.convert_rows(&rows).unwrap();
3277        assert_eq!(back.len(), 1);
3278        back[0].to_data().validate_full().unwrap();
3279        assert_eq!(&back[0], &list);
3280
3281        let options = SortOptions::default().desc().with_nulls_first(true);
3282        let field = SortField::new_with_options(d.clone(), options);
3283        let converter = RowConverter::new(vec![field]).unwrap();
3284        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3285
3286        assert!(rows.row(0) > rows.row(1));
3287        assert!(rows.row(1) > rows.row(2));
3288        assert!(rows.row(2) > rows.row(3));
3289        assert!(rows.row(4) > rows.row(0));
3290        assert!(rows.row(4) > rows.row(1));
3291
3292        let back = converter.convert_rows(&rows).unwrap();
3293        assert_eq!(back.len(), 1);
3294        back[0].to_data().validate_full().unwrap();
3295        assert_eq!(&back[0], &list);
3296
3297        let options = SortOptions::default().desc().with_nulls_first(false);
3298        let field = SortField::new_with_options(d, options);
3299        let converter = RowConverter::new(vec![field]).unwrap();
3300        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3301
3302        assert!(rows.row(0) < rows.row(1));
3303        assert!(rows.row(1) < rows.row(2));
3304        assert!(rows.row(2) < rows.row(3));
3305        assert!(rows.row(4) > rows.row(0));
3306        assert!(rows.row(4) < rows.row(1));
3307
3308        let back = converter.convert_rows(&rows).unwrap();
3309        assert_eq!(back.len(), 1);
3310        back[0].to_data().validate_full().unwrap();
3311        assert_eq!(&back[0], &list);
3312
3313        let sliced_list = list.slice(1, 3);
3314        let rows = converter
3315            .convert_columns(&[Arc::clone(&sliced_list)])
3316            .unwrap();
3317
3318        assert!(rows.row(0) < rows.row(1));
3319        assert!(rows.row(1) < rows.row(2));
3320
3321        let back = converter.convert_rows(&rows).unwrap();
3322        assert_eq!(back.len(), 1);
3323        back[0].to_data().validate_full().unwrap();
3324        assert_eq!(&back[0], &sliced_list);
3325    }
3326
3327    #[test]
3328    fn test_list() {
3329        test_single_list::<i32>();
3330        test_nested_list::<i32>();
3331    }
3332
3333    #[test]
3334    fn test_large_list() {
3335        test_single_list::<i64>();
3336        test_nested_list::<i64>();
3337    }
3338
3339    fn test_single_list_view<O: OffsetSizeTrait>() {
3340        let mut builder = GenericListViewBuilder::<O, _>::new(Int32Builder::new());
3341        builder.values().append_value(32);
3342        builder.values().append_value(52);
3343        builder.values().append_value(32);
3344        builder.append(true);
3345        builder.values().append_value(32);
3346        builder.values().append_value(52);
3347        builder.values().append_value(12);
3348        builder.append(true);
3349        builder.values().append_value(32);
3350        builder.values().append_value(52);
3351        builder.append(true);
3352        builder.values().append_value(32); // MASKED
3353        builder.values().append_value(52); // MASKED
3354        builder.append(false);
3355        builder.values().append_value(32);
3356        builder.values().append_null();
3357        builder.append(true);
3358        builder.append(true);
3359        builder.values().append_value(17); // MASKED
3360        builder.values().append_null(); // MASKED
3361        builder.append(false);
3362
3363        let list = Arc::new(builder.finish()) as ArrayRef;
3364        let d = list.data_type().clone();
3365
3366        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
3367
3368        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3369        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
3370        assert!(rows.row(2) < rows.row(1)); // [32, 52] < [32, 52, 12]
3371        assert!(rows.row(3) < rows.row(2)); // null < [32, 52]
3372        assert!(rows.row(4) < rows.row(2)); // [32, null] < [32, 52]
3373        assert!(rows.row(5) < rows.row(2)); // [] < [32, 52]
3374        assert!(rows.row(3) < rows.row(5)); // null < []
3375        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3376
3377        let back = converter.convert_rows(&rows).unwrap();
3378        assert_eq!(back.len(), 1);
3379        back[0].to_data().validate_full().unwrap();
3380
3381        // Verify the content matches (ListView may have different physical layout but same logical content)
3382        let back_list_view = back[0]
3383            .as_any()
3384            .downcast_ref::<GenericListViewArray<O>>()
3385            .unwrap();
3386        let orig_list_view = list
3387            .as_any()
3388            .downcast_ref::<GenericListViewArray<O>>()
3389            .unwrap();
3390
3391        assert_eq!(back_list_view.len(), orig_list_view.len());
3392        for i in 0..back_list_view.len() {
3393            assert_eq!(back_list_view.is_valid(i), orig_list_view.is_valid(i));
3394            if back_list_view.is_valid(i) {
3395                assert_eq!(&back_list_view.value(i), &orig_list_view.value(i));
3396            }
3397        }
3398
3399        let options = SortOptions::default().asc().with_nulls_first(false);
3400        let field = SortField::new_with_options(d.clone(), options);
3401        let converter = RowConverter::new(vec![field]).unwrap();
3402        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3403
3404        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
3405        assert!(rows.row(2) < rows.row(1)); // [32, 52] < [32, 52, 12]
3406        assert!(rows.row(3) > rows.row(2)); // null > [32, 52]
3407        assert!(rows.row(4) > rows.row(2)); // [32, null] > [32, 52]
3408        assert!(rows.row(5) < rows.row(2)); // [] < [32, 52]
3409        assert!(rows.row(3) > rows.row(5)); // null > []
3410        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3411
3412        let back = converter.convert_rows(&rows).unwrap();
3413        assert_eq!(back.len(), 1);
3414        back[0].to_data().validate_full().unwrap();
3415
3416        let options = SortOptions::default().desc().with_nulls_first(false);
3417        let field = SortField::new_with_options(d.clone(), options);
3418        let converter = RowConverter::new(vec![field]).unwrap();
3419        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3420
3421        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
3422        assert!(rows.row(2) > rows.row(1)); // [32, 52] > [32, 52, 12]
3423        assert!(rows.row(3) > rows.row(2)); // null > [32, 52]
3424        assert!(rows.row(4) > rows.row(2)); // [32, null] > [32, 52]
3425        assert!(rows.row(5) > rows.row(2)); // [] > [32, 52]
3426        assert!(rows.row(3) > rows.row(5)); // null > []
3427        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3428
3429        let back = converter.convert_rows(&rows).unwrap();
3430        assert_eq!(back.len(), 1);
3431        back[0].to_data().validate_full().unwrap();
3432
3433        let options = SortOptions::default().desc().with_nulls_first(true);
3434        let field = SortField::new_with_options(d, options);
3435        let converter = RowConverter::new(vec![field]).unwrap();
3436        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3437
3438        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
3439        assert!(rows.row(2) > rows.row(1)); // [32, 52] > [32, 52, 12]
3440        assert!(rows.row(3) < rows.row(2)); // null < [32, 52]
3441        assert!(rows.row(4) < rows.row(2)); // [32, null] < [32, 52]
3442        assert!(rows.row(5) > rows.row(2)); // [] > [32, 52]
3443        assert!(rows.row(3) < rows.row(5)); // null < []
3444        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3445
3446        let back = converter.convert_rows(&rows).unwrap();
3447        assert_eq!(back.len(), 1);
3448        back[0].to_data().validate_full().unwrap();
3449
3450        let sliced_list = list.slice(1, 5);
3451        let rows_on_sliced_list = converter
3452            .convert_columns(&[Arc::clone(&sliced_list)])
3453            .unwrap();
3454
3455        assert!(rows_on_sliced_list.row(1) > rows_on_sliced_list.row(0)); // [32, 52] > [32, 52, 12]
3456        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(1)); // null < [32, 52]
3457        assert!(rows_on_sliced_list.row(3) < rows_on_sliced_list.row(1)); // [32, null] < [32, 52]
3458        assert!(rows_on_sliced_list.row(4) > rows_on_sliced_list.row(1)); // [] > [32, 52]
3459        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(4)); // null < []
3460
3461        let back = converter.convert_rows(&rows_on_sliced_list).unwrap();
3462        assert_eq!(back.len(), 1);
3463        back[0].to_data().validate_full().unwrap();
3464    }
3465
3466    fn test_nested_list_view<O: OffsetSizeTrait>() {
3467        let mut builder = GenericListViewBuilder::<O, _>::new(GenericListViewBuilder::<O, _>::new(
3468            Int32Builder::new(),
3469        ));
3470
3471        // Row 0: [[1, 2], [1, null]]
3472        builder.values().values().append_value(1);
3473        builder.values().values().append_value(2);
3474        builder.values().append(true);
3475        builder.values().values().append_value(1);
3476        builder.values().values().append_null();
3477        builder.values().append(true);
3478        builder.append(true);
3479
3480        // Row 1: [[1, null], [1, null]]
3481        builder.values().values().append_value(1);
3482        builder.values().values().append_null();
3483        builder.values().append(true);
3484        builder.values().values().append_value(1);
3485        builder.values().values().append_null();
3486        builder.values().append(true);
3487        builder.append(true);
3488
3489        // Row 2: [[1, null], null]
3490        builder.values().values().append_value(1);
3491        builder.values().values().append_null();
3492        builder.values().append(true);
3493        builder.values().append(false);
3494        builder.append(true);
3495
3496        // Row 3: null
3497        builder.append(false);
3498
3499        // Row 4: [[1, 2]]
3500        builder.values().values().append_value(1);
3501        builder.values().values().append_value(2);
3502        builder.values().append(true);
3503        builder.append(true);
3504
3505        let list = Arc::new(builder.finish()) as ArrayRef;
3506        let d = list.data_type().clone();
3507
3508        // [
3509        //   [[1, 2], [1, null]],
3510        //   [[1, null], [1, null]],
3511        //   [[1, null], null]
3512        //   null
3513        //   [[1, 2]]
3514        // ]
3515        let options = SortOptions::default().asc().with_nulls_first(true);
3516        let field = SortField::new_with_options(d.clone(), options);
3517        let converter = RowConverter::new(vec![field]).unwrap();
3518        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3519
3520        assert!(rows.row(0) > rows.row(1));
3521        assert!(rows.row(1) > rows.row(2));
3522        assert!(rows.row(2) > rows.row(3));
3523        assert!(rows.row(4) < rows.row(0));
3524        assert!(rows.row(4) > rows.row(1));
3525
3526        let back = converter.convert_rows(&rows).unwrap();
3527        assert_eq!(back.len(), 1);
3528        back[0].to_data().validate_full().unwrap();
