arrow_row/
lib.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! A comparable row-oriented representation of a collection of [`Array`].
19//!
20//! [`Row`]s are [normalized for sorting], and can therefore be very efficiently [compared],
21//! using [`memcmp`] under the hood, or used in [non-comparison sorts] such as [radix sort].
22//! This makes the row format ideal for implementing efficient multi-column sorting,
23//! grouping, aggregation, windowing and more, as described in more detail
24//! [in this blog post](https://arrow.apache.org/blog/2022/11/07/multi-column-sorts-in-arrow-rust-part-1/).
25//!
26//! For example, given three input [`Array`], [`RowConverter`] creates byte
27//! sequences that [compare] the same as when using [`lexsort`].
28//!
29//! ```text
30//!    ┌─────┐   ┌─────┐   ┌─────┐
31//!    │     │   │     │   │     │
32//!    ├─────┤ ┌ ┼─────┼ ─ ┼─────┼ ┐              ┏━━━━━━━━━━━━━┓
33//!    │     │   │     │   │     │  ─────────────▶┃             ┃
34//!    ├─────┤ └ ┼─────┼ ─ ┼─────┼ ┘              ┗━━━━━━━━━━━━━┛
35//!    │     │   │     │   │     │
36//!    └─────┘   └─────┘   └─────┘
37//!                ...
38//!    ┌─────┐ ┌ ┬─────┬ ─ ┬─────┬ ┐              ┏━━━━━━━━┓
39//!    │     │   │     │   │     │  ─────────────▶┃        ┃
40//!    └─────┘ └ ┴─────┴ ─ ┴─────┴ ┘              ┗━━━━━━━━┛
41//!     UInt64      Utf8     F64
42//!
43//!           Input Arrays                          Row Format
44//!     (Columns)
45//! ```
46//!
47//! _[`Rows`] must be generated by the same [`RowConverter`] for the comparison
48//! to be meaningful._
49//!
50//! # Basic Example
51//! ```
52//! # use std::sync::Arc;
53//! # use arrow_row::{RowConverter, SortField};
54//! # use arrow_array::{ArrayRef, Int32Array, StringArray};
55//! # use arrow_array::cast::{AsArray, as_string_array};
56//! # use arrow_array::types::Int32Type;
57//! # use arrow_schema::DataType;
58//!
59//! let a1 = Arc::new(Int32Array::from_iter_values([-1, -1, 0, 3, 3])) as ArrayRef;
60//! let a2 = Arc::new(StringArray::from_iter_values(["a", "b", "c", "d", "d"])) as ArrayRef;
61//! let arrays = vec![a1, a2];
62//!
63//! // Convert arrays to rows
64//! let converter = RowConverter::new(vec![
65//!     SortField::new(DataType::Int32),
66//!     SortField::new(DataType::Utf8),
67//! ]).unwrap();
68//! let rows = converter.convert_columns(&arrays).unwrap();
69//!
70//! // Compare rows
71//! for i in 0..4 {
72//!     assert!(rows.row(i) <= rows.row(i + 1));
73//! }
74//! assert_eq!(rows.row(3), rows.row(4));
75//!
76//! // Convert rows back to arrays
77//! let converted = converter.convert_rows(&rows).unwrap();
78//! assert_eq!(arrays, converted);
79//!
80//! // Compare rows from different arrays
81//! let a1 = Arc::new(Int32Array::from_iter_values([3, 4])) as ArrayRef;
82//! let a2 = Arc::new(StringArray::from_iter_values(["e", "f"])) as ArrayRef;
83//! let arrays = vec![a1, a2];
84//! let rows2 = converter.convert_columns(&arrays).unwrap();
85//!
86//! assert!(rows.row(4) < rows2.row(0));
87//! assert!(rows.row(4) < rows2.row(1));
88//!
89//! // Convert selection of rows back to arrays
90//! let selection = [rows.row(0), rows2.row(1), rows.row(2), rows2.row(0)];
91//! let converted = converter.convert_rows(selection).unwrap();
92//! let c1 = converted[0].as_primitive::<Int32Type>();
93//! assert_eq!(c1.values(), &[-1, 4, 0, 3]);
94//!
95//! let c2 = converted[1].as_string::<i32>();
96//! let c2_values: Vec<_> = c2.iter().flatten().collect();
97//! assert_eq!(&c2_values, &["a", "f", "c", "e"]);
98//! ```
99//!
100//! # Lexicographic Sorts (lexsort)
101//!
102//! The row format can also be used to implement a fast multi-column / lexicographic sort
103//!
104//! ```
105//! # use arrow_row::{RowConverter, SortField};
106//! # use arrow_array::{ArrayRef, UInt32Array};
107//! fn lexsort_to_indices(arrays: &[ArrayRef]) -> UInt32Array {
108//!     let fields = arrays
109//!         .iter()
110//!         .map(|a| SortField::new(a.data_type().clone()))
111//!         .collect();
112//!     let converter = RowConverter::new(fields).unwrap();
113//!     let rows = converter.convert_columns(arrays).unwrap();
114//!     let mut sort: Vec<_> = rows.iter().enumerate().collect();
115//!     sort.sort_unstable_by(|(_, a), (_, b)| a.cmp(b));
116//!     UInt32Array::from_iter_values(sort.iter().map(|(i, _)| *i as u32))
117//! }
118//! ```
119//!
120//! # Flattening Dictionaries
121//!
122//! For performance reasons, dictionary arrays are flattened ("hydrated") to their
123//! underlying values during row conversion. See [the issue] for more details.
124//!
125//! This means that the arrays that come out of [`RowConverter::convert_rows`]
126//! may not have the same data types as the input arrays. For example, encoding
127//! a `Dictionary<Int8, Utf8>` and then will come out as a `Utf8` array.
128//!
129//! ```
130//! # use arrow_array::{Array, ArrayRef, DictionaryArray};
131//! # use arrow_array::types::Int8Type;
132//! # use arrow_row::{RowConverter, SortField};
133//! # use arrow_schema::DataType;
134//! # use std::sync::Arc;
135//! // Input is a Dictionary array
136//! let dict: DictionaryArray::<Int8Type> = ["a", "b", "c", "a", "b"].into_iter().collect();
137//! let sort_fields = vec![SortField::new(dict.data_type().clone())];
138//! let arrays = vec![Arc::new(dict) as ArrayRef];
139//! let converter = RowConverter::new(sort_fields).unwrap();
140//! // Convert to rows
141//! let rows = converter.convert_columns(&arrays).unwrap();
142//! let converted = converter.convert_rows(&rows).unwrap();
143//! // result was a Utf8 array, not a Dictionary array
144//! assert_eq!(converted[0].data_type(), &DataType::Utf8);
145//! ```
146//!
147//! [non-comparison sorts]: https://en.wikipedia.org/wiki/Sorting_algorithm#Non-comparison_sorts
148//! [radix sort]: https://en.wikipedia.org/wiki/Radix_sort
149//! [normalized for sorting]: http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/courses/DBSREAL/SS2005/Vorlesungsunterlagen/Implementing_Sorting.pdf
150//! [`memcmp`]: https://www.man7.org/linux/man-pages/man3/memcmp.3.html
151//! [`lexsort`]: https://docs.rs/arrow-ord/latest/arrow_ord/sort/fn.lexsort.html
152//! [compared]: PartialOrd
153//! [compare]: PartialOrd
154//! [the issue]: https://github.com/apache/arrow-rs/issues/4811
155
156#![doc(
157    html_logo_url = "https://arrow.apache.org/img/arrow-logo_chevrons_black-txt_white-bg.svg",
158    html_favicon_url = "https://arrow.apache.org/img/arrow-logo_chevrons_black-txt_transparent-bg.svg"
159)]
160#![cfg_attr(docsrs, feature(doc_cfg))]
161#![warn(missing_docs)]
162use std::cmp::Ordering;
163use std::hash::{Hash, Hasher};
164use std::sync::Arc;
165
166use arrow_array::cast::*;
167use arrow_array::types::ArrowDictionaryKeyType;
168use arrow_array::*;
169use arrow_buffer::{ArrowNativeType, Buffer, OffsetBuffer, ScalarBuffer};
170use arrow_data::{ArrayData, ArrayDataBuilder};
171use arrow_schema::*;
172use variable::{decode_binary_view, decode_string_view};
173
174use crate::fixed::{decode_bool, decode_fixed_size_binary, decode_primitive};
175use crate::list::{compute_lengths_fixed_size_list, encode_fixed_size_list};
176use crate::variable::{decode_binary, decode_string};
177use arrow_array::types::{Int16Type, Int32Type, Int64Type};
178
179mod fixed;
180mod list;
181mod run;
182mod variable;
183
184/// Converts [`ArrayRef`] columns into a [row-oriented](self) format.
185///
186/// *Note: The encoding of the row format may change from release to release.*
187///
188/// ## Overview
189///
190/// The row format is a variable length byte sequence created by
191/// concatenating the encoded form of each column. The encoding for
192/// each column depends on its datatype (and sort options).
193///
194/// The encoding is carefully designed in such a way that escaping is
195/// unnecessary: it is never ambiguous as to whether a byte is part of
196/// a sentinel (e.g. null) or a value.
197///
198/// ## Unsigned Integer Encoding
199///
200/// A null integer is encoded as a `0_u8`, followed by a zero-ed number of bytes corresponding
201/// to the integer's length.
202///
203/// A valid integer is encoded as `1_u8`, followed by the big-endian representation of the
204/// integer.
205///
206/// ```text
207///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
208///    3          │03│00│00│00│      │01│00│00│00│03│
209///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
210///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
211///   258         │02│01│00│00│      │01│00│00│01│02│
212///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
213///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
214///  23423        │7F│5B│00│00│      │01│00│00│5B│7F│
215///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
216///               ┌──┬──┬──┬──┐      ┌──┬──┬──┬──┬──┐
217///  NULL         │??│??│??│??│      │00│00│00│00│00│
218///               └──┴──┴──┴──┘      └──┴──┴──┴──┴──┘
219///
220///              32-bit (4 bytes)        Row Format
221///  Value        Little Endian
222/// ```
223///
224/// ## Signed Integer Encoding
225///
226/// Signed integers have their most significant sign bit flipped, and are then encoded in the
227/// same manner as an unsigned integer.
228///
229/// ```text
230///        ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┬──┐
231///     5  │05│00│00│00│       │05│00│00│80│       │01│80│00│00│05│
232///        └──┴──┴──┴──┘       └──┴──┴──┴──┘       └──┴──┴──┴──┴──┘
233///        ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┐       ┌──┬──┬──┬──┬──┐
234///    -5  │FB│FF│FF│FF│       │FB│FF│FF│7F│       │01│7F│FF│FF│FB│
235///        └──┴──┴──┴──┘       └──┴──┴──┴──┘       └──┴──┴──┴──┴──┘
236///
237///  Value  32-bit (4 bytes)    High bit flipped      Row Format
238///          Little Endian
239/// ```
240///
241/// ## Float Encoding
242///
243/// Floats are converted from IEEE 754 representation to a signed integer representation
244/// by flipping all bar the sign bit if they are negative.
245///
246/// They are then encoded in the same manner as a signed integer.
247///
248/// ## Fixed Length Bytes Encoding
249///
250/// Fixed length bytes are encoded in the same fashion as primitive types above.
251///
252/// For a fixed length array of length `n`:
253///
254/// A null is encoded as `0_u8` null sentinel followed by `n` `0_u8` bytes
255///
256/// A valid value is encoded as `1_u8` followed by the value bytes
257///
258/// ## Variable Length Bytes (including Strings) Encoding
259///
260/// A null is encoded as a `0_u8`.
261///
262/// An empty byte array is encoded as `1_u8`.
263///
264/// A non-null, non-empty byte array is encoded as `2_u8` followed by the byte array
265/// encoded using a block based scheme described below.
266///
267/// The byte array is broken up into fixed-width blocks, each block is written in turn
268/// to the output, followed by `0xFF_u8`. The final block is padded to 32-bytes
269/// with `0_u8` and written to the output, followed by the un-padded length in bytes
270/// of this final block as a `u8`. The first 4 blocks have a length of 8, with subsequent
271/// blocks using a length of 32, this is to reduce space amplification for small strings.
272///
273/// Note the following example encodings use a block size of 4 bytes for brevity:
274///
275/// ```text
276///                       ┌───┬───┬───┬───┬───┬───┐
277///  "MEEP"               │02 │'M'│'E'│'E'│'P'│04 │
278///                       └───┴───┴───┴───┴───┴───┘
279///
280///                       ┌───┐
281///  ""                   │01 |
282///                       └───┘
283///
284///  NULL                 ┌───┐
285///                       │00 │
286///                       └───┘
287///
288/// "Defenestration"      ┌───┬───┬───┬───┬───┬───┐
289///                       │02 │'D'│'e'│'f'│'e'│FF │
290///                       └───┼───┼───┼───┼───┼───┤
291///                           │'n'│'e'│'s'│'t'│FF │
292///                           ├───┼───┼───┼───┼───┤
293///                           │'r'│'a'│'t'│'r'│FF │
294///                           ├───┼───┼───┼───┼───┤
295///                           │'a'│'t'│'i'│'o'│FF │
296///                           ├───┼───┼───┼───┼───┤
297///                           │'n'│00 │00 │00 │01 │
298///                           └───┴───┴───┴───┴───┘
299/// ```
300///
301/// This approach is loosely inspired by [COBS] encoding, and chosen over more traditional
302/// [byte stuffing] as it is more amenable to vectorisation, in particular AVX-256.
303///
304/// ## Dictionary Encoding
305///
306/// Dictionary encoded arrays are hydrated to their underlying values
307///
308/// ## REE Encoding
309///
310/// REE (Run End Encoding) arrays, A form of Run Length Encoding, are hydrated to their underlying values.