3529
3530        // Verify the content matches (ListView may have different physical layout but same logical content)
3531        let back_list_view = back[0]
3532            .as_any()
3533            .downcast_ref::<GenericListViewArray<O>>()
3534            .unwrap();
3535        let orig_list_view = list
3536            .as_any()
3537            .downcast_ref::<GenericListViewArray<O>>()
3538            .unwrap();
3539
3540        assert_eq!(back_list_view.len(), orig_list_view.len());
3541        for i in 0..back_list_view.len() {
3542            assert_eq!(back_list_view.is_valid(i), orig_list_view.is_valid(i));
3543            if back_list_view.is_valid(i) {
3544                assert_eq!(&back_list_view.value(i), &orig_list_view.value(i));
3545            }
3546        }
3547
3548        let options = SortOptions::default().desc().with_nulls_first(true);
3549        let field = SortField::new_with_options(d.clone(), options);
3550        let converter = RowConverter::new(vec![field]).unwrap();
3551        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3552
3553        assert!(rows.row(0) > rows.row(1));
3554        assert!(rows.row(1) > rows.row(2));
3555        assert!(rows.row(2) > rows.row(3));
3556        assert!(rows.row(4) > rows.row(0));
3557        assert!(rows.row(4) > rows.row(1));
3558
3559        let back = converter.convert_rows(&rows).unwrap();
3560        assert_eq!(back.len(), 1);
3561        back[0].to_data().validate_full().unwrap();
3562
3563        // Verify the content matches
3564        let back_list_view = back[0]
3565            .as_any()
3566            .downcast_ref::<GenericListViewArray<O>>()
3567            .unwrap();
3568
3569        assert_eq!(back_list_view.len(), orig_list_view.len());
3570        for i in 0..back_list_view.len() {
3571            assert_eq!(back_list_view.is_valid(i), orig_list_view.is_valid(i));
3572            if back_list_view.is_valid(i) {
3573                assert_eq!(&back_list_view.value(i), &orig_list_view.value(i));
3574            }
3575        }
3576
3577        let options = SortOptions::default().desc().with_nulls_first(false);
3578        let field = SortField::new_with_options(d.clone(), options);
3579        let converter = RowConverter::new(vec![field]).unwrap();
3580        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3581
3582        assert!(rows.row(0) < rows.row(1));
3583        assert!(rows.row(1) < rows.row(2));
3584        assert!(rows.row(2) < rows.row(3));
3585        assert!(rows.row(4) > rows.row(0));
3586        assert!(rows.row(4) < rows.row(1));
3587
3588        let back = converter.convert_rows(&rows).unwrap();
3589        assert_eq!(back.len(), 1);
3590        back[0].to_data().validate_full().unwrap();
3591
3592        // Verify the content matches
3593        let back_list_view = back[0]
3594            .as_any()
3595            .downcast_ref::<GenericListViewArray<O>>()
3596            .unwrap();
3597
3598        assert_eq!(back_list_view.len(), orig_list_view.len());
3599        for i in 0..back_list_view.len() {
3600            assert_eq!(back_list_view.is_valid(i), orig_list_view.is_valid(i));
3601            if back_list_view.is_valid(i) {
3602                assert_eq!(&back_list_view.value(i), &orig_list_view.value(i));
3603            }
3604        }
3605
3606        let sliced_list = list.slice(1, 3);
3607        let rows = converter
3608            .convert_columns(&[Arc::clone(&sliced_list)])
3609            .unwrap();
3610
3611        assert!(rows.row(0) < rows.row(1));
3612        assert!(rows.row(1) < rows.row(2));
3613
3614        let back = converter.convert_rows(&rows).unwrap();
3615        assert_eq!(back.len(), 1);
3616        back[0].to_data().validate_full().unwrap();
3617    }
3618
3619    #[test]
3620    fn test_list_view() {
3621        test_single_list_view::<i32>();
3622        test_nested_list_view::<i32>();
3623    }
3624
3625    #[test]
3626    fn test_large_list_view() {
3627        test_single_list_view::<i64>();
3628        test_nested_list_view::<i64>();
3629    }
3630
3631    fn test_list_view_with_shared_values<O: OffsetSizeTrait>() {
3632        // Create a values array: [1, 2, 3, 4, 5, 6, 7, 8]
3633        let values = Int32Array::from(vec![1, 2, 3, 4, 5, 6, 7, 8]);
3634        let field = Arc::new(Field::new_list_field(DataType::Int32, true));
3635
3636        // Create a ListView where:
3637        // - Row 0: offset=0, size=3 -> [1, 2, 3]
3638        // - Row 1: offset=0, size=3 -> [1, 2, 3] (same offset+size as row 0)
3639        // - Row 2: offset=5, size=2 -> [6, 7] (non-monotonic offset)
3640        // - Row 3: offset=2, size=2 -> [3, 4] (offset goes back)
3641        // - Row 4: offset=1, size=4 -> [2, 3, 4, 5] (subset of values that contains row 3's range)
3642        // - Row 5: offset=2, size=1 -> [3] (subset of row 3 and row 4)
3643        let offsets = ScalarBuffer::<O>::from(vec![
3644            O::from_usize(0).unwrap(),
3645            O::from_usize(0).unwrap(),
3646            O::from_usize(5).unwrap(),
3647            O::from_usize(2).unwrap(),
3648            O::from_usize(1).unwrap(),
3649            O::from_usize(2).unwrap(),
3650        ]);
3651        let sizes = ScalarBuffer::<O>::from(vec![
3652            O::from_usize(3).unwrap(),
3653            O::from_usize(3).unwrap(),
3654            O::from_usize(2).unwrap(),
3655            O::from_usize(2).unwrap(),
3656            O::from_usize(4).unwrap(),
3657            O::from_usize(1).unwrap(),
3658        ]);
3659
3660        let list_view: GenericListViewArray<O> =
3661            GenericListViewArray::try_new(field, offsets, sizes, Arc::new(values), None).unwrap();
3662
3663        let d = list_view.data_type().clone();
3664        let list = Arc::new(list_view) as ArrayRef;
3665
3666        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
3667        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3668
3669        // Row 0 and Row 1 have the same content [1, 2, 3], so they should be equal
3670        assert_eq!(rows.row(0), rows.row(1));
3671
3672        // [1, 2, 3] < [6, 7] (comparing first elements: 1 < 6)
3673        assert!(rows.row(0) < rows.row(2));
3674
3675        // [3, 4] > [1, 2, 3] (comparing first elements: 3 > 1)
3676        assert!(rows.row(3) > rows.row(0));
3677
3678        // [2, 3, 4, 5] > [1, 2, 3] (comparing first elements: 2 > 1)
3679        assert!(rows.row(4) > rows.row(0));
3680
3681        // [3] < [3, 4] (same prefix but shorter)
3682        assert!(rows.row(5) < rows.row(3));
3683
3684        // [3] < [2, 3, 4, 5] (comparing first elements: 3 > 2)
3685        assert!(rows.row(5) > rows.row(4));
3686
3687        // Round-trip conversion
3688        let back = converter.convert_rows(&rows).unwrap();
3689        assert_eq!(back.len(), 1);
3690        back[0].to_data().validate_full().unwrap();
3691
3692        // Verify logical content matches
3693        let back_list_view = back[0]
3694            .as_any()
3695            .downcast_ref::<GenericListViewArray<O>>()
3696            .unwrap();
3697        let orig_list_view = list
3698            .as_any()
3699            .downcast_ref::<GenericListViewArray<O>>()
3700            .unwrap();
3701
3702        assert_eq!(back_list_view.len(), orig_list_view.len());
3703        for i in 0..back_list_view.len() {
3704            assert_eq!(back_list_view.is_valid(i), orig_list_view.is_valid(i));
3705            if back_list_view.is_valid(i) {
3706                assert_eq!(&back_list_view.value(i), &orig_list_view.value(i));
3707            }
3708        }
3709
3710        // Test with descending order
3711        let options = SortOptions::default().desc();
3712        let field = SortField::new_with_options(d, options);
3713        let converter = RowConverter::new(vec![field]).unwrap();
3714        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3715
3716        // In descending order, comparisons are reversed
3717        assert_eq!(rows.row(0), rows.row(1)); // Equal rows stay equal
3718        assert!(rows.row(0) > rows.row(2)); // [1, 2, 3] > [6, 7] in desc
3719        assert!(rows.row(3) < rows.row(0)); // [3, 4] < [1, 2, 3] in desc
3720
3721        let back = converter.convert_rows(&rows).unwrap();
3722        assert_eq!(back.len(), 1);
3723        back[0].to_data().validate_full().unwrap();
3724    }
3725
3726    #[test]
3727    fn test_list_view_shared_values() {
3728        test_list_view_with_shared_values::<i32>();
3729    }
3730
3731    #[test]
3732    fn test_large_list_view_shared_values() {
3733        test_list_view_with_shared_values::<i64>();
3734    }
3735
3736    #[test]
3737    fn test_fixed_size_list() {
3738        let mut builder = FixedSizeListBuilder::new(Int32Builder::new(), 3);
3739        builder.values().append_value(32);
3740        builder.values().append_value(52);
3741        builder.values().append_value(32);
3742        builder.append(true);
3743        builder.values().append_value(32);
3744        builder.values().append_value(52);
3745        builder.values().append_value(12);
3746        builder.append(true);
3747        builder.values().append_value(32);
3748        builder.values().append_value(52);
3749        builder.values().append_null();
3750        builder.append(true);
3751        builder.values().append_value(32); // MASKED
3752        builder.values().append_value(52); // MASKED
3753        builder.values().append_value(13); // MASKED
3754        builder.append(false);
3755        builder.values().append_value(32);
3756        builder.values().append_null();
3757        builder.values().append_null();
3758        builder.append(true);
3759        builder.values().append_null();
3760        builder.values().append_null();
3761        builder.values().append_null();
3762        builder.append(true);
3763        builder.values().append_value(17); // MASKED
3764        builder.values().append_null(); // MASKED
3765        builder.values().append_value(77); // MASKED
3766        builder.append(false);
3767
3768        let list = Arc::new(builder.finish()) as ArrayRef;
3769        let d = list.data_type().clone();
3770
3771        // Default sorting (ascending, nulls first)
3772        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
3773
3774        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3775        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
3776        assert!(rows.row(2) < rows.row(1)); // [32, 52, null] < [32, 52, 12]
3777        assert!(rows.row(3) < rows.row(2)); // null < [32, 52, null]
3778        assert!(rows.row(4) < rows.row(2)); // [32, null, null] < [32, 52, null]
3779        assert!(rows.row(5) < rows.row(2)); // [null, null, null] < [32, 52, null]
3780        assert!(rows.row(3) < rows.row(5)); // null < [null, null, null]
3781        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3782
3783        let back = converter.convert_rows(&rows).unwrap();
3784        assert_eq!(back.len(), 1);
3785        back[0].to_data().validate_full().unwrap();
3786        assert_eq!(&back[0], &list);
3787
3788        // Ascending, null last
3789        let options = SortOptions::default().asc().with_nulls_first(false);
3790        let field = SortField::new_with_options(d.clone(), options);
3791        let converter = RowConverter::new(vec![field]).unwrap();