311///
312/// ## Struct Encoding
313///
314/// A null is encoded as a `0_u8`.
315///
316/// A valid value is encoded as `1_u8` followed by the row encoding of each child.
317///
318/// This encoding effectively flattens the schema in a depth-first fashion.
319///
320/// For example
321///
322/// ```text
323/// ┌───────┬────────────────────────┬───────┐
324/// │ Int32 │ Struct[Int32, Float32] │ Int32 │
325/// └───────┴────────────────────────┴───────┘
326/// ```
327///
328/// Is encoded as
329///
330/// ```text
331/// ┌───────┬───────────────┬───────┬─────────┬───────┐
332/// │ Int32 │ Null Sentinel │ Int32 │ Float32 │ Int32 │
333/// └───────┴───────────────┴───────┴─────────┴───────┘
334/// ```
335///
336/// ## List Encoding
337///
338/// Lists are encoded by first encoding all child elements to the row format.
339///
340/// A list value is then encoded as the concatenation of each of the child elements,
341/// separately encoded using the variable length encoding described above, followed
342/// by the variable length encoding of an empty byte array.
343///
344/// For example given:
345///
346/// ```text
347/// [1_u8, 2_u8, 3_u8]
348/// [1_u8, null]
349/// []
350/// null
351/// ```
352///
353/// The elements would be converted to:
354///
355/// ```text
356///     ┌──┬──┐     ┌──┬──┐     ┌──┬──┐     ┌──┬──┐        ┌──┬──┐
357///  1  │01│01│  2  │01│02│  3  │01│03│  1  │01│01│  null  │00│00│
358///     └──┴──┘     └──┴──┘     └──┴──┘     └──┴──┘        └──┴──┘
359///```
360///
361/// Which would be encoded as
362///
363/// ```text
364///                         ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
365///  [1_u8, 2_u8, 3_u8]     │02│01│01│00│00│02│02│01│02│00│00│02│02│01│03│00│00│02│01│
366///                         └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
367///                          └──── 1_u8 ────┘   └──── 2_u8 ────┘  └──── 3_u8 ────┘
368///
369///                         ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
370///  [1_u8, null]           │02│01│01│00│00│02│02│00│00│00│00│02│01│
371///                         └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
372///                          └──── 1_u8 ────┘   └──── null ────┘
373///
374///```
375///
376/// With `[]` represented by an empty byte array, and `null` a null byte array.
377///
378/// ## Fixed Size List Encoding
379///
380/// Fixed Size Lists are encoded by first encoding all child elements to the row format.
381///
382/// A non-null list value is then encoded as 0x01 followed by the concatenation of each
383/// of the child elements. A null list value is encoded as a null marker.
384///
385/// For example given:
386///
387/// ```text
388/// [1_u8, 2_u8]
389/// [3_u8, null]
390/// null
391/// ```
392///
393/// The elements would be converted to:
394///
395/// ```text
396///     ┌──┬──┐     ┌──┬──┐     ┌──┬──┐        ┌──┬──┐
397///  1  │01│01│  2  │01│02│  3  │01│03│  null  │00│00│
398///     └──┴──┘     └──┴──┘     └──┴──┘        └──┴──┘
399///```
400///
401/// Which would be encoded as
402///
403/// ```text
404///                 ┌──┬──┬──┬──┬──┐
405///  [1_u8, 2_u8]   │01│01│01│01│02│
406///                 └──┴──┴──┴──┴──┘
407///                     └ 1 ┘ └ 2 ┘
408///                 ┌──┬──┬──┬──┬──┐
409///  [3_u8, null]   │01│01│03│00│00│
410///                 └──┴──┴──┴──┴──┘
411///                     └ 1 ┘ └null┘
412///                 ┌──┐
413///  null           │00│
414///                 └──┘
415///
416///```
417///
418/// # Ordering
419///
420/// ## Float Ordering
421///
422/// Floats are totally ordered in accordance to the `totalOrder` predicate as defined
423/// in the IEEE 754 (2008 revision) floating point standard.
424///
425/// The ordering established by this does not always agree with the
426/// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example,
427/// they consider negative and positive zero equal, while this does not
428///
429/// ## Null Ordering
430///
431/// The encoding described above will order nulls first, this can be inverted by representing
432/// nulls as `0xFF_u8` instead of `0_u8`
433///
434/// ## Reverse Column Ordering
435///
436/// The order of a given column can be reversed by negating the encoded bytes of non-null values
437///
438/// [COBS]: https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing
439/// [byte stuffing]: https://en.wikipedia.org/wiki/High-Level_Data_Link_Control#Asynchronous_framing
440#[derive(Debug)]
441pub struct RowConverter {
442    fields: Arc<[SortField]>,
443    /// State for codecs
444    codecs: Vec<Codec>,
445}
446
447#[derive(Debug)]
448enum Codec {
449    /// No additional codec state is necessary
450    Stateless,
451    /// A row converter for the dictionary values
452    /// and the encoding of a row containing only nulls
453    Dictionary(RowConverter, OwnedRow),
454    /// A row converter for the child fields
455    /// and the encoding of a row containing only nulls
456    Struct(RowConverter, OwnedRow),
457    /// A row converter for the child field
458    List(RowConverter),
459    /// A row converter for the values array of a run-end encoded array
460    RunEndEncoded(RowConverter),
461}
462
463impl Codec {
464    fn new(sort_field: &SortField) -> Result<Self, ArrowError> {
465        match &sort_field.data_type {
466            DataType::Dictionary(_, values) => {
467                let sort_field =
468                    SortField::new_with_options(values.as_ref().clone(), sort_field.options);
469
470                let converter = RowConverter::new(vec![sort_field])?;
471                let null_array = new_null_array(values.as_ref(), 1);
472                let nulls = converter.convert_columns(&[null_array])?;
473
474                let owned = OwnedRow {
475                    data: nulls.buffer.into(),
476                    config: nulls.config,
477                };
478                Ok(Self::Dictionary(converter, owned))
479            }
480            DataType::RunEndEncoded(_, values) => {
481                // Similar to List implementation
482                let options = SortOptions {
483                    descending: false,
484                    nulls_first: sort_field.options.nulls_first != sort_field.options.descending,
485                };
486
487                let field = SortField::new_with_options(values.data_type().clone(), options);
488                let converter = RowConverter::new(vec![field])?;
489                Ok(Self::RunEndEncoded(converter))
490            }
491            d if !d.is_nested() => Ok(Self::Stateless),
492            DataType::List(f) | DataType::LargeList(f) => {
493                // The encoded contents will be inverted if descending is set to true
494                // As such we set `descending` to false and negate nulls first if it
495                // it set to true
496                let options = SortOptions {
497                    descending: false,
498                    nulls_first: sort_field.options.nulls_first != sort_field.options.descending,
499                };
500
501                let field = SortField::new_with_options(f.data_type().clone(), options);
502                let converter = RowConverter::new(vec![field])?;
503                Ok(Self::List(converter))
504            }
505            DataType::FixedSizeList(f, _) => {
506                let field = SortField::new_with_options(f.data_type().clone(), sort_field.options);
507                let converter = RowConverter::new(vec![field])?;
508                Ok(Self::List(converter))
509            }
510            DataType::Struct(f) => {
511                let sort_fields = f
512                    .iter()
513                    .map(|x| SortField::new_with_options(x.data_type().clone(), sort_field.options))
514                    .collect();
515
516                let converter = RowConverter::new(sort_fields)?;
517                let nulls: Vec<_> = f.iter().map(|x| new_null_array(x.data_type(), 1)).collect();
518
519                let nulls = converter.convert_columns(&nulls)?;
520                let owned = OwnedRow {
521                    data: nulls.buffer.into(),
522                    config: nulls.config,
523                };
524
525                Ok(Self::Struct(converter, owned))
526            }
527            _ => Err(ArrowError::NotYetImplemented(format!(
528                "not yet implemented: {:?}",
529                sort_field.data_type
530            ))),
531        }
532    }
533
534    fn encoder(&self, array: &dyn Array) -> Result<Encoder<'_>, ArrowError> {
535        match self {
536            Codec::Stateless => Ok(Encoder::Stateless),
537            Codec::Dictionary(converter, nulls) => {
538                let values = array.as_any_dictionary().values().clone();
539                let rows = converter.convert_columns(&[values])?;
540                Ok(Encoder::Dictionary(rows, nulls.row()))
541            }
542            Codec::Struct(converter, null) => {
543                let v = as_struct_array(array);
544                let rows = converter.convert_columns(v.columns())?;
545                Ok(Encoder::Struct(rows, null.row()))
546            }
547            Codec::List(converter) => {
548                let values = match array.data_type() {
549                    DataType::List(_) => {
550                        let list_array = as_list_array(array);
551                        let first_offset = list_array.offsets()[0] as usize;
552                        let last_offset =
553                            list_array.offsets()[list_array.offsets().len() - 1] as usize;
554
555                        // values can include more data than referenced in the ListArray, only encode
556                        // the referenced values.
557                        list_array
558                            .values()
559                            .slice(first_offset, last_offset - first_offset)
560                    }
561                    DataType::LargeList(_) => {
562                        let list_array = as_large_list_array(array);
563
564                        let first_offset = list_array.offsets()[0] as usize;
565                        let last_offset =
566                            list_array.offsets()[list_array.offsets().len() - 1] as usize;
567
568                        // values can include more data than referenced in the LargeListArray, only encode
569                        // the referenced values.
570                        list_array
571                            .values()
572                            .slice(first_offset, last_offset - first_offset)
573                    }
574                    DataType::FixedSizeList(_, _) => {
575                        as_fixed_size_list_array(array).values().clone()
576                    }
577                    _ => unreachable!(),
578                };
579                let rows = converter.convert_columns(&[values])?;
580                Ok(Encoder::List(rows))
581            }
582            Codec::RunEndEncoded(converter) => {
583                let values = match array.data_type() {
584                    DataType::RunEndEncoded(r, _) => match r.data_type() {
585                        DataType::Int16 => array.as_run::<Int16Type>().values(),
586                        DataType::Int32 => array.as_run::<Int32Type>().values(),
587                        DataType::Int64 => array.as_run::<Int64Type>().values(),
588                        _ => unreachable!("Unsupported run end index type: {r:?}"),
589                    },
590                    _ => unreachable!(),
591                };
592                let rows = converter.convert_columns(std::slice::from_ref(values))?;
593                Ok(Encoder::RunEndEncoded(rows))
594            }
595        }
596    }
597
598    fn size(&self) -> usize {
599        match self {
600            Codec::Stateless => 0,
601            Codec::Dictionary(converter, nulls) => converter.size() + nulls.data.len(),
602            Codec::Struct(converter, nulls) => converter.size() + nulls.data.len(),
603            Codec::List(converter) => converter.size(),
604            Codec::RunEndEncoded(converter) => converter.size(),
605        }
606    }
607}
608
609#[derive(Debug)]
610enum Encoder<'a> {
611    /// No additional encoder state is necessary
612    Stateless,
613    /// The encoding of the child array and the encoding of a null row
614    Dictionary(Rows, Row<'a>),
615    /// The row encoding of the child arrays and the encoding of a null row
616    ///
617    /// It is necessary to encode to a temporary [`Rows`] to avoid serializing
618    /// values that are masked by a null in the parent StructArray, otherwise
619    /// this would establish an ordering between semantically null values
620    Struct(Rows, Row<'a>),
621    /// The row encoding of the child array
622    List(Rows),
623    /// The row encoding of the values array
624    RunEndEncoded(Rows),
625}
626
627/// Configure the data type and sort order for a given column
628#[derive(Debug, Clone, PartialEq, Eq)]
629pub struct SortField {
630    /// Sort options
631    options: SortOptions,
632    /// Data type
633    data_type: DataType,
634}
635
636impl SortField {
637    /// Create a new column with the given data type
638    pub fn new(data_type: DataType) -> Self {
639        Self::new_with_options(data_type, Default::default())
640    }
641
642    /// Create a new column with the given data type and [`SortOptions`]
643    pub fn new_with_options(data_type: DataType, options: SortOptions) -> Self {
644        Self { options, data_type }
645    }
646
647    /// Return size of this instance in bytes.
648    ///
649    /// Includes the size of `Self`.
650    pub fn size(&self) -> usize {
651        self.data_type.size() + std::mem::size_of::<Self>() - std::mem::size_of::<DataType>()
652    }
653}
654
655impl RowConverter {
656    /// Create a new [`RowConverter`] with the provided schema
657    pub fn new(fields: Vec<SortField>) -> Result<Self, ArrowError> {
658        if !Self::supports_fields(&fields) {
659            return Err(ArrowError::NotYetImplemented(format!(
660                "Row format support not yet implemented for: {fields:?}"
661            )));
662        }
663
664        let codecs = fields.iter().map(Codec::new).collect::<Result<_, _>>()?;
665        Ok(Self {
666            fields: fields.into(),
667            codecs,
668        })
669    }
670
671    /// Check if the given fields are supported by the row format.