3792        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3793        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
3794        assert!(rows.row(2) > rows.row(1)); // [32, 52, null] > [32, 52, 12]
3795        assert!(rows.row(3) > rows.row(2)); // null > [32, 52, null]
3796        assert!(rows.row(4) > rows.row(2)); // [32, null, null] > [32, 52, null]
3797        assert!(rows.row(5) > rows.row(2)); // [null, null, null] > [32, 52, null]
3798        assert!(rows.row(3) > rows.row(5)); // null > [null, null, null]
3799        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3800
3801        let back = converter.convert_rows(&rows).unwrap();
3802        assert_eq!(back.len(), 1);
3803        back[0].to_data().validate_full().unwrap();
3804        assert_eq!(&back[0], &list);
3805
3806        // Descending, nulls last
3807        let options = SortOptions::default().desc().with_nulls_first(false);
3808        let field = SortField::new_with_options(d.clone(), options);
3809        let converter = RowConverter::new(vec![field]).unwrap();
3810        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3811        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
3812        assert!(rows.row(2) > rows.row(1)); // [32, 52, null] > [32, 52, 12]
3813        assert!(rows.row(3) > rows.row(2)); // null > [32, 52, null]
3814        assert!(rows.row(4) > rows.row(2)); // [32, null, null] > [32, 52, null]
3815        assert!(rows.row(5) > rows.row(2)); // [null, null, null] > [32, 52, null]
3816        assert!(rows.row(3) > rows.row(5)); // null > [null, null, null]
3817        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3818
3819        let back = converter.convert_rows(&rows).unwrap();
3820        assert_eq!(back.len(), 1);
3821        back[0].to_data().validate_full().unwrap();
3822        assert_eq!(&back[0], &list);
3823
3824        // Descending, nulls first
3825        let options = SortOptions::default().desc().with_nulls_first(true);
3826        let field = SortField::new_with_options(d, options);
3827        let converter = RowConverter::new(vec![field]).unwrap();
3828        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
3829
3830        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
3831        assert!(rows.row(2) < rows.row(1)); // [32, 52, null] > [32, 52, 12]
3832        assert!(rows.row(3) < rows.row(2)); // null < [32, 52, null]
3833        assert!(rows.row(4) < rows.row(2)); // [32, null, null] < [32, 52, null]
3834        assert!(rows.row(5) < rows.row(2)); // [null, null, null] > [32, 52, null]
3835        assert!(rows.row(3) < rows.row(5)); // null < [null, null, null]
3836        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
3837
3838        let back = converter.convert_rows(&rows).unwrap();
3839        assert_eq!(back.len(), 1);
3840        back[0].to_data().validate_full().unwrap();
3841        assert_eq!(&back[0], &list);
3842
3843        let sliced_list = list.slice(1, 5);
3844        let rows_on_sliced_list = converter
3845            .convert_columns(&[Arc::clone(&sliced_list)])
3846            .unwrap();
3847
3848        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(1)); // null < [32, 52, null]
3849        assert!(rows_on_sliced_list.row(3) < rows_on_sliced_list.row(1)); // [32, null, null] < [32, 52, null]
3850        assert!(rows_on_sliced_list.row(4) < rows_on_sliced_list.row(1)); // [null, null, null] > [32, 52, null]
3851        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(4)); // null < [null, null, null]
3852
3853        let back = converter.convert_rows(&rows_on_sliced_list).unwrap();
3854        assert_eq!(back.len(), 1);
3855        back[0].to_data().validate_full().unwrap();
3856        assert_eq!(&back[0], &sliced_list);
3857    }
3858
3859    #[test]
3860    fn test_two_fixed_size_lists() {
3861        let mut first = FixedSizeListBuilder::new(UInt8Builder::new(), 1);
3862        // 0: [100]
3863        first.values().append_value(100);
3864        first.append(true);
3865        // 1: [101]
3866        first.values().append_value(101);
3867        first.append(true);
3868        // 2: [102]
3869        first.values().append_value(102);
3870        first.append(true);
3871        // 3: [null]
3872        first.values().append_null();
3873        first.append(true);
3874        // 4: null
3875        first.values().append_null(); // MASKED
3876        first.append(false);
3877        let first = Arc::new(first.finish()) as ArrayRef;
3878        let first_type = first.data_type().clone();
3879
3880        let mut second = FixedSizeListBuilder::new(UInt8Builder::new(), 1);
3881        // 0: [200]
3882        second.values().append_value(200);
3883        second.append(true);
3884        // 1: [201]
3885        second.values().append_value(201);
3886        second.append(true);
3887        // 2: [202]
3888        second.values().append_value(202);
3889        second.append(true);
3890        // 3: [null]
3891        second.values().append_null();
3892        second.append(true);
3893        // 4: null
3894        second.values().append_null(); // MASKED
3895        second.append(false);
3896        let second = Arc::new(second.finish()) as ArrayRef;
3897        let second_type = second.data_type().clone();
3898
3899        let converter = RowConverter::new(vec![
3900            SortField::new(first_type.clone()),
3901            SortField::new(second_type.clone()),
3902        ])
3903        .unwrap();
3904
3905        let rows = converter
3906            .convert_columns(&[Arc::clone(&first), Arc::clone(&second)])
3907            .unwrap();
3908
3909        let back = converter.convert_rows(&rows).unwrap();
3910        assert_eq!(back.len(), 2);
3911        back[0].to_data().validate_full().unwrap();
3912        assert_eq!(&back[0], &first);
3913        back[1].to_data().validate_full().unwrap();
3914        assert_eq!(&back[1], &second);
3915    }
3916
3917    #[test]
3918    fn test_fixed_size_list_with_variable_width_content() {
3919        let mut first = FixedSizeListBuilder::new(
3920            StructBuilder::from_fields(
3921                vec![
3922                    Field::new(
3923                        "timestamp",
3924                        DataType::Timestamp(TimeUnit::Microsecond, Some(Arc::from("UTC"))),
3925                        false,
3926                    ),
3927                    Field::new("offset_minutes", DataType::Int16, false),
3928                    Field::new("time_zone", DataType::Utf8, false),
3929                ],
3930                1,
3931            ),
3932            1,
3933        );
3934        // 0: null
3935        first
3936            .values()
3937            .field_builder::<TimestampMicrosecondBuilder>(0)
3938            .unwrap()
3939            .append_null();
3940        first
3941            .values()
3942            .field_builder::<Int16Builder>(1)
3943            .unwrap()
3944            .append_null();
3945        first
3946            .values()
3947            .field_builder::<StringBuilder>(2)
3948            .unwrap()
3949            .append_null();
3950        first.values().append(false);
3951        first.append(false);
3952        // 1: [null]
3953        first
3954            .values()
3955            .field_builder::<TimestampMicrosecondBuilder>(0)
3956            .unwrap()
3957            .append_null();
3958        first
3959            .values()
3960            .field_builder::<Int16Builder>(1)
3961            .unwrap()
3962            .append_null();
3963        first
3964            .values()
3965            .field_builder::<StringBuilder>(2)
3966            .unwrap()
3967            .append_null();
3968        first.values().append(false);
3969        first.append(true);
3970        // 2: [1970-01-01 00:00:00.000000 UTC]
3971        first
3972            .values()
3973            .field_builder::<TimestampMicrosecondBuilder>(0)
3974            .unwrap()
3975            .append_value(0);
3976        first
3977            .values()
3978            .field_builder::<Int16Builder>(1)
3979            .unwrap()
3980            .append_value(0);
3981        first
3982            .values()
3983            .field_builder::<StringBuilder>(2)
3984            .unwrap()
3985            .append_value("UTC");
3986        first.values().append(true);
3987        first.append(true);
3988        // 3: [2005-09-10 13:30:00.123456 Europe/Warsaw]
3989        first
3990            .values()
3991            .field_builder::<TimestampMicrosecondBuilder>(0)
3992            .unwrap()
3993            .append_value(1126351800123456);
3994        first
3995            .values()
3996            .field_builder::<Int16Builder>(1)
3997            .unwrap()
3998            .append_value(120);
3999        first
4000            .values()
4001            .field_builder::<StringBuilder>(2)
4002            .unwrap()
4003            .append_value("Europe/Warsaw");
4004        first.values().append(true);
4005        first.append(true);
4006        let first = Arc::new(first.finish()) as ArrayRef;
4007        let first_type = first.data_type().clone();
4008
4009        let mut second = StringBuilder::new();
4010        second.append_value("somewhere near");
4011        second.append_null();
4012        second.append_value("Greenwich");
4013        second.append_value("Warsaw");
4014        let second = Arc::new(second.finish()) as ArrayRef;
4015        let second_type = second.data_type().clone();
4016
4017        let converter = RowConverter::new(vec![
4018            SortField::new(first_type.clone()),
4019            SortField::new(second_type.clone()),
4020        ])
4021        .unwrap();
4022
4023        let rows = converter
4024            .convert_columns(&[Arc::clone(&first), Arc::clone(&second)])
4025            .unwrap();
4026
4027        let back = converter.convert_rows(&rows).unwrap();
4028        assert_eq!(back.len(), 2);
4029        back[0].to_data().validate_full().unwrap();
4030        assert_eq!(&back[0], &first);
4031        back[1].to_data().validate_full().unwrap();
4032        assert_eq!(&back[1], &second);
4033    }
4034
4035    fn generate_primitive_array<K>(
4036        rng: &mut impl RngCore,
4037        len: usize,
4038        valid_percent: f64,
4039    ) -> PrimitiveArray<K>
4040    where
4041        K: ArrowPrimitiveType,
4042        StandardUniform: Distribution<K::Native>,
4043    {
4044        (0..len)
4045            .map(|_| rng.random_bool(valid_percent).then(|| rng.random()))
4046            .collect()
4047    }
4048
4049    fn generate_boolean_array(
4050        rng: &mut impl RngCore,
4051        len: usize,
4052        valid_percent: f64,
4053    ) -> BooleanArray {
4054        (0..len)
4055            .map(|_| rng.random_bool(valid_percent).then(|| rng.random_bool(0.5)))
4056            .collect()
4057    }
4058
4059    fn generate_strings<O: OffsetSizeTrait>(
4060        rng: &mut impl RngCore,
4061        len: usize,
4062        valid_percent: f64,
4063    ) -> GenericStringArray<O> {
4064        (0..len)
4065            .map(|_| {
4066                rng.random_bool(valid_percent).then(|| {
4067                    let len = rng.random_range(0..100);
4068                    let bytes = (0..len).map(|_| rng.random_range(0..128)).collect();