672    pub fn supports_fields(fields: &[SortField]) -> bool {
673        fields.iter().all(|x| Self::supports_datatype(&x.data_type))
674    }
675
676    fn supports_datatype(d: &DataType) -> bool {
677        match d {
678            _ if !d.is_nested() => true,
679            DataType::List(f) | DataType::LargeList(f) | DataType::FixedSizeList(f, _) => {
680                Self::supports_datatype(f.data_type())
681            }
682            DataType::Struct(f) => f.iter().all(|x| Self::supports_datatype(x.data_type())),
683            DataType::RunEndEncoded(_, values) => Self::supports_datatype(values.data_type()),
684            _ => false,
685        }
686    }
687
688    /// Convert [`ArrayRef`] columns into [`Rows`]
689    ///
690    /// See [`Row`] for information on when [`Row`] can be compared
691    ///
692    /// See [`Self::convert_rows`] for converting [`Rows`] back into [`ArrayRef`]
693    ///
694    /// # Panics
695    ///
696    /// Panics if the schema of `columns` does not match that provided to [`RowConverter::new`]
697    pub fn convert_columns(&self, columns: &[ArrayRef]) -> Result<Rows, ArrowError> {
698        let num_rows = columns.first().map(|x| x.len()).unwrap_or(0);
699        let mut rows = self.empty_rows(num_rows, 0);
700        self.append(&mut rows, columns)?;
701        Ok(rows)
702    }
703
704    /// Convert [`ArrayRef`] columns appending to an existing [`Rows`]
705    ///
706    /// See [`Row`] for information on when [`Row`] can be compared
707    ///
708    /// # Panics
709    ///
710    /// Panics if
711    /// * The schema of `columns` does not match that provided to [`RowConverter::new`]
712    /// * The provided [`Rows`] were not created by this [`RowConverter`]
713    ///
714    /// ```
715    /// # use std::sync::Arc;
716    /// # use std::collections::HashSet;
717    /// # use arrow_array::cast::AsArray;
718    /// # use arrow_array::StringArray;
719    /// # use arrow_row::{Row, RowConverter, SortField};
720    /// # use arrow_schema::DataType;
721    /// #
722    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
723    /// let a1 = StringArray::from(vec!["hello", "world"]);
724    /// let a2 = StringArray::from(vec!["a", "a", "hello"]);
725    ///
726    /// let mut rows = converter.empty_rows(5, 128);
727    /// converter.append(&mut rows, &[Arc::new(a1)]).unwrap();
728    /// converter.append(&mut rows, &[Arc::new(a2)]).unwrap();
729    ///
730    /// let back = converter.convert_rows(&rows).unwrap();
731    /// let values: Vec<_> = back[0].as_string::<i32>().iter().map(Option::unwrap).collect();
732    /// assert_eq!(&values, &["hello", "world", "a", "a", "hello"]);
733    /// ```
734    pub fn append(&self, rows: &mut Rows, columns: &[ArrayRef]) -> Result<(), ArrowError> {
735        assert!(
736            Arc::ptr_eq(&rows.config.fields, &self.fields),
737            "rows were not produced by this RowConverter"
738        );
739
740        if columns.len() != self.fields.len() {
741            return Err(ArrowError::InvalidArgumentError(format!(
742                "Incorrect number of arrays provided to RowConverter, expected {} got {}",
743                self.fields.len(),
744                columns.len()
745            )));
746        }
747        for colum in columns.iter().skip(1) {
748            if colum.len() != columns[0].len() {
749                return Err(ArrowError::InvalidArgumentError(format!(
750                    "RowConverter columns must all have the same length, expected {} got {}",
751                    columns[0].len(),
752                    colum.len()
753                )));
754            }
755        }
756
757        let encoders = columns
758            .iter()
759            .zip(&self.codecs)
760            .zip(self.fields.iter())
761            .map(|((column, codec), field)| {
762                if !column.data_type().equals_datatype(&field.data_type) {
763                    return Err(ArrowError::InvalidArgumentError(format!(
764                        "RowConverter column schema mismatch, expected {} got {}",
765                        field.data_type,
766                        column.data_type()
767                    )));
768                }
769                codec.encoder(column.as_ref())
770            })
771            .collect::<Result<Vec<_>, _>>()?;
772
773        let write_offset = rows.num_rows();
774        let lengths = row_lengths(columns, &encoders);
775        let total = lengths.extend_offsets(rows.offsets[write_offset], &mut rows.offsets);
776        rows.buffer.resize(total, 0);
777
778        for ((column, field), encoder) in columns.iter().zip(self.fields.iter()).zip(encoders) {
779            // We encode a column at a time to minimise dispatch overheads
780            encode_column(
781                &mut rows.buffer,
782                &mut rows.offsets[write_offset..],
783                column.as_ref(),
784                field.options,
785                &encoder,
786            )
787        }
788
789        if cfg!(debug_assertions) {
790            assert_eq!(*rows.offsets.last().unwrap(), rows.buffer.len());
791            rows.offsets
792                .windows(2)
793                .for_each(|w| assert!(w[0] <= w[1], "offsets should be monotonic"));
794        }
795
796        Ok(())
797    }
798
799    /// Convert [`Rows`] columns into [`ArrayRef`]
800    ///
801    /// See [`Self::convert_columns`] for converting [`ArrayRef`] into [`Rows`]
802    ///
803    /// # Panics
804    ///
805    /// Panics if the rows were not produced by this [`RowConverter`]
806    pub fn convert_rows<'a, I>(&self, rows: I) -> Result<Vec<ArrayRef>, ArrowError>
807    where
808        I: IntoIterator<Item = Row<'a>>,
809    {
810        let mut validate_utf8 = false;
811        let mut rows: Vec<_> = rows
812            .into_iter()
813            .map(|row| {
814                assert!(
815                    Arc::ptr_eq(&row.config.fields, &self.fields),
816                    "rows were not produced by this RowConverter"
817                );
818                validate_utf8 |= row.config.validate_utf8;
819                row.data
820            })
821            .collect();
822
823        // SAFETY
824        // We have validated that the rows came from this [`RowConverter`]
825        // and therefore must be valid
826        let result = unsafe { self.convert_raw(&mut rows, validate_utf8) }?;
827
828        if cfg!(test) {
829            for (i, row) in rows.iter().enumerate() {
830                if !row.is_empty() {
831                    return Err(ArrowError::InvalidArgumentError(format!(
832                        "Codecs {codecs:?} did not consume all bytes for row {i}, remaining bytes: {row:?}",
833                        codecs = &self.codecs
834                    )));
835                }
836            }
837        }
838
839        Ok(result)
840    }
841
842    /// Returns an empty [`Rows`] with capacity for `row_capacity` rows with
843    /// a total length of `data_capacity`
844    ///
845    /// This can be used to buffer a selection of [`Row`]
846    ///
847    /// ```
848    /// # use std::sync::Arc;
849    /// # use std::collections::HashSet;
850    /// # use arrow_array::cast::AsArray;
851    /// # use arrow_array::StringArray;
852    /// # use arrow_row::{Row, RowConverter, SortField};
853    /// # use arrow_schema::DataType;
854    /// #
855    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
856    /// let array = StringArray::from(vec!["hello", "world", "a", "a", "hello"]);
857    ///
858    /// // Convert to row format and deduplicate
859    /// let converted = converter.convert_columns(&[Arc::new(array)]).unwrap();
860    /// let mut distinct_rows = converter.empty_rows(3, 100);
861    /// let mut dedup: HashSet<Row> = HashSet::with_capacity(3);
862    /// converted.iter().filter(|row| dedup.insert(*row)).for_each(|row| distinct_rows.push(row));
863    ///
864    /// // Note: we could skip buffering and feed the filtered iterator directly
865    /// // into convert_rows, this is done for demonstration purposes only
866    /// let distinct = converter.convert_rows(&distinct_rows).unwrap();
867    /// let values: Vec<_> = distinct[0].as_string::<i32>().iter().map(Option::unwrap).collect();
868    /// assert_eq!(&values, &["hello", "world", "a"]);
869    /// ```
870    pub fn empty_rows(&self, row_capacity: usize, data_capacity: usize) -> Rows {
871        let mut offsets = Vec::with_capacity(row_capacity.saturating_add(1));
872        offsets.push(0);
873
874        Rows {
875            offsets,
876            buffer: Vec::with_capacity(data_capacity),
877            config: RowConfig {
878                fields: self.fields.clone(),
879                validate_utf8: false,
880            },
881        }
882    }
883
884    /// Create a new [Rows] instance from the given binary data.
885    ///
886    /// ```
887    /// # use std::sync::Arc;
888    /// # use std::collections::HashSet;
889    /// # use arrow_array::cast::AsArray;
890    /// # use arrow_array::StringArray;
891    /// # use arrow_row::{OwnedRow, Row, RowConverter, RowParser, SortField};
892    /// # use arrow_schema::DataType;
893    /// #
894    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
895    /// let array = StringArray::from(vec!["hello", "world", "a", "a", "hello"]);
896    /// let rows = converter.convert_columns(&[Arc::new(array)]).unwrap();
897    ///
898    /// // We can convert rows into binary format and back in batch.
899    /// let values: Vec<OwnedRow> = rows.iter().map(|r| r.owned()).collect();
900    /// let binary = rows.try_into_binary().expect("known-small array");
901    /// let converted = converter.from_binary(binary.clone());
902    /// assert!(converted.iter().eq(values.iter().map(|r| r.row())));
903    /// ```
904    ///
905    /// # Panics
906    ///
907    /// This function expects the passed [BinaryArray] to contain valid row data as produced by this
908    /// [RowConverter]. It will panic if any rows are null. Operations on the returned [Rows] may
909    /// panic if the data is malformed.
910    pub fn from_binary(&self, array: BinaryArray) -> Rows {
911        assert_eq!(
912            array.null_count(),
913            0,
914            "can't construct Rows instance from array with nulls"
915        );
916        Rows {
917            buffer: array.values().to_vec(),
918            offsets: array.offsets().iter().map(|&i| i.as_usize()).collect(),
919            config: RowConfig {
920                fields: Arc::clone(&self.fields),
921                validate_utf8: true,
922            },
923        }
924    }
925
926    /// Convert raw bytes into [`ArrayRef`]
927    ///
928    /// # Safety
929    ///
930    /// `rows` must contain valid data for this [`RowConverter`]
931    unsafe fn convert_raw(
932        &self,
933        rows: &mut [&[u8]],
934        validate_utf8: bool,
935    ) -> Result<Vec<ArrayRef>, ArrowError> {
936        self.fields
937            .iter()
938            .zip(&self.codecs)
939            .map(|(field, codec)| unsafe { decode_column(field, rows, codec, validate_utf8) })
940            .collect()
941    }
942
943    /// Returns a [`RowParser`] that can be used to parse [`Row`] from bytes
944    pub fn parser(&self) -> RowParser {
945        RowParser::new(Arc::clone(&self.fields))
946    }
947
948    /// Returns the size of this instance in bytes
949    ///
950    /// Includes the size of `Self`.
951    pub fn size(&self) -> usize {
952        std::mem::size_of::<Self>()
953            + self.fields.iter().map(|x| x.size()).sum::<usize>()
954            + self.codecs.capacity() * std::mem::size_of::<Codec>()
955            + self.codecs.iter().map(Codec::size).sum::<usize>()
956    }
957}
958
959/// A [`RowParser`] can be created from a [`RowConverter`] and used to parse bytes to [`Row`]
960#[derive(Debug)]
961pub struct RowParser {
962    config: RowConfig,
963}
964
965impl RowParser {
966    fn new(fields: Arc<[SortField]>) -> Self {
967        Self {
968            config: RowConfig {
969                fields,
970                validate_utf8: true,
971            },
972        }
973    }
974
975    /// Creates a [`Row`] from the provided `bytes`.
976    ///
977    /// `bytes` must be a [`Row`] produced by the [`RowConverter`] associated with
978    /// this [`RowParser`], otherwise subsequent operations with the produced [`Row`] may panic
979    pub fn parse<'a>(&'a self, bytes: &'a [u8]) -> Row<'a> {
980        Row {
981            data: bytes,
982            config: &self.config,
983        }
984    }
985}
986
987/// The config of a given set of [`Row`]
988#[derive(Debug, Clone)]
989struct RowConfig {
990    /// The schema for these rows
991    fields: Arc<[SortField]>,
992    /// Whether to run UTF-8 validation when converting to arrow arrays
993    validate_utf8: bool,
994}
995
996/// A row-oriented representation of arrow data, that is normalized for comparison.
997///
998/// See the [module level documentation](self) and [`RowConverter`] for more details.
999#[derive(Debug)]
1000pub struct Rows {
1001    /// Underlying row bytes
1002    buffer: Vec<u8>,
1003    /// Row `i` has data `&buffer[offsets[i]..offsets[i+1]]`
1004    offsets: Vec<usize>,
1005    /// The config for these rows
1006    config: RowConfig,
1007}
1008
1009impl Rows {
1010    /// Append a [`Row`] to this [`Rows`]
1011    pub fn push(&mut self, row: Row<'_>) {
1012        assert!(
1013            Arc::ptr_eq(&row.config.fields, &self.config.fields),
1014            "row was not produced by this RowConverter"
1015        );
1016        self.config.validate_utf8 |= row.config.validate_utf8;
1017        self.buffer.extend_from_slice(row.data);
1018        self.offsets.push(self.buffer.len())
1019    }
1020
1021    /// Returns the row at index `row`
1022    pub fn row(&self, row: usize) -> Row<'_> {
1023        assert!(row + 1 < self.offsets.len());
1024        unsafe { self.row_unchecked(row) }
1025    }
1026
1027    /// Returns the row at `index` without bounds checking
1028    ///
1029    /// # Safety
1030    /// Caller must ensure that `index` is less than the number of offsets (#rows + 1)
1031    pub unsafe fn row_unchecked(&self, index: usize) -> Row<'_> {
1032        let end = unsafe { self.offsets.get_unchecked(index + 1) };
1033        let start = unsafe { self.offsets.get_unchecked(index) };
1034        let data = unsafe { self.buffer.get_unchecked(*start..*end) };
1035        Row {
1036            data,
1037            config: &self.config,
1038        }
1039    }
1040
1041    /// Sets the length of this [`Rows`] to 0
1042    pub fn clear(&mut self) {
1043        self.offsets.truncate(1);
1044        self.buffer.clear();
1045    }
1046
1047    /// Returns the number of [`Row`] in this [`Rows`]
1048    pub fn num_rows(&self) -> usize {
1049        self.offsets.len() - 1
1050    }
1051
1052    /// Returns an iterator over the [`Row`] in this [`Rows`]
1053    pub fn iter(&self) -> RowsIter<'_> {
1054        self.into_iter()
1055    }
1056
1057    /// Returns the size of this instance in bytes
1058    ///
1059    /// Includes the size of `Self`.
1060    pub fn size(&self) -> usize {
1061        // Size of fields is accounted for as part of RowConverter
1062        std::mem::size_of::<Self>()
1063            + self.buffer.len()
1064            + self.offsets.len() * std::mem::size_of::<usize>()
1065    }
1066
1067    /// Create a [BinaryArray] from the [Rows] data without reallocating the
1068    /// underlying bytes.
1069    ///
1070    ///
1071    /// ```
1072    /// # use std::sync::Arc;
1073    /// # use std::collections::HashSet;
1074    /// # use arrow_array::cast::AsArray;
1075    /// # use arrow_array::StringArray;
1076    /// # use arrow_row::{OwnedRow, Row, RowConverter, RowParser, SortField};
1077    /// # use arrow_schema::DataType;
1078    /// #
1079    /// let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
1080    /// let array = StringArray::from(vec!["hello", "world", "a", "a", "hello"]);
1081    /// let rows = converter.convert_columns(&[Arc::new(array)]).unwrap();
1082    ///
1083    /// // We can convert rows into binary format and back.
1084    /// let values: Vec<OwnedRow> = rows.iter().map(|r| r.owned()).collect();
1085    /// let binary = rows.try_into_binary().expect("known-small array");
1086    /// let parser = converter.parser();
1087    /// let parsed: Vec<OwnedRow> =
1088    ///   binary.iter().flatten().map(|b| parser.parse(b).owned()).collect();
1089    /// assert_eq!(values, parsed);
1090    /// ```
1091    ///
1092    /// # Errors
1093    ///
1094    /// This function will return an error if there is more data than can be stored in
1095    /// a [BinaryArray] -- i.e. if the total data size is more than 2GiB.
1096    pub fn try_into_binary(self) -> Result<BinaryArray, ArrowError> {
1097        if self.buffer.len() > i32::MAX as usize {
1098            return Err(ArrowError::InvalidArgumentError(format!(
1099                "{}-byte rows buffer too long to convert into a i32-indexed BinaryArray",
1100                self.buffer.len()
1101            )));
1102        }
1103        // We've checked that the buffer length fits in an i32; so all offsets into that buffer should fit as well.
1104        let offsets_scalar = ScalarBuffer::from_iter(self.offsets.into_iter().map(i32::usize_as));
1105        // SAFETY: offsets buffer is nonempty, monotonically increasing, and all represent valid indexes into buffer.
1106        let array = unsafe {
1107            BinaryArray::new_unchecked(
1108                OffsetBuffer::new_unchecked(offsets_scalar),
1109                Buffer::from_vec(self.buffer),
1110                None,
1111            )
1112        };
1113        Ok(array)
1114    }
1115}
1116
1117impl<'a> IntoIterator for &'a Rows {
1118    type Item = Row<'a>;
1119    type IntoIter = RowsIter<'a>;
1120
1121    fn into_iter(self) -> Self::IntoIter {
1122        RowsIter {
1123            rows: self,
1124            start: 0,
1125            end: self.num_rows(),
1126        }
1127    }
1128}
1129
1130/// An iterator over [`Rows`]
1131#[derive(Debug)]
1132pub struct RowsIter<'a> {
1133    rows: &'a Rows,
1134    start: usize,
1135    end: usize,
1136}
1137
1138impl<'a> Iterator for RowsIter<'a> {
1139    type Item = Row<'a>;
1140
1141    fn next(&mut self) -> Option<Self::Item> {
1142        if self.end == self.start {
1143            return None;
1144        }
1145
1146        // SAFETY: We have checked that `start` is less than `end`
1147        let row = unsafe { self.rows.row_unchecked(self.start) };
1148        self.start += 1;
1149        Some(row)
1150    }
1151
1152    fn size_hint(&self) -> (usize, Option<usize>) {
1153        let len = self.len();
1154        (len, Some(len))
1155    }
1156}
1157
1158impl ExactSizeIterator for RowsIter<'_> {
1159    fn len(&self) -> usize {
1160        self.end - self.start
1161    }
1162}
1163
1164impl DoubleEndedIterator for RowsIter<'_> {
1165    fn next_back(&mut self) -> Option<Self::Item> {
1166        if self.end == self.start {
1167            return None;
1168        }
1169        // Safety: We have checked that `start` is less than `end`
1170        let row = unsafe { self.rows.row_unchecked(self.end) };
1171        self.end -= 1;
1172        Some(row)
1173    }
1174}
1175
1176/// A comparable representation of a row.
1177///
1178/// See the [module level documentation](self) for more details.
1179///
1180/// Two [`Row`] can only be compared if they both belong to [`Rows`]
1181/// returned by calls to [`RowConverter::convert_columns`] on the same
1182/// [`RowConverter`]. If different [`RowConverter`]s are used, any
1183/// ordering established by comparing the [`Row`] is arbitrary.
1184#[derive(Debug, Copy, Clone)]
1185pub struct Row<'a> {
1186    data: &'a [u8],
1187    config: &'a RowConfig,
1188}
1189
1190impl<'a> Row<'a> {
1191    /// Create owned version of the row to detach it from the shared [`Rows`].
1192    pub fn owned(&self) -> OwnedRow {
1193        OwnedRow {
1194            data: self.data.into(),
1195            config: self.config.clone(),
1196        }
1197    }
1198
1199    /// The row's bytes, with the lifetime of the underlying data.
1200    pub fn data(&self) -> &'a [u8] {
1201        self.data
1202    }
1203}
1204
1205// Manually derive these as don't wish to include `fields`
1206
1207impl PartialEq for Row<'_> {
1208    #[inline]
1209    fn eq(&self, other: &Self) -> bool {
1210        self.data.eq(other.data)
1211    }
1212}
1213
1214impl Eq for Row<'_> {}
1215
1216impl PartialOrd for Row<'_> {
1217    #[inline]
1218    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1219        Some(self.cmp(other))
1220    }
1221}
1222
1223impl Ord for Row<'_> {
1224    #[inline]
1225    fn cmp(&self, other: &Self) -> Ordering {
1226        self.data.cmp(other.data)
1227    }
1228}
1229
1230impl Hash for Row<'_> {
1231    #[inline]
1232    fn hash<H: Hasher>(&self, state: &mut H) {
1233        self.data.hash(state)
1234    }
1235}
1236
1237impl AsRef<[u8]> for Row<'_> {
1238    #[inline]
1239    fn as_ref(&self) -> &[u8] {
1240        self.data
1241    }
1242}
1243
1244/// Owned version of a [`Row`] that can be moved/cloned freely.
1245///
1246/// This contains the data for the one specific row (not the entire buffer of all rows).
1247#[derive(Debug, Clone)]
1248pub struct OwnedRow {
1249    data: Box<[u8]>,
1250    config: RowConfig,
1251}
1252
1253impl OwnedRow {
1254    /// Get borrowed [`Row`] from owned version.
1255    ///
1256    /// This is helpful if you want to compare an [`OwnedRow`] with a [`Row`].
1257    pub fn row(&self) -> Row<'_> {
1258        Row {
1259            data: &self.data,
1260            config: &self.config,
1261        }
1262    }
1263}
1264
1265// Manually derive these as don't wish to include `fields`. Also we just want to use the same `Row` implementations here.
1266
1267impl PartialEq for OwnedRow {
1268    #[inline]
1269    fn eq(&self, other: &Self) -> bool {
1270        self.row().eq(&other.row())
1271    }
1272}
1273
1274impl Eq for OwnedRow {}
1275
1276impl PartialOrd for OwnedRow {
1277    #[inline]
1278    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1279        Some(self.cmp(other))
1280    }
1281}
1282
1283impl Ord for OwnedRow {
1284    #[inline]
1285    fn cmp(&self, other: &Self) -> Ordering {
1286        self.row().cmp(&other.row())
1287    }
1288}
1289
1290impl Hash for OwnedRow {
1291    #[inline]
1292    fn hash<H: Hasher>(&self, state: &mut H) {
1293        self.row().hash(state)
1294    }
1295}
1296
1297impl AsRef<[u8]> for OwnedRow {
1298    #[inline]
1299    fn as_ref(&self) -> &[u8] {
1300        &self.data
1301    }
1302}
1303
1304/// Returns the null sentinel, negated if `invert` is true
1305#[inline]
1306fn null_sentinel(options: SortOptions) -> u8 {
1307    match options.nulls_first {
1308        true => 0,
1309        false => 0xFF,
1310    }
1311}
1312
1313/// Stores the lengths of the rows. Lazily materializes lengths for columns with fixed-size types.
1314enum LengthTracker {
1315    /// Fixed state: All rows have length `length`
1316    Fixed { length: usize, num_rows: usize },
1317    /// Variable state: The length of row `i` is `lengths[i] + fixed_length`
1318    Variable {
1319        fixed_length: usize,
1320        lengths: Vec<usize>,
1321    },
1322}
1323
1324impl LengthTracker {
1325    fn new(num_rows: usize) -> Self {
1326        Self::Fixed {
1327            length: 0,
1328            num_rows,
1329        }
1330    }
1331
1332    /// Adds a column of fixed-length elements, each of size `new_length` to the LengthTracker
1333    fn push_fixed(&mut self, new_length: usize) {
1334        match self {
1335            LengthTracker::Fixed { length, .. } => *length += new_length,
1336            LengthTracker::Variable { fixed_length, .. } => *fixed_length += new_length,
1337        }
1338    }
1339
1340    /// Adds a column of possibly variable-length elements, element `i` has length `new_lengths.nth(i)`
1341    fn push_variable(&mut self, new_lengths: impl ExactSizeIterator<Item = usize>) {
1342        match self {
1343            LengthTracker::Fixed { length, .. } => {
1344                *self = LengthTracker::Variable {
1345                    fixed_length: *length,
1346                    lengths: new_lengths.collect(),
1347                }
1348            }
1349            LengthTracker::Variable { lengths, .. } => {
1350                assert_eq!(lengths.len(), new_lengths.len());
1351                lengths
1352                    .iter_mut()
1353                    .zip(new_lengths)
1354                    .for_each(|(length, new_length)| *length += new_length);
1355            }
1356        }
1357    }
1358
1359    /// Returns the tracked row lengths as a slice
1360    fn materialized(&mut self) -> &mut [usize] {
1361        if let LengthTracker::Fixed { length, num_rows } = *self {
1362            *self = LengthTracker::Variable {
1363                fixed_length: length,
1364                lengths: vec![0; num_rows],
1365            };
1366        }
1367
1368        match self {
1369            LengthTracker::Variable { lengths, .. } => lengths,
1370            LengthTracker::Fixed { .. } => unreachable!(),
1371        }
1372    }
1373
1374    /// Initializes the offsets using the tracked lengths. Returns the sum of the
1375    /// lengths of the rows added.
1376    ///
1377    /// We initialize the offsets shifted down by one row index.
1378    ///
1379    /// As the rows are appended to the offsets will be incremented to match
1380    ///
1381    /// For example, consider the case of 3 rows of length 3, 4, and 6 respectively.