4069                    String::from_utf8(bytes).unwrap()
4070                })
4071            })
4072            .collect()
4073    }
4074
4075    fn generate_string_view(
4076        rng: &mut impl RngCore,
4077        len: usize,
4078        valid_percent: f64,
4079    ) -> StringViewArray {
4080        (0..len)
4081            .map(|_| {
4082                rng.random_bool(valid_percent).then(|| {
4083                    let len = rng.random_range(0..100);
4084                    let bytes = (0..len).map(|_| rng.random_range(0..128)).collect();
4085                    String::from_utf8(bytes).unwrap()
4086                })
4087            })
4088            .collect()
4089    }
4090
4091    fn generate_byte_view(
4092        rng: &mut impl RngCore,
4093        len: usize,
4094        valid_percent: f64,
4095    ) -> BinaryViewArray {
4096        (0..len)
4097            .map(|_| {
4098                rng.random_bool(valid_percent).then(|| {
4099                    let len = rng.random_range(0..100);
4100                    let bytes: Vec<_> = (0..len).map(|_| rng.random_range(0..128)).collect();
4101                    bytes
4102                })
4103            })
4104            .collect()
4105    }
4106
4107    fn generate_fixed_stringview_column(len: usize) -> StringViewArray {
4108        let edge_cases = vec![
4109            Some("bar".to_string()),
4110            Some("bar\0".to_string()),
4111            Some("LongerThan12Bytes".to_string()),
4112            Some("LongerThan12Bytez".to_string()),
4113            Some("LongerThan12Bytes\0".to_string()),
4114            Some("LongerThan12Byt".to_string()),
4115            Some("backend one".to_string()),
4116            Some("backend two".to_string()),
4117            Some("a".repeat(257)),
4118            Some("a".repeat(300)),
4119        ];
4120
4121        // Fill up to `len` by repeating edge cases and trimming
4122        let mut values = Vec::with_capacity(len);
4123        for i in 0..len {
4124            values.push(
4125                edge_cases
4126                    .get(i % edge_cases.len())
4127                    .cloned()
4128                    .unwrap_or(None),
4129            );
4130        }
4131
4132        StringViewArray::from(values)
4133    }
4134
4135    fn generate_dictionary<K>(
4136        rng: &mut impl RngCore,
4137        values: ArrayRef,
4138        len: usize,
4139        valid_percent: f64,
4140    ) -> DictionaryArray<K>
4141    where
4142        K: ArrowDictionaryKeyType,
4143        K::Native: SampleUniform,
4144    {
4145        let min_key = K::Native::from_usize(0).unwrap();
4146        let max_key = K::Native::from_usize(values.len()).unwrap();
4147        let keys: PrimitiveArray<K> = (0..len)
4148            .map(|_| {
4149                rng.random_bool(valid_percent)
4150                    .then(|| rng.random_range(min_key..max_key))
4151            })
4152            .collect();
4153
4154        let data_type =
4155            DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(values.data_type().clone()));
4156
4157        let data = keys
4158            .into_data()
4159            .into_builder()
4160            .data_type(data_type)
4161            .add_child_data(values.to_data())
4162            .build()
4163            .unwrap();
4164
4165        DictionaryArray::from(data)
4166    }
4167
4168    fn generate_fixed_size_binary(
4169        rng: &mut impl RngCore,
4170        len: usize,
4171        valid_percent: f64,
4172    ) -> FixedSizeBinaryArray {
4173        let width = rng.random_range(0..20);
4174        let mut builder = FixedSizeBinaryBuilder::new(width);
4175
4176        let mut b = vec![0; width as usize];
4177        for _ in 0..len {
4178            match rng.random_bool(valid_percent) {
4179                true => {
4180                    b.iter_mut().for_each(|x| *x = rng.random());
4181                    builder.append_value(&b).unwrap();
4182                }
4183                false => builder.append_null(),
4184            }
4185        }
4186
4187        builder.finish()
4188    }
4189
4190    fn generate_struct(rng: &mut impl RngCore, len: usize, valid_percent: f64) -> StructArray {
4191        let nulls = NullBuffer::from_iter((0..len).map(|_| rng.random_bool(valid_percent)));
4192        let a = generate_primitive_array::<Int32Type>(rng, len, valid_percent);
4193        let b = generate_strings::<i32>(rng, len, valid_percent);
4194        let fields = Fields::from(vec![
4195            Field::new("a", DataType::Int32, true),
4196            Field::new("b", DataType::Utf8, true),
4197        ]);
4198        let values = vec![Arc::new(a) as _, Arc::new(b) as _];
4199        StructArray::new(fields, values, Some(nulls))
4200    }
4201
4202    fn generate_list<R: RngCore, F>(
4203        rng: &mut R,
4204        len: usize,
4205        valid_percent: f64,
4206        values: F,
4207    ) -> ListArray
4208    where
4209        F: FnOnce(&mut R, usize) -> ArrayRef,
4210    {
4211        let offsets = OffsetBuffer::<i32>::from_lengths((0..len).map(|_| rng.random_range(0..10)));
4212        let values_len = offsets.last().unwrap().to_usize().unwrap();
4213        let values = values(rng, values_len);
4214        let nulls = NullBuffer::from_iter((0..len).map(|_| rng.random_bool(valid_percent)));
4215        let field = Arc::new(Field::new_list_field(values.data_type().clone(), true));
4216        ListArray::new(field, offsets, values, Some(nulls))
4217    }
4218
4219    fn generate_list_view<F>(
4220        rng: &mut impl RngCore,
4221        len: usize,
4222        valid_percent: f64,
4223        values: F,
4224    ) -> ListViewArray
4225    where
4226        F: FnOnce(usize) -> ArrayRef,
4227    {
4228        // Generate sizes first, then create a values array large enough
4229        let sizes: Vec<i32> = (0..len).map(|_| rng.random_range(0..10)).collect();
4230        let values_len: usize = sizes.iter().map(|s| *s as usize).sum::<usize>().max(1);
4231        let values = values(values_len);
4232
4233        // Generate offsets that can overlap, be non-monotonic, or share ranges
4234        let offsets: Vec<i32> = sizes
4235            .iter()
4236            .map(|&size| {
4237                if size == 0 {
4238                    0
4239                } else {
4240                    rng.random_range(0..=(values_len as i32 - size))
4241                }
4242            })
4243            .collect();
4244
4245        let nulls = NullBuffer::from_iter((0..len).map(|_| rng.random_bool(valid_percent)));
4246        let field = Arc::new(Field::new_list_field(values.data_type().clone(), true));
4247        ListViewArray::new(
4248            field,
4249            ScalarBuffer::from(offsets),
4250            ScalarBuffer::from(sizes),
4251            values,
4252            Some(nulls),
4253        )
4254    }
4255
4256    fn generate_nulls(rng: &mut impl RngCore, len: usize) -> Option<NullBuffer> {
4257        Some(NullBuffer::from_iter(
4258            (0..len).map(|_| rng.random_bool(0.8)),
4259        ))
4260    }
4261
4262    fn change_underlying_null_values_for_primitive<T: ArrowPrimitiveType>(
4263        array: &PrimitiveArray<T>,
4264    ) -> PrimitiveArray<T> {
4265        let (dt, values, nulls) = array.clone().into_parts();
4266
4267        let new_values = ScalarBuffer::<T::Native>::from_iter(
4268            values
4269                .iter()
4270                .zip(nulls.as_ref().unwrap().iter())
4271                .map(|(val, is_valid)| {
4272                    if is_valid {
4273                        *val
4274                    } else {
4275                        val.add_wrapping(T::Native::usize_as(1))
4276                    }
4277                }),
4278        );
4279
4280        PrimitiveArray::new(new_values, nulls).with_data_type(dt)
4281    }
4282
4283    fn change_underline_null_values_for_byte_array<T: ByteArrayType>(
4284        array: &GenericByteArray<T>,
4285    ) -> GenericByteArray<T> {
4286        let (offsets, values, nulls) = array.clone().into_parts();
4287
4288        let new_offsets = OffsetBuffer::<T::Offset>::from_lengths(
4289            offsets
4290                .lengths()
4291                .zip(nulls.as_ref().unwrap().iter())
4292                .map(|(len, is_valid)| if is_valid { len } else { len + 1 }),
4293        );
4294
4295        let mut new_bytes = Vec::<u8>::with_capacity(new_offsets[new_offsets.len() - 1].as_usize());
4296
4297        offsets
4298            .windows(2)
4299            .zip(nulls.as_ref().unwrap().iter())
4300            .for_each(|(start_and_end, is_valid)| {
4301                let start = start_and_end[0].as_usize();
4302                let end = start_and_end[1].as_usize();
4303                new_bytes.extend_from_slice(&values.as_slice()[start..end]);
4304
4305                // add an extra byte
4306                if !is_valid {
4307                    new_bytes.push(b'c');
4308                }
4309            });
4310
4311        GenericByteArray::<T>::new(new_offsets, Buffer::from_vec(new_bytes), nulls)
4312    }
4313
4314    fn change_underline_null_values_for_list_array<O: OffsetSizeTrait>(
4315        array: &GenericListArray<O>,
4316    ) -> GenericListArray<O> {
4317        let (field, offsets, values, nulls) = array.clone().into_parts();
4318
4319        let (new_values, new_offsets) = {
4320            let concat_values = offsets
4321                .windows(2)
4322                .zip(nulls.as_ref().unwrap().iter())
4323                .map(|(start_and_end, is_valid)| {
4324                    let start = start_and_end[0].as_usize();
4325                    let end = start_and_end[1].as_usize();
4326                    if is_valid {
4327                        return (start, end - start);
4328                    }
4329
4330                    // If reached end, we take one less
4331                    if end == values.len() {
4332                        (start, (end - start).saturating_sub(1))
4333                    } else {
4334                        (start, end - start + 1)
4335                    }
4336                })
4337                .map(|(start, length)| values.slice(start, length))
4338                .collect::<Vec<_>>();
4339
4340            let new_offsets =
4341                OffsetBuffer::<O>::from_lengths(concat_values.iter().map(|s| s.len()));
4342
4343            let new_values = {
4344                let values = concat_values.iter().map(|a| a.as_ref()).collect::<Vec<_>>();
4345                arrow_select::concat::concat(&values).expect("should be able to concat")
4346            };
4347
4348            (new_values, new_offsets)
4349        };
4350
4351        GenericListArray::<O>::new(field, new_offsets, new_values, nulls)
4352    }
4353
4354    fn change_underline_null_values(array: &ArrayRef) -> ArrayRef {
4355        if array.null_count() == 0 {
4356            return Arc::clone(array);
4357        }
4358
4359        downcast_primitive_array!(
4360            array => {
4361                let output = change_underlying_null_values_for_primitive(array);
4362
4363                Arc::new(output)
4364            }
4365
4366            DataType::Utf8 => {
4367                Arc::new(change_underline_null_values_for_byte_array(array.as_string::<i32>()))
4368            }