1382    /// The offsets would be initialized to `0, 0, 3, 7`
1383    ///
1384    /// Writing the first row entirely would yield `0, 3, 3, 7`
1385    /// The second, `0, 3, 7, 7`
1386    /// The third, `0, 3, 7, 13`
1387    //
1388    /// This would be the final offsets for reading
1389    //
1390    /// In this way offsets tracks the position during writing whilst eventually serving
1391    fn extend_offsets(&self, initial_offset: usize, offsets: &mut Vec<usize>) -> usize {
1392        match self {
1393            LengthTracker::Fixed { length, num_rows } => {
1394                offsets.extend((0..*num_rows).map(|i| initial_offset + i * length));
1395
1396                initial_offset + num_rows * length
1397            }
1398            LengthTracker::Variable {
1399                fixed_length,
1400                lengths,
1401            } => {
1402                let mut acc = initial_offset;
1403
1404                offsets.extend(lengths.iter().map(|length| {
1405                    let current = acc;
1406                    acc += length + fixed_length;
1407                    current
1408                }));
1409
1410                acc
1411            }
1412        }
1413    }
1414}
1415
1416/// Computes the length of each encoded [`Rows`] and returns an empty [`Rows`]
1417fn row_lengths(cols: &[ArrayRef], encoders: &[Encoder]) -> LengthTracker {
1418    use fixed::FixedLengthEncoding;
1419
1420    let num_rows = cols.first().map(|x| x.len()).unwrap_or(0);
1421    let mut tracker = LengthTracker::new(num_rows);
1422
1423    for (array, encoder) in cols.iter().zip(encoders) {
1424        match encoder {
1425            Encoder::Stateless => {
1426                downcast_primitive_array! {
1427                    array => tracker.push_fixed(fixed::encoded_len(array)),
1428                    DataType::Null => {},
1429                    DataType::Boolean => tracker.push_fixed(bool::ENCODED_LEN),
1430                    DataType::Binary => tracker.push_variable(
1431                        as_generic_binary_array::<i32>(array)
1432                            .iter()
1433                            .map(|slice| variable::encoded_len(slice))
1434                    ),
1435                    DataType::LargeBinary => tracker.push_variable(
1436                        as_generic_binary_array::<i64>(array)
1437                            .iter()
1438                            .map(|slice| variable::encoded_len(slice))
1439                    ),
1440                    DataType::BinaryView => tracker.push_variable(
1441                        array.as_binary_view()
1442                            .iter()
1443                            .map(|slice| variable::encoded_len(slice))
1444                    ),
1445                    DataType::Utf8 => tracker.push_variable(
1446                        array.as_string::<i32>()
1447                            .iter()
1448                            .map(|slice| variable::encoded_len(slice.map(|x| x.as_bytes())))
1449                    ),
1450                    DataType::LargeUtf8 => tracker.push_variable(
1451                        array.as_string::<i64>()
1452                            .iter()
1453                            .map(|slice| variable::encoded_len(slice.map(|x| x.as_bytes())))
1454                    ),
1455                    DataType::Utf8View => tracker.push_variable(
1456                        array.as_string_view()
1457                            .iter()
1458                            .map(|slice| variable::encoded_len(slice.map(|x| x.as_bytes())))
1459                    ),
1460                    DataType::FixedSizeBinary(len) => {
1461                        let len = len.to_usize().unwrap();
1462                        tracker.push_fixed(1 + len)
1463                    }
1464                    _ => unimplemented!("unsupported data type: {}", array.data_type()),
1465                }
1466            }
1467            Encoder::Dictionary(values, null) => {
1468                downcast_dictionary_array! {
1469                    array => {
1470                        tracker.push_variable(
1471                            array.keys().iter().map(|v| match v {
1472                                Some(k) => values.row(k.as_usize()).data.len(),
1473                                None => null.data.len(),
1474                            })
1475                        )
1476                    }
1477                    _ => unreachable!(),
1478                }
1479            }
1480            Encoder::Struct(rows, null) => {
1481                let array = as_struct_array(array);
1482                tracker.push_variable((0..array.len()).map(|idx| match array.is_valid(idx) {
1483                    true => 1 + rows.row(idx).as_ref().len(),
1484                    false => 1 + null.data.len(),
1485                }));
1486            }
1487            Encoder::List(rows) => match array.data_type() {
1488                DataType::List(_) => {
1489                    list::compute_lengths(tracker.materialized(), rows, as_list_array(array))
1490                }
1491                DataType::LargeList(_) => {
1492                    list::compute_lengths(tracker.materialized(), rows, as_large_list_array(array))
1493                }
1494                DataType::FixedSizeList(_, _) => compute_lengths_fixed_size_list(
1495                    &mut tracker,
1496                    rows,
1497                    as_fixed_size_list_array(array),
1498                ),
1499                _ => unreachable!(),
1500            },
1501            Encoder::RunEndEncoded(rows) => match array.data_type() {
1502                DataType::RunEndEncoded(r, _) => match r.data_type() {
1503                    DataType::Int16 => run::compute_lengths(
1504                        tracker.materialized(),
1505                        rows,
1506                        array.as_run::<Int16Type>(),
1507                    ),
1508                    DataType::Int32 => run::compute_lengths(
1509                        tracker.materialized(),
1510                        rows,
1511                        array.as_run::<Int32Type>(),
1512                    ),
1513                    DataType::Int64 => run::compute_lengths(
1514                        tracker.materialized(),
1515                        rows,
1516                        array.as_run::<Int64Type>(),
1517                    ),
1518                    _ => unreachable!("Unsupported run end index type: {r:?}"),
1519                },
1520                _ => unreachable!(),
1521            },
1522        }
1523    }
1524
1525    tracker
1526}
1527
1528/// Encodes a column to the provided [`Rows`] incrementing the offsets as it progresses
1529fn encode_column(
1530    data: &mut [u8],
1531    offsets: &mut [usize],
1532    column: &dyn Array,
1533    opts: SortOptions,
1534    encoder: &Encoder<'_>,
1535) {
1536    match encoder {
1537        Encoder::Stateless => {
1538            downcast_primitive_array! {
1539                column => {
1540                    if let Some(nulls) = column.nulls().filter(|n| n.null_count() > 0){
1541                        fixed::encode(data, offsets, column.values(), nulls, opts)
1542                    } else {
1543                        fixed::encode_not_null(data, offsets, column.values(), opts)
1544                    }
1545                }
1546                DataType::Null => {}
1547                DataType::Boolean => {
1548                    if let Some(nulls) = column.nulls().filter(|n| n.null_count() > 0){
1549                        fixed::encode_boolean(data, offsets, column.as_boolean().values(), nulls, opts)
1550                    } else {
1551                        fixed::encode_boolean_not_null(data, offsets, column.as_boolean().values(), opts)
1552                    }
1553                }
1554                DataType::Binary => {
1555                    variable::encode(data, offsets, as_generic_binary_array::<i32>(column).iter(), opts)
1556                }
1557                DataType::BinaryView => {
1558                    variable::encode(data, offsets, column.as_binary_view().iter(), opts)
1559                }
1560                DataType::LargeBinary => {
1561                    variable::encode(data, offsets, as_generic_binary_array::<i64>(column).iter(), opts)
1562                }
1563                DataType::Utf8 => variable::encode(
1564                    data, offsets,
1565                    column.as_string::<i32>().iter().map(|x| x.map(|x| x.as_bytes())),
1566                    opts,
1567                ),
1568                DataType::LargeUtf8 => variable::encode(
1569                    data, offsets,
1570                    column.as_string::<i64>()
1571                        .iter()
1572                        .map(|x| x.map(|x| x.as_bytes())),
1573                    opts,
1574                ),
1575                DataType::Utf8View => variable::encode(
1576                    data, offsets,
1577                    column.as_string_view().iter().map(|x| x.map(|x| x.as_bytes())),
1578                    opts,
1579                ),
1580                DataType::FixedSizeBinary(_) => {
1581                    let array = column.as_any().downcast_ref().unwrap();
1582                    fixed::encode_fixed_size_binary(data, offsets, array, opts)
1583                }
1584                _ => unimplemented!("unsupported data type: {}", column.data_type()),
1585            }
1586        }
1587        Encoder::Dictionary(values, nulls) => {
1588            downcast_dictionary_array! {
1589                column => encode_dictionary_values(data, offsets, column, values, nulls),
1590                _ => unreachable!()
1591            }
1592        }
1593        Encoder::Struct(rows, null) => {
1594            let array = as_struct_array(column);
1595            let null_sentinel = null_sentinel(opts);
1596            offsets
1597                .iter_mut()
1598                .skip(1)
1599                .enumerate()
1600                .for_each(|(idx, offset)| {
1601                    let (row, sentinel) = match array.is_valid(idx) {
1602                        true => (rows.row(idx), 0x01),
1603                        false => (*null, null_sentinel),
1604                    };
1605                    let end_offset = *offset + 1 + row.as_ref().len();
1606                    data[*offset] = sentinel;
1607                    data[*offset + 1..end_offset].copy_from_slice(row.as_ref());
1608                    *offset = end_offset;
1609                })
1610        }
1611        Encoder::List(rows) => match column.data_type() {
1612            DataType::List(_) => list::encode(data, offsets, rows, opts, as_list_array(column)),
1613            DataType::LargeList(_) => {
1614                list::encode(data, offsets, rows, opts, as_large_list_array(column))
1615            }
1616            DataType::FixedSizeList(_, _) => {
1617                encode_fixed_size_list(data, offsets, rows, opts, as_fixed_size_list_array(column))
1618            }
1619            _ => unreachable!(),
1620        },
1621        Encoder::RunEndEncoded(rows) => match column.data_type() {
1622            DataType::RunEndEncoded(r, _) => match r.data_type() {
1623                DataType::Int16 => {
1624                    run::encode(data, offsets, rows, opts, column.as_run::<Int16Type>())
1625                }
1626                DataType::Int32 => {
1627                    run::encode(data, offsets, rows, opts, column.as_run::<Int32Type>())
1628                }
1629                DataType::Int64 => {
1630                    run::encode(data, offsets, rows, opts, column.as_run::<Int64Type>())
1631                }
1632                _ => unreachable!("Unsupported run end index type: {r:?}"),
1633            },
1634            _ => unreachable!(),
1635        },
1636    }
1637}
1638
1639/// Encode dictionary values not preserving the dictionary encoding
1640pub fn encode_dictionary_values<K: ArrowDictionaryKeyType>(
1641    data: &mut [u8],
1642    offsets: &mut [usize],
1643    column: &DictionaryArray<K>,
1644    values: &Rows,
1645    null: &Row<'_>,
1646) {
1647    for (offset, k) in offsets.iter_mut().skip(1).zip(column.keys()) {
1648        let row = match k {
1649            Some(k) => values.row(k.as_usize()).data,
1650            None => null.data,
1651        };
1652        let end_offset = *offset + row.len();
1653        data[*offset..end_offset].copy_from_slice(row);
1654        *offset = end_offset;
1655    }
1656}
1657
1658macro_rules! decode_primitive_helper {
1659    ($t:ty, $rows:ident, $data_type:ident, $options:ident) => {
1660        Arc::new(decode_primitive::<$t>($rows, $data_type, $options))
1661    };
1662}
1663
1664/// Decodes a the provided `field` from `rows`
1665///
1666/// # Safety
1667///
1668/// Rows must contain valid data for the provided field
1669unsafe fn decode_column(
1670    field: &SortField,
1671    rows: &mut [&[u8]],
1672    codec: &Codec,
1673    validate_utf8: bool,
1674) -> Result<ArrayRef, ArrowError> {
1675    let options = field.options;
1676
1677    let array: ArrayRef = match codec {
1678        Codec::Stateless => {
1679            let data_type = field.data_type.clone();
1680            downcast_primitive! {
1681                data_type => (decode_primitive_helper, rows, data_type, options),
1682                DataType::Null => Arc::new(NullArray::new(rows.len())),
1683                DataType::Boolean => Arc::new(decode_bool(rows, options)),
1684                DataType::Binary => Arc::new(decode_binary::<i32>(rows, options)),
1685                DataType::LargeBinary => Arc::new(decode_binary::<i64>(rows, options)),
1686                DataType::BinaryView => Arc::new(decode_binary_view(rows, options)),
1687                DataType::FixedSizeBinary(size) => Arc::new(decode_fixed_size_binary(rows, size, options)),
1688                DataType::Utf8 => Arc::new(unsafe{ decode_string::<i32>(rows, options, validate_utf8) }),
1689                DataType::LargeUtf8 => Arc::new(unsafe { decode_string::<i64>(rows, options, validate_utf8) }),
1690                DataType::Utf8View => Arc::new(unsafe { decode_string_view(rows, options, validate_utf8) }),
1691                _ => return Err(ArrowError::NotYetImplemented(format!("unsupported data type: {data_type}" )))
1692            }
1693        }
1694        Codec::Dictionary(converter, _) => {
1695            let cols = unsafe { converter.convert_raw(rows, validate_utf8) }?;
1696            cols.into_iter().next().unwrap()
1697        }
1698        Codec::Struct(converter, _) => {
1699            let (null_count, nulls) = fixed::decode_nulls(rows);
1700            rows.iter_mut().for_each(|row| *row = &row[1..]);
1701            let children = unsafe { converter.convert_raw(rows, validate_utf8) }?;
1702
1703            let child_data: Vec<ArrayData> = children.iter().map(|c| c.to_data()).collect();
1704            // Since RowConverter flattens certain data types (i.e. Dictionary),
1705            // we need to use updated data type instead of original field
1706            let corrected_fields: Vec<Field> = match &field.data_type {
1707                DataType::Struct(struct_fields) => struct_fields
1708                    .iter()
1709                    .zip(child_data.iter())
1710                    .map(|(orig_field, child_array)| {
1711                        orig_field
1712                            .as_ref()
1713                            .clone()
1714                            .with_data_type(child_array.data_type().clone())
1715                    })
1716                    .collect(),
1717                _ => unreachable!("Only Struct types should be corrected here"),
1718            };
1719            let corrected_struct_type = DataType::Struct(corrected_fields.into());
1720            let builder = ArrayDataBuilder::new(corrected_struct_type)
1721                .len(rows.len())
1722                .null_count(null_count)
1723                .null_bit_buffer(Some(nulls))
1724                .child_data(child_data);