4369            DataType::LargeUtf8 => {
4370                Arc::new(change_underline_null_values_for_byte_array(array.as_string::<i64>()))
4371            }
4372            DataType::Binary => {
4373                Arc::new(change_underline_null_values_for_byte_array(array.as_binary::<i32>()))
4374            }
4375            DataType::LargeBinary => {
4376                Arc::new(change_underline_null_values_for_byte_array(array.as_binary::<i64>()))
4377            }
4378            DataType::List(_) => {
4379                Arc::new(change_underline_null_values_for_list_array(array.as_list::<i32>()))
4380            }
4381            DataType::LargeList(_) => {
4382                Arc::new(change_underline_null_values_for_list_array(array.as_list::<i64>()))
4383            }
4384            _ => {
4385                Arc::clone(array)
4386            }
4387        )
4388    }
4389
4390    fn generate_column(rng: &mut (impl RngCore + Clone), len: usize) -> ArrayRef {
4391        match rng.random_range(0..23) {
4392            0 => Arc::new(generate_primitive_array::<Int32Type>(rng, len, 0.8)),
4393            1 => Arc::new(generate_primitive_array::<UInt32Type>(rng, len, 0.8)),
4394            2 => Arc::new(generate_primitive_array::<Int64Type>(rng, len, 0.8)),
4395            3 => Arc::new(generate_primitive_array::<UInt64Type>(rng, len, 0.8)),
4396            4 => Arc::new(generate_primitive_array::<Float32Type>(rng, len, 0.8)),
4397            5 => Arc::new(generate_primitive_array::<Float64Type>(rng, len, 0.8)),
4398            6 => Arc::new(generate_strings::<i32>(rng, len, 0.8)),
4399            7 => {
4400                let dict_values_len = rng.random_range(1..len);
4401                // Cannot test dictionaries containing null values because of #2687
4402                let strings = Arc::new(generate_strings::<i32>(rng, dict_values_len, 1.0));
4403                Arc::new(generate_dictionary::<Int64Type>(rng, strings, len, 0.8))
4404            }
4405            8 => {
4406                let dict_values_len = rng.random_range(1..len);
4407                // Cannot test dictionaries containing null values because of #2687
4408                let values = Arc::new(generate_primitive_array::<Int64Type>(
4409                    rng,
4410                    dict_values_len,
4411                    1.0,
4412                ));
4413                Arc::new(generate_dictionary::<Int64Type>(rng, values, len, 0.8))
4414            }
4415            9 => Arc::new(generate_fixed_size_binary(rng, len, 0.8)),
4416            10 => Arc::new(generate_struct(rng, len, 0.8)),
4417            11 => Arc::new(generate_list(rng, len, 0.8, |rng, values_len| {
4418                Arc::new(generate_primitive_array::<Int64Type>(rng, values_len, 0.8))
4419            })),
4420            12 => Arc::new(generate_list(rng, len, 0.8, |rng, values_len| {
4421                Arc::new(generate_strings::<i32>(rng, values_len, 0.8))
4422            })),
4423            13 => Arc::new(generate_list(rng, len, 0.8, |rng, values_len| {
4424                Arc::new(generate_struct(rng, values_len, 0.8))
4425            })),
4426            14 => Arc::new(generate_string_view(rng, len, 0.8)),
4427            15 => Arc::new(generate_byte_view(rng, len, 0.8)),
4428            16 => Arc::new(generate_fixed_stringview_column(len)),
4429            17 => Arc::new(
4430                generate_list(&mut rng.clone(), len + 1000, 0.8, |rng, values_len| {
4431                    Arc::new(generate_primitive_array::<Int64Type>(rng, values_len, 0.8))
4432                })
4433                .slice(500, len),
4434            ),
4435            18 => Arc::new(generate_boolean_array(rng, len, 0.8)),
4436            19 => Arc::new(generate_list_view(
4437                &mut rng.clone(),
4438                len,
4439                0.8,
4440                |values_len| Arc::new(generate_primitive_array::<Int64Type>(rng, values_len, 0.8)),
4441            )),
4442            20 => Arc::new(generate_list_view(
4443                &mut rng.clone(),
4444                len,
4445                0.8,
4446                |values_len| Arc::new(generate_strings::<i32>(rng, values_len, 0.8)),
4447            )),
4448            21 => Arc::new(generate_list_view(
4449                &mut rng.clone(),
4450                len,
4451                0.8,
4452                |values_len| Arc::new(generate_struct(rng, values_len, 0.8)),
4453            )),
4454            22 => Arc::new(
4455                generate_list_view(&mut rng.clone(), len + 1000, 0.8, |values_len| {
4456                    Arc::new(generate_primitive_array::<Int64Type>(rng, values_len, 0.8))
4457                })
4458                .slice(500, len),
4459            ),
4460            _ => unreachable!(),
4461        }
4462    }
4463
4464    fn print_row(cols: &[SortColumn], row: usize) -> String {
4465        let t: Vec<_> = cols
4466            .iter()
4467            .map(|x| match x.values.is_valid(row) {
4468                true => {
4469                    let opts = FormatOptions::default().with_null("NULL");
4470                    let formatter = ArrayFormatter::try_new(x.values.as_ref(), &opts).unwrap();
4471                    formatter.value(row).to_string()
4472                }
4473                false => "NULL".to_string(),
4474            })
4475            .collect();
4476        t.join(",")
4477    }
4478
4479    fn print_col_types(cols: &[SortColumn]) -> String {
4480        let t: Vec<_> = cols
4481            .iter()
4482            .map(|x| x.values.data_type().to_string())
4483            .collect();
4484        t.join(",")
4485    }
4486
4487    #[derive(Debug, PartialEq)]
4488    enum Nulls {
4489        /// Keep the generated array as is
4490        AsIs,
4491
4492        /// Replace the null buffer with different null buffer to point to different positions as null
4493        Different,
4494
4495        /// Remove all nulls
4496        None,
4497    }
4498
4499    #[test]
4500    #[cfg_attr(miri, ignore)]
4501    fn fuzz_test() {
4502        let mut rng = StdRng::seed_from_u64(42);
4503        for _ in 0..100 {
4504            for null_behavior in [Nulls::AsIs, Nulls::Different, Nulls::None] {
4505                let num_columns = rng.random_range(1..5);
4506                let len = rng.random_range(5..100);
4507                let mut arrays: Vec<_> = (0..num_columns)
4508                    .map(|_| generate_column(&mut rng, len))
4509                    .collect();
4510
4511                match null_behavior {
4512                    Nulls::AsIs => {
4513                        // Keep as is
4514                    }
4515                    Nulls::Different => {
4516                        // Replace nulls with different nulls to allow for testing different underlying null values
4517                        arrays = arrays
4518                            .into_iter()
4519                            .map(|a| replace_array_nulls(a, generate_nulls(&mut rng, len)))
4520                            .collect()
4521                    }
4522                    Nulls::None => {
4523                        // Remove nulls
4524                        arrays = arrays
4525                            .into_iter()
4526                            .map(|a| replace_array_nulls(a, None))
4527                            .collect()
4528                    }
4529                }
4530
4531                let options: Vec<_> = (0..num_columns)
4532                    .map(|_| SortOptions {
4533                        descending: rng.random_bool(0.5),
4534                        nulls_first: rng.random_bool(0.5),
4535                    })
4536                    .collect();
4537
4538                let sort_columns: Vec<_> = options
4539                    .iter()
4540                    .zip(&arrays)
4541                    .map(|(o, c)| SortColumn {
4542                        values: Arc::clone(c),
4543                        options: Some(*o),
4544                    })
4545                    .collect();
4546
4547                let comparator = LexicographicalComparator::try_new(&sort_columns).unwrap();
4548
4549                let columns: Vec<SortField> = options
4550                    .into_iter()
4551                    .zip(&arrays)
4552                    .map(|(o, a)| SortField::new_with_options(a.data_type().clone(), o))
4553                    .collect();
4554
4555                let converter = RowConverter::new(columns).unwrap();
4556                let rows = converter.convert_columns(&arrays).unwrap();
4557
4558                // Assert that the underlying null values are not taken into account when converting
4559                // even for different inputs
4560                if !matches!(null_behavior, Nulls::None) {
4561                    assert_same_rows_when_changing_input_underlying_null_values(
4562                        &arrays, &converter, &rows,
4563                    );
4564                }
4565
4566                for i in 0..len {
4567                    for j in 0..len {
4568                        let row_i = rows.row(i);
4569                        let row_j = rows.row(j);
4570                        let row_cmp = row_i.cmp(&row_j);
4571                        let lex_cmp = comparator.compare(i, j);
4572                        assert_eq!(
4573                            row_cmp,
4574                            lex_cmp,
4575                            "({:?} vs {:?}) vs ({:?} vs {:?}) for types {}",
4576                            print_row(&sort_columns, i),
4577                            print_row(&sort_columns, j),
4578                            row_i,
4579                            row_j,
4580                            print_col_types(&sort_columns)
4581                        );
4582                    }
4583                }
4584
4585                // Validate rows length iterator
4586                {
4587                    let mut rows_iter = rows.iter();
4588                    let mut rows_lengths_iter = rows.lengths();
4589                    for (index, row) in rows_iter.by_ref().enumerate() {
4590                        let len = rows_lengths_iter
4591                            .next()
4592                            .expect("Reached end of length iterator while still have rows");
4593                        assert_eq!(
4594                            row.data.len(),
4595                            len,
4596                            "Row length mismatch: {} vs {}",
4597                            row.data.len(),
4598                            len
4599                        );
4600                        assert_eq!(
4601                            len,
4602                            rows.row_len(index),
4603                            "Row length mismatch at index {}: {} vs {}",
4604                            index,
4605                            len,
4606                            rows.row_len(index)
4607                        );
4608                    }
4609
4610                    assert_eq!(
4611                        rows_lengths_iter.next(),
4612                        None,
4613                        "Length iterator did not reach end"
4614                    );
4615                }
4616
4617                // Convert rows produced from convert_columns().
4618                // Note: validate_utf8 is set to false since Row is initialized through empty_rows()
4619                let back = converter.convert_rows(&rows).unwrap();
4620                for (actual, expected) in back.iter().zip(&arrays) {
4621                    actual.to_data().validate_full().unwrap();
4622                    dictionary_eq(actual, expected)
4623                }
4624
4625                // Check that we can convert rows into ByteArray and then parse, convert it back to array
4626                // Note: validate_utf8 is set to true since Row is initialized through RowParser
4627                let rows = rows.try_into_binary().expect("reasonable size");
4628                let parser = converter.parser();
4629                let back = converter
4630                    .convert_rows(rows.iter().map(|b| parser.parse(b.expect("valid bytes"))))
4631                    .unwrap();
4632                for (actual, expected) in back.iter().zip(&arrays) {
4633                    actual.to_data().validate_full().unwrap();
4634                    dictionary_eq(actual, expected)
4635                }
4636
4637                let rows = converter.from_binary(rows);
4638                let back = converter.convert_rows(&rows).unwrap();
4639                for (actual, expected) in back.iter().zip(&arrays) {
4640                    actual.to_data().validate_full().unwrap();
4641                    dictionary_eq(actual, expected)
4642                }
4643            }
4644        }
4645    }
4646
4647    fn replace_array_nulls(array: ArrayRef, new_nulls: Option<NullBuffer>) -> ArrayRef {
4648        make_array(
4649            array
4650                .into_data()
4651                .into_builder()
4652                // Replace the nulls
4653                .nulls(new_nulls)
4654                .build()
4655                .unwrap(),
4656        )
4657    }
4658
4659    fn assert_same_rows_when_changing_input_underlying_null_values(
4660        arrays: &[ArrayRef],
4661        converter: &RowConverter,
4662        rows: &Rows,
4663    ) {
4664        let arrays_with_different_data_behind_nulls = arrays
4665            .iter()
4666            .map(|arr| change_underline_null_values(arr))
4667            .collect::<Vec<_>>();
4668
4669        // Skip assertion if we did not change anything
4670        if arrays
4671            .iter()
4672            .zip(arrays_with_different_data_behind_nulls.iter())
4673            .all(|(a, b)| Arc::ptr_eq(a, b))
4674        {
4675            return;
4676        }
4677
4678        let rows_with_different_nulls = converter
4679            .convert_columns(&arrays_with_different_data_behind_nulls)
4680            .unwrap();
4681
4682        assert_eq!(
4683            rows.iter().collect::<Vec<_>>(),
4684            rows_with_different_nulls.iter().collect::<Vec<_>>(),
4685            "Different underlying nulls should not output different rows"
4686        )
4687    }
4688
4689    #[test]
4690    fn test_clear() {
4691        let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
4692        let mut rows = converter.empty_rows(3, 128);
4693
4694        let first = Int32Array::from(vec![None, Some(2), Some(4)]);
4695        let second = Int32Array::from(vec![Some(2), None, Some(4)]);
4696        let arrays = [Arc::new(first) as ArrayRef, Arc::new(second) as ArrayRef];
4697
4698        for array in arrays.iter() {
4699            rows.clear();
4700            converter
4701                .append(&mut rows, std::slice::from_ref(array))
4702                .unwrap();
4703            let back = converter.convert_rows(&rows).unwrap();
4704            assert_eq!(&back[0], array);
4705        }
4706
4707        let mut rows_expected = converter.empty_rows(3, 128);
4708        converter.append(&mut rows_expected, &arrays[1..]).unwrap();
4709
4710        for (i, (actual, expected)) in rows.iter().zip(rows_expected.iter()).enumerate() {
4711            assert_eq!(
4712                actual, expected,
4713                "For row {i}: expected {expected:?}, actual: {actual:?}",
4714            );
4715        }
4716    }
4717
4718    #[test]
4719    fn test_append_codec_dictionary_binary() {
4720        use DataType::*;
4721        // Dictionary RowConverter
4722        let converter = RowConverter::new(vec![SortField::new(Dictionary(
4723            Box::new(Int32),
4724            Box::new(Binary),
4725        ))])
4726        .unwrap();
4727        let mut rows = converter.empty_rows(4, 128);
4728
4729        let keys = Int32Array::from_iter_values([0, 1, 2, 3]);
4730        let values = BinaryArray::from(vec![
4731            Some("a".as_bytes()),
4732            Some(b"b"),
4733            Some(b"c"),
4734            Some(b"d"),
4735        ]);
4736        let dict_array = DictionaryArray::new(keys, Arc::new(values));
4737
4738        rows.clear();
4739        let array = Arc::new(dict_array) as ArrayRef;
4740        converter
4741            .append(&mut rows, std::slice::from_ref(&array))
4742            .unwrap();
4743        let back = converter.convert_rows(&rows).unwrap();
4744
4745        dictionary_eq(&back[0], &array);
4746    }
4747
4748    #[test]
4749    fn test_list_prefix() {
4750        let mut a = ListBuilder::new(Int8Builder::new());
4751        a.append_value([None]);
4752        a.append_value([None, None]);
4753        let a = a.finish();
4754
4755        let converter = RowConverter::new(vec![SortField::new(a.data_type().clone())]).unwrap();
4756        let rows = converter.convert_columns(&[Arc::new(a) as _]).unwrap();
4757        assert_eq!(rows.row(0).cmp(&rows.row(1)), Ordering::Less);
4758    }
4759
4760    #[test]
4761    fn map_should_be_marked_as_unsupported() {
4762        let map_data_type = Field::new_map(
4763            "map",
4764            "entries",
4765            Field::new("key", DataType::Utf8, false),
4766            Field::new("value", DataType::Utf8, true),
4767            false,
4768            true,
4769        )
4770        .data_type()
4771        .clone();
4772
4773        let is_supported = RowConverter::supports_fields(&[SortField::new(map_data_type)]);
4774
4775        assert!(!is_supported, "Map should not be supported");
4776    }
4777
4778    #[test]
4779    fn should_fail_to_create_row_converter_for_unsupported_map_type() {
4780        let map_data_type = Field::new_map(
4781            "map",
4782            "entries",
4783            Field::new("key", DataType::Utf8, false),
4784            Field::new("value", DataType::Utf8, true),
4785            false,
4786            true,
4787        )
4788        .data_type()
4789        .clone();
4790
4791        let converter = RowConverter::new(vec![SortField::new(map_data_type)]);
4792
4793        match converter {
4794            Err(ArrowError::NotYetImplemented(message)) => {
4795                assert!(
4796                    message.contains("Row format support not yet implemented for"),
4797                    "Expected NotYetImplemented error for map data type, got: {message}",
4798                );
4799            }
4800            Err(e) => panic!("Expected NotYetImplemented error, got: {e}"),
4801            Ok(_) => panic!("Expected NotYetImplemented error for map data type"),
4802        }
4803    }
4804
4805    #[test]
4806    fn test_values_buffer_smaller_when_utf8_validation_disabled() {
4807        fn get_values_buffer_len(col: ArrayRef) -> (usize, usize) {
4808            // 1. Convert cols into rows
4809            let converter = RowConverter::new(vec![SortField::new(DataType::Utf8View)]).unwrap();
4810
4811            // 2a. Convert rows into colsa (validate_utf8 = false)
4812            let rows = converter.convert_columns(&[col]).unwrap();
4813            let converted = converter.convert_rows(&rows).unwrap();
4814            let unchecked_values_len = converted[0].as_string_view().data_buffers()[0].len();
4815
4816            // 2b. Convert rows into cols (validate_utf8 = true since Row is initialized through RowParser)
4817            let rows = rows.try_into_binary().expect("reasonable size");
4818            let parser = converter.parser();
4819            let converted = converter
4820                .convert_rows(rows.iter().map(|b| parser.parse(b.expect("valid bytes"))))
4821                .unwrap();
4822            let checked_values_len = converted[0].as_string_view().data_buffers()[0].len();
4823            (unchecked_values_len, checked_values_len)
4824        }
4825
4826        // Case1. StringViewArray with inline strings
4827        let col = Arc::new(StringViewArray::from_iter([
4828            Some("hello"), // short(5)
4829            None,          // null
4830            Some("short"), // short(5)
4831            Some("tiny"),  // short(4)
4832        ])) as ArrayRef;
4833
4834        let (unchecked_values_len, checked_values_len) = get_values_buffer_len(col);
4835        // Since there are no long (>12) strings, len of values buffer is 0
4836        assert_eq!(unchecked_values_len, 0);
4837        // When utf8 validation enabled, values buffer includes inline strings (5+5+4)
4838        assert_eq!(checked_values_len, 14);
4839
4840        // Case2. StringViewArray with long(>12) strings
4841        let col = Arc::new(StringViewArray::from_iter([
4842            Some("this is a very long string over 12 bytes"),
4843            Some("another long string to test the buffer"),
4844        ])) as ArrayRef;
4845
4846        let (unchecked_values_len, checked_values_len) = get_values_buffer_len(col);
4847        // Since there are no inline strings, expected length of values buffer is the same
4848        assert!(unchecked_values_len > 0);
4849        assert_eq!(unchecked_values_len, checked_values_len);
4850
4851        // Case3. StringViewArray with both short and long strings
4852        let col = Arc::new(StringViewArray::from_iter([
4853            Some("tiny"),          // 4 (short)
4854            Some("thisisexact13"), // 13 (long)
4855            None,
4856            Some("short"), // 5 (short)
4857        ])) as ArrayRef;
4858
4859        let (unchecked_values_len, checked_values_len) = get_values_buffer_len(col);