1725
1726            Arc::new(StructArray::from(unsafe { builder.build_unchecked() }))
1727        }
1728        Codec::List(converter) => match &field.data_type {
1729            DataType::List(_) => {
1730                Arc::new(unsafe { list::decode::<i32>(converter, rows, field, validate_utf8) }?)
1731            }
1732            DataType::LargeList(_) => {
1733                Arc::new(unsafe { list::decode::<i64>(converter, rows, field, validate_utf8) }?)
1734            }
1735            DataType::FixedSizeList(_, value_length) => Arc::new(unsafe {
1736                list::decode_fixed_size_list(
1737                    converter,
1738                    rows,
1739                    field,
1740                    validate_utf8,
1741                    value_length.as_usize(),
1742                )
1743            }?),
1744            _ => unreachable!(),
1745        },
1746        Codec::RunEndEncoded(converter) => match &field.data_type {
1747            DataType::RunEndEncoded(run_ends, _) => match run_ends.data_type() {
1748                DataType::Int16 => Arc::new(unsafe {
1749                    run::decode::<Int16Type>(converter, rows, field, validate_utf8)
1750                }?),
1751                DataType::Int32 => Arc::new(unsafe {
1752                    run::decode::<Int32Type>(converter, rows, field, validate_utf8)
1753                }?),
1754                DataType::Int64 => Arc::new(unsafe {
1755                    run::decode::<Int64Type>(converter, rows, field, validate_utf8)
1756                }?),
1757                _ => unreachable!(),
1758            },
1759            _ => unreachable!(),
1760        },
1761    };
1762    Ok(array)
1763}
1764
1765#[cfg(test)]
1766mod tests {
1767    use rand::distr::uniform::SampleUniform;
1768    use rand::distr::{Distribution, StandardUniform};
1769    use rand::{Rng, rng};
1770
1771    use arrow_array::builder::*;
1772    use arrow_array::types::*;
1773    use arrow_array::*;
1774    use arrow_buffer::{Buffer, OffsetBuffer};
1775    use arrow_buffer::{NullBuffer, i256};
1776    use arrow_cast::display::{ArrayFormatter, FormatOptions};
1777    use arrow_ord::sort::{LexicographicalComparator, SortColumn};
1778
1779    use super::*;
1780
1781    #[test]
1782    fn test_fixed_width() {
1783        let cols = [
1784            Arc::new(Int16Array::from_iter([
1785                Some(1),
1786                Some(2),
1787                None,
1788                Some(-5),
1789                Some(2),
1790                Some(2),
1791                Some(0),
1792            ])) as ArrayRef,
1793            Arc::new(Float32Array::from_iter([
1794                Some(1.3),
1795                Some(2.5),
1796                None,
1797                Some(4.),
1798                Some(0.1),
1799                Some(-4.),
1800                Some(-0.),
1801            ])) as ArrayRef,
1802        ];
1803
1804        let converter = RowConverter::new(vec![
1805            SortField::new(DataType::Int16),
1806            SortField::new(DataType::Float32),
1807        ])
1808        .unwrap();
1809        let rows = converter.convert_columns(&cols).unwrap();
1810
1811        assert_eq!(rows.offsets, &[0, 8, 16, 24, 32, 40, 48, 56]);
1812        assert_eq!(
1813            rows.buffer,
1814            &[
1815                1, 128, 1, //
1816                1, 191, 166, 102, 102, //
1817                1, 128, 2, //
1818                1, 192, 32, 0, 0, //
1819                0, 0, 0, //
1820                0, 0, 0, 0, 0, //
1821                1, 127, 251, //
1822                1, 192, 128, 0, 0, //
1823                1, 128, 2, //
1824                1, 189, 204, 204, 205, //
1825                1, 128, 2, //
1826                1, 63, 127, 255, 255, //
1827                1, 128, 0, //
1828                1, 127, 255, 255, 255 //
1829            ]
1830        );
1831
1832        assert!(rows.row(3) < rows.row(6));
1833        assert!(rows.row(0) < rows.row(1));
1834        assert!(rows.row(3) < rows.row(0));
1835        assert!(rows.row(4) < rows.row(1));
1836        assert!(rows.row(5) < rows.row(4));
1837
1838        let back = converter.convert_rows(&rows).unwrap();
1839        for (expected, actual) in cols.iter().zip(&back) {
1840            assert_eq!(expected, actual);
1841        }
1842    }
1843
1844    #[test]
1845    fn test_decimal32() {
1846        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal32(
1847            DECIMAL32_MAX_PRECISION,
1848            7,
1849        ))])
1850        .unwrap();
1851        let col = Arc::new(
1852            Decimal32Array::from_iter([
1853                None,
1854                Some(i32::MIN),
1855                Some(-13),
1856                Some(46_i32),
1857                Some(5456_i32),
1858                Some(i32::MAX),
1859            ])
1860            .with_precision_and_scale(9, 7)
1861            .unwrap(),
1862        ) as ArrayRef;
1863
1864        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
1865        for i in 0..rows.num_rows() - 1 {
1866            assert!(rows.row(i) < rows.row(i + 1));
1867        }
1868
1869        let back = converter.convert_rows(&rows).unwrap();
1870        assert_eq!(back.len(), 1);
1871        assert_eq!(col.as_ref(), back[0].as_ref())
1872    }
1873
1874    #[test]
1875    fn test_decimal64() {
1876        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal64(
1877            DECIMAL64_MAX_PRECISION,
1878            7,
1879        ))])
1880        .unwrap();
1881        let col = Arc::new(
1882            Decimal64Array::from_iter([
1883                None,
1884                Some(i64::MIN),
1885                Some(-13),
1886                Some(46_i64),
1887                Some(5456_i64),
1888                Some(i64::MAX),
1889            ])
1890            .with_precision_and_scale(18, 7)
1891            .unwrap(),
1892        ) as ArrayRef;
1893
1894        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
1895        for i in 0..rows.num_rows() - 1 {
1896            assert!(rows.row(i) < rows.row(i + 1));
1897        }
1898
1899        let back = converter.convert_rows(&rows).unwrap();
1900        assert_eq!(back.len(), 1);
1901        assert_eq!(col.as_ref(), back[0].as_ref())
1902    }
1903
1904    #[test]
1905    fn test_decimal128() {
1906        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal128(
1907            DECIMAL128_MAX_PRECISION,
1908            7,
1909        ))])
1910        .unwrap();
1911        let col = Arc::new(
1912            Decimal128Array::from_iter([
1913                None,
1914                Some(i128::MIN),
1915                Some(-13),
1916                Some(46_i128),
1917                Some(5456_i128),
1918                Some(i128::MAX),
1919            ])
1920            .with_precision_and_scale(38, 7)
1921            .unwrap(),
1922        ) as ArrayRef;
1923
1924        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
1925        for i in 0..rows.num_rows() - 1 {
1926            assert!(rows.row(i) < rows.row(i + 1));
1927        }
1928
1929        let back = converter.convert_rows(&rows).unwrap();
1930        assert_eq!(back.len(), 1);
1931        assert_eq!(col.as_ref(), back[0].as_ref())
1932    }
1933
1934    #[test]
1935    fn test_decimal256() {
1936        let converter = RowConverter::new(vec![SortField::new(DataType::Decimal256(
1937            DECIMAL256_MAX_PRECISION,
1938            7,
1939        ))])
1940        .unwrap();
1941        let col = Arc::new(
1942            Decimal256Array::from_iter([
1943                None,
1944                Some(i256::MIN),
1945                Some(i256::from_parts(0, -1)),
1946                Some(i256::from_parts(u128::MAX, -1)),
1947                Some(i256::from_parts(u128::MAX, 0)),
1948                Some(i256::from_parts(0, 46_i128)),
1949                Some(i256::from_parts(5, 46_i128)),
1950                Some(i256::MAX),
1951            ])
1952            .with_precision_and_scale(DECIMAL256_MAX_PRECISION, 7)
1953            .unwrap(),
1954        ) as ArrayRef;
1955
1956        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
1957        for i in 0..rows.num_rows() - 1 {
1958            assert!(rows.row(i) < rows.row(i + 1));
1959        }
1960
1961        let back = converter.convert_rows(&rows).unwrap();
1962        assert_eq!(back.len(), 1);
1963        assert_eq!(col.as_ref(), back[0].as_ref())
1964    }
1965
1966    #[test]
1967    fn test_bool() {
1968        let converter = RowConverter::new(vec![SortField::new(DataType::Boolean)]).unwrap();
1969
1970        let col = Arc::new(BooleanArray::from_iter([None, Some(false), Some(true)])) as ArrayRef;
1971
1972        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
1973        assert!(rows.row(2) > rows.row(1));
1974        assert!(rows.row(2) > rows.row(0));
1975        assert!(rows.row(1) > rows.row(0));
1976
1977        let cols = converter.convert_rows(&rows).unwrap();
1978        assert_eq!(&cols[0], &col);
1979
1980        let converter = RowConverter::new(vec![SortField::new_with_options(
1981            DataType::Boolean,
1982            SortOptions::default().desc().with_nulls_first(false),
1983        )])
1984        .unwrap();
1985
1986        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
1987        assert!(rows.row(2) < rows.row(1));
1988        assert!(rows.row(2) < rows.row(0));
1989        assert!(rows.row(1) < rows.row(0));
1990        let cols = converter.convert_rows(&rows).unwrap();
1991        assert_eq!(&cols[0], &col);
1992    }
1993
1994    #[test]
1995    fn test_timezone() {
1996        let a =
1997            TimestampNanosecondArray::from(vec![1, 2, 3, 4, 5]).with_timezone("+01:00".to_string());
1998        let d = a.data_type().clone();
1999
2000        let converter = RowConverter::new(vec![SortField::new(a.data_type().clone())]).unwrap();
2001        let rows = converter.convert_columns(&[Arc::new(a) as _]).unwrap();
2002        let back = converter.convert_rows(&rows).unwrap();
2003        assert_eq!(back.len(), 1);
2004        assert_eq!(back[0].data_type(), &d);
2005
2006        // Test dictionary
2007        let mut a = PrimitiveDictionaryBuilder::<Int32Type, TimestampNanosecondType>::new();
2008        a.append(34).unwrap();
2009        a.append_null();
2010        a.append(345).unwrap();
2011
2012        // Construct dictionary with a timezone
2013        let dict = a.finish();
2014        let values = TimestampNanosecondArray::from(dict.values().to_data());
2015        let dict_with_tz = dict.with_values(Arc::new(values.with_timezone("+02:00")));
2016        let v = DataType::Timestamp(TimeUnit::Nanosecond, Some("+02:00".into()));
2017        let d = DataType::Dictionary(Box::new(DataType::Int32), Box::new(v.clone()));
2018
2019        assert_eq!(dict_with_tz.data_type(), &d);
2020        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
2021        let rows = converter
2022            .convert_columns(&[Arc::new(dict_with_tz) as _])
2023            .unwrap();
2024        let back = converter.convert_rows(&rows).unwrap();
2025        assert_eq!(back.len(), 1);
2026        assert_eq!(back[0].data_type(), &v);
2027    }
2028
2029    #[test]
2030    fn test_null_encoding() {
2031        let col = Arc::new(NullArray::new(10));
2032        let converter = RowConverter::new(vec![SortField::new(DataType::Null)]).unwrap();
2033        let rows = converter.convert_columns(&[col]).unwrap();
2034        assert_eq!(rows.num_rows(), 10);
2035        assert_eq!(rows.row(1).data.len(), 0);
2036    }
2037
2038    #[test]
2039    fn test_variable_width() {
2040        let col = Arc::new(StringArray::from_iter([
2041            Some("hello"),
2042            Some("he"),
2043            None,
2044            Some("foo"),
2045            Some(""),
2046        ])) as ArrayRef;
2047
2048        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2049        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2050
2051        assert!(rows.row(1) < rows.row(0));
2052        assert!(rows.row(2) < rows.row(4));
2053        assert!(rows.row(3) < rows.row(0));
2054        assert!(rows.row(3) < rows.row(1));
2055
2056        let cols = converter.convert_rows(&rows).unwrap();
2057        assert_eq!(&cols[0], &col);
2058
2059        let col = Arc::new(BinaryArray::from_iter([
2060            None,
2061            Some(vec![0_u8; 0]),
2062            Some(vec![0_u8; 6]),
2063            Some(vec![0_u8; variable::MINI_BLOCK_SIZE]),
2064            Some(vec![0_u8; variable::MINI_BLOCK_SIZE + 1]),
2065            Some(vec![0_u8; variable::BLOCK_SIZE]),
2066            Some(vec![0_u8; variable::BLOCK_SIZE + 1]),
2067            Some(vec![1_u8; 6]),
2068            Some(vec![1_u8; variable::MINI_BLOCK_SIZE]),
2069            Some(vec![1_u8; variable::MINI_BLOCK_SIZE + 1]),
2070            Some(vec![1_u8; variable::BLOCK_SIZE]),
2071            Some(vec![1_u8; variable::BLOCK_SIZE + 1]),
2072            Some(vec![0xFF_u8; 6]),
2073            Some(vec![0xFF_u8; variable::MINI_BLOCK_SIZE]),
2074            Some(vec![0xFF_u8; variable::MINI_BLOCK_SIZE + 1]),
2075            Some(vec![0xFF_u8; variable::BLOCK_SIZE]),
2076            Some(vec![0xFF_u8; variable::BLOCK_SIZE + 1]),
2077        ])) as ArrayRef;
2078
2079        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
2080        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2081
2082        for i in 0..rows.num_rows() {
2083            for j in i + 1..rows.num_rows() {
2084                assert!(
2085                    rows.row(i) < rows.row(j),
2086                    "{} < {} - {:?} < {:?}",
2087                    i,
2088                    j,
2089                    rows.row(i),
2090                    rows.row(j)
2091                );
2092            }
2093        }
2094
2095        let cols = converter.convert_rows(&rows).unwrap();
2096        assert_eq!(&cols[0], &col);
2097
2098        let converter = RowConverter::new(vec![SortField::new_with_options(
2099            DataType::Binary,
2100            SortOptions::default().desc().with_nulls_first(false),
2101        )])
2102        .unwrap();
2103        let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
2104
2105        for i in 0..rows.num_rows() {
2106            for j in i + 1..rows.num_rows() {
2107                assert!(
2108                    rows.row(i) > rows.row(j),
2109                    "{} > {} - {:?} > {:?}",
2110                    i,