4860        // Since there is single long string, len of values buffer is 13
4861        assert_eq!(unchecked_values_len, 13);
4862        assert!(checked_values_len > unchecked_values_len);
4863    }
4864
4865    #[test]
4866    fn test_sparse_union() {
4867        // create a sparse union with Int32 (type_id = 0) and Utf8 (type_id = 1)
4868        let int_array = Int32Array::from(vec![Some(1), None, Some(3), None, Some(5)]);
4869        let str_array = StringArray::from(vec![None, Some("b"), None, Some("d"), None]);
4870
4871        // [1, "b", 3, "d", 5]
4872        let type_ids = vec![0, 1, 0, 1, 0].into();
4873
4874        let union_fields = [
4875            (0, Arc::new(Field::new("int", DataType::Int32, false))),
4876            (1, Arc::new(Field::new("str", DataType::Utf8, false))),
4877        ]
4878        .into_iter()
4879        .collect();
4880
4881        let union_array = UnionArray::try_new(
4882            union_fields,
4883            type_ids,
4884            None,
4885            vec![Arc::new(int_array) as ArrayRef, Arc::new(str_array)],
4886        )
4887        .unwrap();
4888
4889        let union_type = union_array.data_type().clone();
4890        let converter = RowConverter::new(vec![SortField::new(union_type)]).unwrap();
4891
4892        let rows = converter
4893            .convert_columns(&[Arc::new(union_array.clone())])
4894            .unwrap();
4895
4896        // round trip
4897        let back = converter.convert_rows(&rows).unwrap();
4898        let back_union = back[0].as_any().downcast_ref::<UnionArray>().unwrap();
4899
4900        assert_eq!(union_array.len(), back_union.len());
4901        for i in 0..union_array.len() {
4902            assert_eq!(union_array.type_id(i), back_union.type_id(i));
4903        }
4904    }
4905
4906    #[test]
4907    fn test_sparse_union_with_nulls() {
4908        // create a sparse union with Int32 (type_id = 0) and Utf8 (type_id = 1)
4909        let int_array = Int32Array::from(vec![Some(1), None, Some(3), None, Some(5)]);
4910        let str_array = StringArray::from(vec![None::<&str>; 5]);
4911
4912        // [1, null (both children null), 3, null (both children null), 5]
4913        let type_ids = vec![0, 1, 0, 1, 0].into();
4914
4915        let union_fields = [
4916            (0, Arc::new(Field::new("int", DataType::Int32, true))),
4917            (1, Arc::new(Field::new("str", DataType::Utf8, true))),
4918        ]
4919        .into_iter()
4920        .collect();
4921
4922        let union_array = UnionArray::try_new(
4923            union_fields,
4924            type_ids,
4925            None,
4926            vec![Arc::new(int_array) as ArrayRef, Arc::new(str_array)],
4927        )
4928        .unwrap();
4929
4930        let union_type = union_array.data_type().clone();
4931        let converter = RowConverter::new(vec![SortField::new(union_type)]).unwrap();
4932
4933        let rows = converter
4934            .convert_columns(&[Arc::new(union_array.clone())])
4935            .unwrap();
4936
4937        // round trip
4938        let back = converter.convert_rows(&rows).unwrap();
4939        let back_union = back[0].as_any().downcast_ref::<UnionArray>().unwrap();
4940
4941        assert_eq!(union_array.len(), back_union.len());
4942        for i in 0..union_array.len() {
4943            let expected_null = union_array.is_null(i);
4944            let actual_null = back_union.is_null(i);
4945            assert_eq!(expected_null, actual_null, "Null mismatch at index {i}");
4946            if !expected_null {
4947                assert_eq!(union_array.type_id(i), back_union.type_id(i));
4948            }
4949        }
4950    }
4951
4952    #[test]
4953    fn test_dense_union() {
4954        // create a dense union with Int32 (type_id = 0) and use Utf8 (type_id = 1)
4955        let int_array = Int32Array::from(vec![1, 3, 5]);
4956        let str_array = StringArray::from(vec!["a", "b"]);
4957
4958        let type_ids = vec![0, 1, 0, 1, 0].into();
4959
4960        // [1, "a", 3, "b", 5]
4961        let offsets = vec![0, 0, 1, 1, 2].into();
4962
4963        let union_fields = [
4964            (0, Arc::new(Field::new("int", DataType::Int32, false))),
4965            (1, Arc::new(Field::new("str", DataType::Utf8, false))),
4966        ]
4967        .into_iter()
4968        .collect();
4969
4970        let union_array = UnionArray::try_new(
4971            union_fields,
4972            type_ids,
4973            Some(offsets), // Dense mode
4974            vec![Arc::new(int_array) as ArrayRef, Arc::new(str_array)],
4975        )
4976        .unwrap();
4977
4978        let union_type = union_array.data_type().clone();
4979        let converter = RowConverter::new(vec![SortField::new(union_type)]).unwrap();
4980
4981        let rows = converter
4982            .convert_columns(&[Arc::new(union_array.clone())])
4983            .unwrap();
4984
4985        // round trip
4986        let back = converter.convert_rows(&rows).unwrap();
4987        let back_union = back[0].as_any().downcast_ref::<UnionArray>().unwrap();
4988
4989        assert_eq!(union_array.len(), back_union.len());
4990        for i in 0..union_array.len() {
4991            assert_eq!(union_array.type_id(i), back_union.type_id(i));
4992        }
4993    }
4994
4995    #[test]
4996    fn test_dense_union_with_nulls() {
4997        // create a dense union with Int32 (type_id = 0) and Utf8 (type_id = 1)
4998        let int_array = Int32Array::from(vec![Some(1), None, Some(5)]);
4999        let str_array = StringArray::from(vec![Some("a"), None]);
5000
5001        // [1, "a", 5, null (str null), null (int null)]
5002        let type_ids = vec![0, 1, 0, 1, 0].into();
5003        let offsets = vec![0, 0, 1, 1, 2].into();
5004
5005        let union_fields = [
5006            (0, Arc::new(Field::new("int", DataType::Int32, true))),
5007            (1, Arc::new(Field::new("str", DataType::Utf8, true))),
5008        ]
5009        .into_iter()
5010        .collect();
5011
5012        let union_array = UnionArray::try_new(
5013            union_fields,
5014            type_ids,
5015            Some(offsets),
5016            vec![Arc::new(int_array) as ArrayRef, Arc::new(str_array)],
5017        )
5018        .unwrap();
5019
5020        let union_type = union_array.data_type().clone();
5021        let converter = RowConverter::new(vec![SortField::new(union_type)]).unwrap();
5022
5023        let rows = converter
5024            .convert_columns(&[Arc::new(union_array.clone())])
5025            .unwrap();
5026
5027        // round trip
5028        let back = converter.convert_rows(&rows).unwrap();
5029        let back_union = back[0].as_any().downcast_ref::<UnionArray>().unwrap();
5030
5031        assert_eq!(union_array.len(), back_union.len());
5032        for i in 0..union_array.len() {
5033            let expected_null = union_array.is_null(i);
5034            let actual_null = back_union.is_null(i);
5035            assert_eq!(expected_null, actual_null, "Null mismatch at index {i}");
5036            if !expected_null {
5037                assert_eq!(union_array.type_id(i), back_union.type_id(i));
5038            }
5039        }
5040    }
5041
5042    #[test]
5043    fn test_union_ordering() {
5044        let int_array = Int32Array::from(vec![100, 5, 20]);
5045        let str_array = StringArray::from(vec!["z", "a"]);
5046
5047        // [100, "z", 5, "a", 20]
5048        let type_ids = vec![0, 1, 0, 1, 0].into();
5049        let offsets = vec![0, 0, 1, 1, 2].into();
5050
5051        let union_fields = [
5052            (0, Arc::new(Field::new("int", DataType::Int32, false))),
5053            (1, Arc::new(Field::new("str", DataType::Utf8, false))),
5054        ]
5055        .into_iter()
5056        .collect();
5057
5058        let union_array = UnionArray::try_new(
5059            union_fields,
5060            type_ids,
5061            Some(offsets),
5062            vec![Arc::new(int_array) as ArrayRef, Arc::new(str_array)],
5063        )
5064        .unwrap();
5065
5066        let union_type = union_array.data_type().clone();
5067        let converter = RowConverter::new(vec![SortField::new(union_type)]).unwrap();
5068
5069        let rows = converter.convert_columns(&[Arc::new(union_array)]).unwrap();
5070
5071        /*
5072        expected ordering
5073
5074        row 2: 5    - type_id 0
5075        row 4: 20   - type_id 0
5076        row 0: 100  - type id 0
5077        row 3: "a"  - type id 1
5078        row 1: "z"  - type id 1
5079        */
5080
5081        // 5 < "z"
5082        assert!(rows.row(2) < rows.row(1));
5083
5084        // 100 < "a"
5085        assert!(rows.row(0) < rows.row(3));
5086
5087        // among ints
5088        // 5 < 20
5089        assert!(rows.row(2) < rows.row(4));
5090        // 20 < 100
5091        assert!(rows.row(4) < rows.row(0));
5092
5093        // among strigns
5094        // "a" < "z"
5095        assert!(rows.row(3) < rows.row(1));
5096    }
5097
5098    #[test]
5099    fn test_row_converter_roundtrip_with_many_union_columns() {
5100        // col 1: Union(Int32, Utf8) [67, "hello"]
5101        let fields1 = UnionFields::try_new(
5102            vec![0, 1],
5103            vec![
5104                Field::new("int", DataType::Int32, true),
5105                Field::new("string", DataType::Utf8, true),
5106            ],
5107        )
5108        .unwrap();
5109
5110        let int_array1 = Int32Array::from(vec![Some(67), None]);
5111        let string_array1 = StringArray::from(vec![None::<&str>, Some("hello")]);
5112        let type_ids1 = vec![0i8, 1].into();
5113
5114        let union_array1 = UnionArray::try_new(
5115            fields1.clone(),
5116            type_ids1,
5117            None,
5118            vec![
5119                Arc::new(int_array1) as ArrayRef,
5120                Arc::new(string_array1) as ArrayRef,
5121            ],
5122        )
5123        .unwrap();
5124
5125        // col 2: Union(Int32, Utf8) [100, "world"]
5126        let fields2 = UnionFields::try_new(
5127            vec![0, 1],
5128            vec![
5129                Field::new("int", DataType::Int32, true),
5130                Field::new("string", DataType::Utf8, true),
5131            ],
5132        )
5133        .unwrap();
5134
5135        let int_array2 = Int32Array::from(vec![Some(100), None]);
5136        let string_array2 = StringArray::from(vec![None::<&str>, Some("world")]);
5137        let type_ids2 = vec![0i8, 1].into();
5138
5139        let union_array2 = UnionArray::try_new(
5140            fields2.clone(),
5141            type_ids2,
5142            None,
5143            vec![
5144                Arc::new(int_array2) as ArrayRef,
5145                Arc::new(string_array2) as ArrayRef,
5146            ],
5147        )
5148        .unwrap();
5149
5150        // create a row converter with 2 union columns
5151        let field1 = Field::new("col1", DataType::Union(fields1, UnionMode::Sparse), true);
5152        let field2 = Field::new("col2", DataType::Union(fields2, UnionMode::Sparse), true);
5153
5154        let sort_field1 = SortField::new(field1.data_type().clone());
5155        let sort_field2 = SortField::new(field2.data_type().clone());
5156
5157        let converter = RowConverter::new(vec![sort_field1, sort_field2]).unwrap();
5158
5159        let rows = converter
5160            .convert_columns(&[
5161                Arc::new(union_array1.clone()) as ArrayRef,
5162                Arc::new(union_array2.clone()) as ArrayRef,
5163            ])
5164            .unwrap();
5165
5166        // roundtrip
5167        let out = converter.convert_rows(&rows).unwrap();
5168
5169        let [col1, col2] = out.as_slice() else {
5170            panic!("expected 2 columns")
5171        };
5172
5173        let col1 = col1.as_any().downcast_ref::<UnionArray>().unwrap();
5174        let col2 = col2.as_any().downcast_ref::<UnionArray>().unwrap();
5175
5176        for (expected, got) in [union_array1, union_array2].iter().zip([col1, col2]) {
5177            assert_eq!(expected.len(), got.len());
5178            assert_eq!(expected.type_ids(), got.type_ids());
5179
5180            for i in 0..expected.len() {
5181                assert_eq!(expected.value(i).as_ref(), got.value(i).as_ref());
5182            }
5183        }
5184    }
5185
5186    #[test]
5187    fn test_row_converter_roundtrip_with_one_union_column() {
5188        let fields = UnionFields::try_new(
5189            vec![0, 1],
5190            vec![
5191                Field::new("int", DataType::Int32, true),
5192                Field::new("string", DataType::Utf8, true),
5193            ],
5194        )
5195        .unwrap();
5196
5197        let int_array = Int32Array::from(vec![Some(67), None]);
5198        let string_array = StringArray::from(vec![None::<&str>, Some("hello")]);
5199        let type_ids = vec![0i8, 1].into();
5200
5201        let union_array = UnionArray::try_new(
5202            fields.clone(),
5203            type_ids,
5204            None,
5205            vec![
5206                Arc::new(int_array) as ArrayRef,
5207                Arc::new(string_array) as ArrayRef,
5208            ],
5209        )
5210        .unwrap();
5211
5212        let field = Field::new("col", DataType::Union(fields, UnionMode::Sparse), true);
5213        let sort_field = SortField::new(field.data_type().clone());
5214        let converter = RowConverter::new(vec![sort_field]).unwrap();
5215
5216        let rows = converter
5217            .convert_columns(&[Arc::new(union_array.clone()) as ArrayRef])
5218            .unwrap();
5219
5220        // roundtrip
5221        let out = converter.convert_rows(&rows).unwrap();
5222
5223        let [col1] = out.as_slice() else {
5224            panic!("expected 1 column")
5225        };
5226
5227        let col = col1.as_any().downcast_ref::<UnionArray>().unwrap();
5228        assert_eq!(col.len(), union_array.len());
5229        assert_eq!(col.type_ids(), union_array.type_ids());
5230
5231        for i in 0..col.len() {
5232            assert_eq!(col.value(i).as_ref(), union_array.value(i).as_ref());
5233        }
5234    }
5235
5236    #[test]
5237    fn test_row_converter_roundtrip_with_non_default_union_type_ids() {
5238        // test with non-sequential type IDs (70, 85) instead of (0, 1)
5239        let fields = UnionFields::try_new(
5240            vec![70, 85],
5241            vec![
5242                Field::new("int", DataType::Int32, true),
5243                Field::new("string", DataType::Utf8, true),
5244            ],
5245        )
5246        .unwrap();
5247
5248        let int_array = Int32Array::from(vec![Some(67), None]);
5249        let string_array = StringArray::from(vec![None::<&str>, Some("hello")]);
5250        let type_ids = vec![70i8, 85].into();
5251
5252        let union_array = UnionArray::try_new(
5253            fields.clone(),
5254            type_ids,
5255            None,
5256            vec![
5257                Arc::new(int_array) as ArrayRef,
5258                Arc::new(string_array) as ArrayRef,
5259            ],
5260        )
5261        .unwrap();
5262
5263        let field = Field::new("col", DataType::Union(fields, UnionMode::Sparse), true);
5264        let sort_field = SortField::new(field.data_type().clone());
5265        let converter = RowConverter::new(vec![sort_field]).unwrap();
5266
5267        let rows = converter
5268            .convert_columns(&[Arc::new(union_array.clone()) as ArrayRef])
5269            .unwrap();
5270
5271        // roundtrip
5272        let out = converter.convert_rows(&rows).unwrap();
5273
5274        let [col1] = out.as_slice() else {
5275            panic!("expected 1 column")
5276        };
5277
5278        let col = col1.as_any().downcast_ref::<UnionArray>().unwrap();
5279        assert_eq!(col.len(), union_array.len());
5280        assert_eq!(col.type_ids(), union_array.type_ids());
5281
5282        for i in 0..col.len() {
5283            assert_eq!(col.value(i).as_ref(), union_array.value(i).as_ref());
5284        }
5285    }
5286
5287    #[test]
5288    fn rows_size_should_count_for_capacity() {
5289        let row_converter = RowConverter::new(vec![SortField::new(DataType::UInt8)]).unwrap();
5290
5291        let empty_rows_size_with_preallocate_rows_and_data = {
5292            let rows = row_converter.empty_rows(1000, 1000);
5293
5294            rows.size()
5295        };
5296        let empty_rows_size_with_preallocate_rows = {
5297            let rows = row_converter.empty_rows(1000, 0);
5298
5299            rows.size()
5300        };
5301        let empty_rows_size_with_preallocate_data = {
5302            let rows = row_converter.empty_rows(0, 1000);
5303
5304            rows.size()
5305        };
5306        let empty_rows_size_without_preallocate = {
5307            let rows = row_converter.empty_rows(0, 0);
5308
5309            rows.size()
5310        };
5311
5312        assert!(
5313            empty_rows_size_with_preallocate_rows_and_data > empty_rows_size_with_preallocate_rows,
5314            "{empty_rows_size_with_preallocate_rows_and_data} should be larger than {empty_rows_size_with_preallocate_rows}"
5315        );
5316        assert!(
5317            empty_rows_size_with_preallocate_rows_and_data > empty_rows_size_with_preallocate_data,
5318            "{empty_rows_size_with_preallocate_rows_and_data} should be larger than {empty_rows_size_with_preallocate_data}"
5319        );
5320        assert!(
5321            empty_rows_size_with_preallocate_rows > empty_rows_size_without_preallocate,
5322            "{empty_rows_size_with_preallocate_rows} should be larger than {empty_rows_size_without_preallocate}"
5323        );
5324        assert!(
5325            empty_rows_size_with_preallocate_data > empty_rows_size_without_preallocate,
5326            "{empty_rows_size_with_preallocate_data} should be larger than {empty_rows_size_without_preallocate}"
5327        );
5328    }
5329
5330    #[test]
5331    fn test_struct_no_child_fields() {
5332        fn run_test(array: ArrayRef) {
5333            let sort_fields = vec![SortField::new(array.data_type().clone())];
5334            let converter = RowConverter::new(sort_fields).unwrap();
5335            let r = converter.convert_columns(&[Arc::clone(&array)]).unwrap();
5336
5337            let back = converter.convert_rows(&r).unwrap();
5338            assert_eq!(back.len(), 1);
5339            assert_eq!(&back[0], &array);
5340        }
5341
5342        let s = Arc::new(StructArray::new_empty_fields(5, None)) as ArrayRef;
5343        run_test(s);
5344
5345        let s = Arc::new(StructArray::new_empty_fields(
5346            5,
5347            Some(vec![true, false, true, false, false].into()),
5348        )) as ArrayRef;
5349        run_test(s);
5350    }
5351
5352    #[test]
5353    fn reserve_should_increase_capacity_to_the_requested_size() {
5354        let row_converter = RowConverter::new(vec![SortField::new(DataType::UInt8)]).unwrap();
5355        let mut empty_rows = row_converter.empty_rows(0, 0);
5356        empty_rows.reserve(50, 50);
5357        let before_size = empty_rows.size();
5358        empty_rows.reserve(50, 50);
5359        assert_eq!(
5360            empty_rows.size(),
5361            before_size,
5362            "Size should not change when reserving already reserved space"
5363        );
5364        empty_rows.reserve(10, 20);
5365        assert_eq!(
5366            empty_rows.size(),
5367            before_size,
5368            "Size should not change when already have space for the expected reserved data"
5369        );
5370
5371        empty_rows.reserve(100, 20);
5372        assert!(
5373            empty_rows.size() > before_size,
5374            "Size should increase when reserving more space than previously reserved"
5375        );
5376
5377        let before_size = empty_rows.size();
5378
5379        empty_rows.reserve(20, 100);
5380        assert!(
5381            empty_rows.size() > before_size,
5382            "Size should increase when reserving more space than previously reserved"
5383        );
5384    }
5385
5386    #[test]
5387    fn empty_rows_should_return_empty_lengths_iterator() {
5388        let rows = RowConverter::new(vec![SortField::new(DataType::UInt8)])
5389            .unwrap()
5390            .empty_rows(0, 0);
5391        let mut lengths_iter = rows.lengths();
5392        assert_eq!(lengths_iter.next(), None);
5393    }
5394}