2111                    j,
2112                    rows.row(i),
2113                    rows.row(j)
2114                );
2115            }
2116        }
2117
2118        let cols = converter.convert_rows(&rows).unwrap();
2119        assert_eq!(&cols[0], &col);
2120    }
2121
2122    /// If `exact` is false performs a logical comparison between a and dictionary-encoded b
2123    fn dictionary_eq(a: &dyn Array, b: &dyn Array) {
2124        match b.data_type() {
2125            DataType::Dictionary(_, v) => {
2126                assert_eq!(a.data_type(), v.as_ref());
2127                let b = arrow_cast::cast(b, v).unwrap();
2128                assert_eq!(a, b.as_ref())
2129            }
2130            _ => assert_eq!(a, b),
2131        }
2132    }
2133
2134    #[test]
2135    fn test_string_dictionary() {
2136        let a = Arc::new(DictionaryArray::<Int32Type>::from_iter([
2137            Some("foo"),
2138            Some("hello"),
2139            Some("he"),
2140            None,
2141            Some("hello"),
2142            Some(""),
2143            Some("hello"),
2144            Some("hello"),
2145        ])) as ArrayRef;
2146
2147        let field = SortField::new(a.data_type().clone());
2148        let converter = RowConverter::new(vec![field]).unwrap();
2149        let rows_a = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2150
2151        assert!(rows_a.row(3) < rows_a.row(5));
2152        assert!(rows_a.row(2) < rows_a.row(1));
2153        assert!(rows_a.row(0) < rows_a.row(1));
2154        assert!(rows_a.row(3) < rows_a.row(0));
2155
2156        assert_eq!(rows_a.row(1), rows_a.row(4));
2157        assert_eq!(rows_a.row(1), rows_a.row(6));
2158        assert_eq!(rows_a.row(1), rows_a.row(7));
2159
2160        let cols = converter.convert_rows(&rows_a).unwrap();
2161        dictionary_eq(&cols[0], &a);
2162
2163        let b = Arc::new(DictionaryArray::<Int32Type>::from_iter([
2164            Some("hello"),
2165            None,
2166            Some("cupcakes"),
2167        ])) as ArrayRef;
2168
2169        let rows_b = converter.convert_columns(&[Arc::clone(&b)]).unwrap();
2170        assert_eq!(rows_a.row(1), rows_b.row(0));
2171        assert_eq!(rows_a.row(3), rows_b.row(1));
2172        assert!(rows_b.row(2) < rows_a.row(0));
2173
2174        let cols = converter.convert_rows(&rows_b).unwrap();
2175        dictionary_eq(&cols[0], &b);
2176
2177        let converter = RowConverter::new(vec![SortField::new_with_options(
2178            a.data_type().clone(),
2179            SortOptions::default().desc().with_nulls_first(false),
2180        )])
2181        .unwrap();
2182
2183        let rows_c = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2184        assert!(rows_c.row(3) > rows_c.row(5));
2185        assert!(rows_c.row(2) > rows_c.row(1));
2186        assert!(rows_c.row(0) > rows_c.row(1));
2187        assert!(rows_c.row(3) > rows_c.row(0));
2188
2189        let cols = converter.convert_rows(&rows_c).unwrap();
2190        dictionary_eq(&cols[0], &a);
2191
2192        let converter = RowConverter::new(vec![SortField::new_with_options(
2193            a.data_type().clone(),
2194            SortOptions::default().desc().with_nulls_first(true),
2195        )])
2196        .unwrap();
2197
2198        let rows_c = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2199        assert!(rows_c.row(3) < rows_c.row(5));
2200        assert!(rows_c.row(2) > rows_c.row(1));
2201        assert!(rows_c.row(0) > rows_c.row(1));
2202        assert!(rows_c.row(3) < rows_c.row(0));
2203
2204        let cols = converter.convert_rows(&rows_c).unwrap();
2205        dictionary_eq(&cols[0], &a);
2206    }
2207
2208    #[test]
2209    fn test_struct() {
2210        // Test basic
2211        let a = Arc::new(Int32Array::from(vec![1, 1, 2, 2])) as ArrayRef;
2212        let a_f = Arc::new(Field::new("int", DataType::Int32, false));
2213        let u = Arc::new(StringArray::from(vec!["a", "b", "c", "d"])) as ArrayRef;
2214        let u_f = Arc::new(Field::new("s", DataType::Utf8, false));
2215        let s1 = Arc::new(StructArray::from(vec![(a_f, a), (u_f, u)])) as ArrayRef;
2216
2217        let sort_fields = vec![SortField::new(s1.data_type().clone())];
2218        let converter = RowConverter::new(sort_fields).unwrap();
2219        let r1 = converter.convert_columns(&[Arc::clone(&s1)]).unwrap();
2220
2221        for (a, b) in r1.iter().zip(r1.iter().skip(1)) {
2222            assert!(a < b);
2223        }
2224
2225        let back = converter.convert_rows(&r1).unwrap();
2226        assert_eq!(back.len(), 1);
2227        assert_eq!(&back[0], &s1);
2228
2229        // Test struct nullability
2230        let data = s1
2231            .to_data()
2232            .into_builder()
2233            .null_bit_buffer(Some(Buffer::from_slice_ref([0b00001010])))
2234            .null_count(2)
2235            .build()
2236            .unwrap();
2237
2238        let s2 = Arc::new(StructArray::from(data)) as ArrayRef;
2239        let r2 = converter.convert_columns(&[Arc::clone(&s2)]).unwrap();
2240        assert_eq!(r2.row(0), r2.row(2)); // Nulls equal
2241        assert!(r2.row(0) < r2.row(1)); // Nulls first
2242        assert_ne!(r1.row(0), r2.row(0)); // Value does not equal null
2243        assert_eq!(r1.row(1), r2.row(1)); // Values equal
2244
2245        let back = converter.convert_rows(&r2).unwrap();
2246        assert_eq!(back.len(), 1);
2247        assert_eq!(&back[0], &s2);
2248
2249        back[0].to_data().validate_full().unwrap();
2250    }
2251
2252    #[test]
2253    fn test_dictionary_in_struct() {
2254        let builder = StringDictionaryBuilder::<Int32Type>::new();
2255        let mut struct_builder = StructBuilder::new(
2256            vec![Field::new_dictionary(
2257                "foo",
2258                DataType::Int32,
2259                DataType::Utf8,
2260                true,
2261            )],
2262            vec![Box::new(builder)],
2263        );
2264
2265        let dict_builder = struct_builder
2266            .field_builder::<StringDictionaryBuilder<Int32Type>>(0)
2267            .unwrap();
2268
2269        // Flattened: ["a", null, "a", "b"]
2270        dict_builder.append_value("a");
2271        dict_builder.append_null();
2272        dict_builder.append_value("a");
2273        dict_builder.append_value("b");
2274
2275        for _ in 0..4 {
2276            struct_builder.append(true);
2277        }
2278
2279        let s = Arc::new(struct_builder.finish()) as ArrayRef;
2280        let sort_fields = vec![SortField::new(s.data_type().clone())];
2281        let converter = RowConverter::new(sort_fields).unwrap();
2282        let r = converter.convert_columns(&[Arc::clone(&s)]).unwrap();
2283
2284        let back = converter.convert_rows(&r).unwrap();
2285        let [s2] = back.try_into().unwrap();
2286
2287        // RowConverter flattens Dictionary
2288        // s.ty = Struct("foo": Dictionary(Int32, Utf8)), s2.ty = Struct("foo": Utf8)
2289        assert_ne!(&s.data_type(), &s2.data_type());
2290        s2.to_data().validate_full().unwrap();
2291
2292        // Check if the logical data remains the same
2293        // Keys: [0, null, 0, 1]
2294        // Values: ["a", "b"]
2295        let s1_struct = s.as_struct();
2296        let s1_0 = s1_struct.column(0);
2297        let s1_idx_0 = s1_0.as_dictionary::<Int32Type>();
2298        let keys = s1_idx_0.keys();
2299        let values = s1_idx_0.values().as_string::<i32>();
2300        // Flattened: ["a", null, "a", "b"]
2301        let s2_struct = s2.as_struct();
2302        let s2_0 = s2_struct.column(0);
2303        let s2_idx_0 = s2_0.as_string::<i32>();
2304
2305        for i in 0..keys.len() {
2306            if keys.is_null(i) {
2307                assert!(s2_idx_0.is_null(i));
2308            } else {
2309                let dict_index = keys.value(i) as usize;
2310                assert_eq!(values.value(dict_index), s2_idx_0.value(i));
2311            }
2312        }
2313    }
2314
2315    #[test]
2316    fn test_dictionary_in_struct_empty() {
2317        let ty = DataType::Struct(
2318            vec![Field::new_dictionary(
2319                "foo",
2320                DataType::Int32,
2321                DataType::Int32,
2322                false,
2323            )]
2324            .into(),
2325        );
2326        let s = arrow_array::new_empty_array(&ty);
2327
2328        let sort_fields = vec![SortField::new(s.data_type().clone())];
2329        let converter = RowConverter::new(sort_fields).unwrap();
2330        let r = converter.convert_columns(&[Arc::clone(&s)]).unwrap();
2331
2332        let back = converter.convert_rows(&r).unwrap();
2333        let [s2] = back.try_into().unwrap();
2334
2335        // RowConverter flattens Dictionary
2336        // s.ty = Struct("foo": Dictionary(Int32, Int32)), s2.ty = Struct("foo": Int32)
2337        assert_ne!(&s.data_type(), &s2.data_type());
2338        s2.to_data().validate_full().unwrap();
2339        assert_eq!(s.len(), 0);
2340        assert_eq!(s2.len(), 0);
2341    }
2342
2343    #[test]
2344    fn test_list_of_string_dictionary() {
2345        let mut builder = ListBuilder::<StringDictionaryBuilder<Int32Type>>::default();
2346        // List[0] = ["a", "b", "zero", null, "c", "b", "d" (dict)]
2347        builder.values().append("a").unwrap();
2348        builder.values().append("b").unwrap();
2349        builder.values().append("zero").unwrap();
2350        builder.values().append_null();
2351        builder.values().append("c").unwrap();
2352        builder.values().append("b").unwrap();
2353        builder.values().append("d").unwrap();
2354        builder.append(true);
2355        // List[1] = null
2356        builder.append(false);
2357        // List[2] = ["e", "zero", "a" (dict)]
2358        builder.values().append("e").unwrap();
2359        builder.values().append("zero").unwrap();
2360        builder.values().append("a").unwrap();
2361        builder.append(true);
2362
2363        let a = Arc::new(builder.finish()) as ArrayRef;
2364        let data_type = a.data_type().clone();
2365
2366        let field = SortField::new(data_type.clone());
2367        let converter = RowConverter::new(vec![field]).unwrap();
2368        let rows = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
2369
2370        let back = converter.convert_rows(&rows).unwrap();
2371        assert_eq!(back.len(), 1);
2372        let [a2] = back.try_into().unwrap();
2373
2374        // RowConverter flattens Dictionary
2375        // a.ty: List(Dictionary(Int32, Utf8)), a2.ty: List(Utf8)
2376        assert_ne!(&a.data_type(), &a2.data_type());
2377
2378        a2.to_data().validate_full().unwrap();
2379
2380        let a2_list = a2.as_list::<i32>();
2381        let a1_list = a.as_list::<i32>();
2382
2383        // Check if the logical data remains the same
2384        // List[0] = ["a", "b", "zero", null, "c", "b", "d" (dict)]
2385        let a1_0 = a1_list.value(0);
2386        let a1_idx_0 = a1_0.as_dictionary::<Int32Type>();
2387        let keys = a1_idx_0.keys();
2388        let values = a1_idx_0.values().as_string::<i32>();
2389        let a2_0 = a2_list.value(0);
2390        let a2_idx_0 = a2_0.as_string::<i32>();
2391
2392        for i in 0..keys.len() {
2393            if keys.is_null(i) {
2394                assert!(a2_idx_0.is_null(i));
2395            } else {
2396                let dict_index = keys.value(i) as usize;
2397                assert_eq!(values.value(dict_index), a2_idx_0.value(i));
2398            }
2399        }
2400
2401        // List[1] = null
2402        assert!(a1_list.is_null(1));
2403        assert!(a2_list.is_null(1));
2404
2405        // List[2] = ["e", "zero", "a" (dict)]
2406        let a1_2 = a1_list.value(2);
2407        let a1_idx_2 = a1_2.as_dictionary::<Int32Type>();
2408        let keys = a1_idx_2.keys();
2409        let values = a1_idx_2.values().as_string::<i32>();
2410        let a2_2 = a2_list.value(2);
2411        let a2_idx_2 = a2_2.as_string::<i32>();
2412
2413        for i in 0..keys.len() {
2414            if keys.is_null(i) {
2415                assert!(a2_idx_2.is_null(i));
2416            } else {
2417                let dict_index = keys.value(i) as usize;
2418                assert_eq!(values.value(dict_index), a2_idx_2.value(i));
2419            }
2420        }
2421    }
2422
2423    #[test]
2424    fn test_primitive_dictionary() {
2425        let mut builder = PrimitiveDictionaryBuilder::<Int32Type, Int32Type>::new();
2426        builder.append(2).unwrap();
2427        builder.append(3).unwrap();
2428        builder.append(0).unwrap();
2429        builder.append_null();
2430        builder.append(5).unwrap();
2431        builder.append(3).unwrap();
2432        builder.append(-1).unwrap();
2433
2434        let a = builder.finish();
2435        let data_type = a.data_type().clone();
2436        let columns = [Arc::new(a) as ArrayRef];
2437
2438        let field = SortField::new(data_type.clone());
2439        let converter = RowConverter::new(vec![field]).unwrap();
2440        let rows = converter.convert_columns(&columns).unwrap();
2441        assert!(rows.row(0) < rows.row(1));
2442        assert!(rows.row(2) < rows.row(0));
2443        assert!(rows.row(3) < rows.row(2));
2444        assert!(rows.row(6) < rows.row(2));
2445        assert!(rows.row(3) < rows.row(6));
2446
2447        let back = converter.convert_rows(&rows).unwrap();
2448        assert_eq!(back.len(), 1);
2449        back[0].to_data().validate_full().unwrap();
2450    }
2451
2452    #[test]
2453    fn test_dictionary_nulls() {
2454        let values = Int32Array::from_iter([Some(1), Some(-1), None, Some(4), None]).into_data();
2455        let keys =
2456            Int32Array::from_iter([Some(0), Some(0), Some(1), Some(2), Some(4), None]).into_data();
2457
2458        let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Int32));
2459        let data = keys
2460            .into_builder()
2461            .data_type(data_type.clone())
2462            .child_data(vec![values])
2463            .build()
2464            .unwrap();
2465
2466        let columns = [Arc::new(DictionaryArray::<Int32Type>::from(data)) as ArrayRef];
2467        let field = SortField::new(data_type.clone());
2468        let converter = RowConverter::new(vec![field]).unwrap();
2469        let rows = converter.convert_columns(&columns).unwrap();
2470
2471        assert_eq!(rows.row(0), rows.row(1));
2472        assert_eq!(rows.row(3), rows.row(4));
2473        assert_eq!(rows.row(4), rows.row(5));
2474        assert!(rows.row(3) < rows.row(0));
2475    }
2476
2477    #[test]
2478    #[should_panic(expected = "Encountered non UTF-8 data")]
2479    fn test_invalid_utf8() {
2480        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
2481        let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
2482        let rows = converter.convert_columns(&[array]).unwrap();
2483        let binary_row = rows.row(0);
2484
2485        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2486        let parser = converter.parser();
2487        let utf8_row = parser.parse(binary_row.as_ref());
2488
2489        converter.convert_rows(std::iter::once(utf8_row)).unwrap();
2490    }
2491
2492    #[test]
2493    #[should_panic(expected = "Encountered non UTF-8 data")]
2494    fn test_invalid_utf8_array() {
2495        let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
2496        let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
2497        let rows = converter.convert_columns(&[array]).unwrap();
2498        let binary_rows = rows.try_into_binary().expect("known-small rows");
2499
2500        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2501        let parsed = converter.from_binary(binary_rows);
2502
2503        converter.convert_rows(parsed.iter()).unwrap();
2504    }
2505
2506    #[test]
2507    #[should_panic(expected = "index out of bounds")]
2508    fn test_invalid_empty() {
2509        let binary_row: &[u8] = &[];
2510
2511        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2512        let parser = converter.parser();
2513        let utf8_row = parser.parse(binary_row.as_ref());
2514
2515        converter.convert_rows(std::iter::once(utf8_row)).unwrap();
2516    }
2517
2518    #[test]
2519    #[should_panic(expected = "index out of bounds")]
2520    fn test_invalid_empty_array() {
2521        let row: &[u8] = &[];
2522        let binary_rows = BinaryArray::from(vec![row]);
2523
2524        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2525        let parsed = converter.from_binary(binary_rows);
2526
2527        converter.convert_rows(parsed.iter()).unwrap();
2528    }
2529
2530    #[test]
2531    #[should_panic(expected = "index out of bounds")]
2532    fn test_invalid_truncated() {
2533        let binary_row: &[u8] = &[0x02];
2534
2535        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2536        let parser = converter.parser();
2537        let utf8_row = parser.parse(binary_row.as_ref());
2538
2539        converter.convert_rows(std::iter::once(utf8_row)).unwrap();
2540    }
2541
2542    #[test]
2543    #[should_panic(expected = "index out of bounds")]
2544    fn test_invalid_truncated_array() {
2545        let row: &[u8] = &[0x02];
2546        let binary_rows = BinaryArray::from(vec![row]);
2547
2548        let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
2549        let parsed = converter.from_binary(binary_rows);
2550
2551        converter.convert_rows(parsed.iter()).unwrap();
2552    }
2553
2554    #[test]
2555    #[should_panic(expected = "rows were not produced by this RowConverter")]
2556    fn test_different_converter() {
2557        let values = Arc::new(Int32Array::from_iter([Some(1), Some(-1)]));
2558        let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
2559        let rows = converter.convert_columns(&[values]).unwrap();
2560
2561        let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
2562        let _ = converter.convert_rows(&rows);
2563    }
2564
2565    fn test_single_list<O: OffsetSizeTrait>() {
2566        let mut builder = GenericListBuilder::<O, _>::new(Int32Builder::new());
2567        builder.values().append_value(32);
2568        builder.values().append_value(52);
2569        builder.values().append_value(32);
2570        builder.append(true);
2571        builder.values().append_value(32);
2572        builder.values().append_value(52);
2573        builder.values().append_value(12);
2574        builder.append(true);
2575        builder.values().append_value(32);
2576        builder.values().append_value(52);
2577        builder.append(true);
2578        builder.values().append_value(32); // MASKED
2579        builder.values().append_value(52); // MASKED
2580        builder.append(false);
2581        builder.values().append_value(32);
2582        builder.values().append_null();
2583        builder.append(true);
2584        builder.append(true);
2585        builder.values().append_value(17); // MASKED
2586        builder.values().append_null(); // MASKED
2587        builder.append(false);
2588
2589        let list = Arc::new(builder.finish()) as ArrayRef;
2590        let d = list.data_type().clone();
2591
2592        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
2593
2594        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2595        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
2596        assert!(rows.row(2) < rows.row(1)); // [32, 52] < [32, 52, 12]
2597        assert!(rows.row(3) < rows.row(2)); // null < [32, 52]
2598        assert!(rows.row(4) < rows.row(2)); // [32, null] < [32, 52]
2599        assert!(rows.row(5) < rows.row(2)); // [] < [32, 52]
2600        assert!(rows.row(3) < rows.row(5)); // null < []
2601        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2602
2603        let back = converter.convert_rows(&rows).unwrap();
2604        assert_eq!(back.len(), 1);
2605        back[0].to_data().validate_full().unwrap();
2606        assert_eq!(&back[0], &list);
2607
2608        let options = SortOptions::default().asc().with_nulls_first(false);
2609        let field = SortField::new_with_options(d.clone(), options);
2610        let converter = RowConverter::new(vec![field]).unwrap();
2611        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2612
2613        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
2614        assert!(rows.row(2) < rows.row(1)); // [32, 52] < [32, 52, 12]
2615        assert!(rows.row(3) > rows.row(2)); // null > [32, 52]
2616        assert!(rows.row(4) > rows.row(2)); // [32, null] > [32, 52]
2617        assert!(rows.row(5) < rows.row(2)); // [] < [32, 52]
2618        assert!(rows.row(3) > rows.row(5)); // null > []
2619        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2620
2621        let back = converter.convert_rows(&rows).unwrap();
2622        assert_eq!(back.len(), 1);
2623        back[0].to_data().validate_full().unwrap();
2624        assert_eq!(&back[0], &list);
2625
2626        let options = SortOptions::default().desc().with_nulls_first(false);
2627        let field = SortField::new_with_options(d.clone(), options);
2628        let converter = RowConverter::new(vec![field]).unwrap();
2629        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2630
2631        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
2632        assert!(rows.row(2) > rows.row(1)); // [32, 52] > [32, 52, 12]
2633        assert!(rows.row(3) > rows.row(2)); // null > [32, 52]
2634        assert!(rows.row(4) > rows.row(2)); // [32, null] > [32, 52]
2635        assert!(rows.row(5) > rows.row(2)); // [] > [32, 52]
2636        assert!(rows.row(3) > rows.row(5)); // null > []
2637        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2638
2639        let back = converter.convert_rows(&rows).unwrap();
2640        assert_eq!(back.len(), 1);
2641        back[0].to_data().validate_full().unwrap();
2642        assert_eq!(&back[0], &list);
2643
2644        let options = SortOptions::default().desc().with_nulls_first(true);
2645        let field = SortField::new_with_options(d, options);
2646        let converter = RowConverter::new(vec![field]).unwrap();
2647        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2648
2649        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
2650        assert!(rows.row(2) > rows.row(1)); // [32, 52] > [32, 52, 12]
2651        assert!(rows.row(3) < rows.row(2)); // null < [32, 52]
2652        assert!(rows.row(4) < rows.row(2)); // [32, null] < [32, 52]
2653        assert!(rows.row(5) > rows.row(2)); // [] > [32, 52]
2654        assert!(rows.row(3) < rows.row(5)); // null < []
2655        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2656
2657        let back = converter.convert_rows(&rows).unwrap();
2658        assert_eq!(back.len(), 1);
2659        back[0].to_data().validate_full().unwrap();
2660        assert_eq!(&back[0], &list);
2661
2662        let sliced_list = list.slice(1, 5);
2663        let rows_on_sliced_list = converter
2664            .convert_columns(&[Arc::clone(&sliced_list)])
2665            .unwrap();
2666
2667        assert!(rows_on_sliced_list.row(1) > rows_on_sliced_list.row(0)); // [32, 52] > [32, 52, 12]
2668        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(1)); // null < [32, 52]
2669        assert!(rows_on_sliced_list.row(3) < rows_on_sliced_list.row(1)); // [32, null] < [32, 52]
2670        assert!(rows_on_sliced_list.row(4) > rows_on_sliced_list.row(1)); // [] > [32, 52]
2671        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(4)); // null < []
2672
2673        let back = converter.convert_rows(&rows_on_sliced_list).unwrap();
2674        assert_eq!(back.len(), 1);
2675        back[0].to_data().validate_full().unwrap();
2676        assert_eq!(&back[0], &sliced_list);
2677    }
2678
2679    fn test_nested_list<O: OffsetSizeTrait>() {
2680        let mut builder =
2681            GenericListBuilder::<O, _>::new(GenericListBuilder::<O, _>::new(Int32Builder::new()));
2682
2683        builder.values().values().append_value(1);
2684        builder.values().values().append_value(2);
2685        builder.values().append(true);
2686        builder.values().values().append_value(1);
2687        builder.values().values().append_null();
2688        builder.values().append(true);
2689        builder.append(true);
2690
2691        builder.values().values().append_value(1);
2692        builder.values().values().append_null();
2693        builder.values().append(true);
2694        builder.values().values().append_value(1);
2695        builder.values().values().append_null();
2696        builder.values().append(true);
2697        builder.append(true);
2698
2699        builder.values().values().append_value(1);
2700        builder.values().values().append_null();
2701        builder.values().append(true);
2702        builder.values().append(false);
2703        builder.append(true);
2704        builder.append(false);
2705
2706        builder.values().values().append_value(1);
2707        builder.values().values().append_value(2);
2708        builder.values().append(true);
2709        builder.append(true);
2710
2711        let list = Arc::new(builder.finish()) as ArrayRef;
2712        let d = list.data_type().clone();
2713
2714        // [
2715        //   [[1, 2], [1, null]],
2716        //   [[1, null], [1, null]],
2717        //   [[1, null], null]
2718        //   null
2719        //   [[1, 2]]
2720        // ]
2721        let options = SortOptions::default().asc().with_nulls_first(true);
2722        let field = SortField::new_with_options(d.clone(), options);
2723        let converter = RowConverter::new(vec![field]).unwrap();
2724        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2725
2726        assert!(rows.row(0) > rows.row(1));
2727        assert!(rows.row(1) > rows.row(2));
2728        assert!(rows.row(2) > rows.row(3));
2729        assert!(rows.row(4) < rows.row(0));
2730        assert!(rows.row(4) > rows.row(1));
2731
2732        let back = converter.convert_rows(&rows).unwrap();
2733        assert_eq!(back.len(), 1);
2734        back[0].to_data().validate_full().unwrap();
2735        assert_eq!(&back[0], &list);
2736
2737        let options = SortOptions::default().desc().with_nulls_first(true);
2738        let field = SortField::new_with_options(d.clone(), options);
2739        let converter = RowConverter::new(vec![field]).unwrap();
2740        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2741
2742        assert!(rows.row(0) > rows.row(1));
2743        assert!(rows.row(1) > rows.row(2));
2744        assert!(rows.row(2) > rows.row(3));
2745        assert!(rows.row(4) > rows.row(0));
2746        assert!(rows.row(4) > rows.row(1));
2747
2748        let back = converter.convert_rows(&rows).unwrap();
2749        assert_eq!(back.len(), 1);
2750        back[0].to_data().validate_full().unwrap();
2751        assert_eq!(&back[0], &list);
2752
2753        let options = SortOptions::default().desc().with_nulls_first(false);
2754        let field = SortField::new_with_options(d, options);
2755        let converter = RowConverter::new(vec![field]).unwrap();
2756        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2757
2758        assert!(rows.row(0) < rows.row(1));
2759        assert!(rows.row(1) < rows.row(2));
2760        assert!(rows.row(2) < rows.row(3));
2761        assert!(rows.row(4) > rows.row(0));
2762        assert!(rows.row(4) < rows.row(1));
2763
2764        let back = converter.convert_rows(&rows).unwrap();
2765        assert_eq!(back.len(), 1);
2766        back[0].to_data().validate_full().unwrap();
2767        assert_eq!(&back[0], &list);
2768
2769        let sliced_list = list.slice(1, 3);
2770        let rows = converter
2771            .convert_columns(&[Arc::clone(&sliced_list)])
2772            .unwrap();
2773
2774        assert!(rows.row(0) < rows.row(1));
2775        assert!(rows.row(1) < rows.row(2));
2776
2777        let back = converter.convert_rows(&rows).unwrap();
2778        assert_eq!(back.len(), 1);
2779        back[0].to_data().validate_full().unwrap();
2780        assert_eq!(&back[0], &sliced_list);
2781    }
2782
2783    #[test]
2784    fn test_list() {
2785        test_single_list::<i32>();
2786        test_nested_list::<i32>();
2787    }
2788
2789    #[test]
2790    fn test_large_list() {
2791        test_single_list::<i64>();
2792        test_nested_list::<i64>();
2793    }
2794
2795    #[test]
2796    fn test_fixed_size_list() {
2797        let mut builder = FixedSizeListBuilder::new(Int32Builder::new(), 3);
2798        builder.values().append_value(32);
2799        builder.values().append_value(52);
2800        builder.values().append_value(32);
2801        builder.append(true);
2802        builder.values().append_value(32);
2803        builder.values().append_value(52);
2804        builder.values().append_value(12);
2805        builder.append(true);
2806        builder.values().append_value(32);
2807        builder.values().append_value(52);
2808        builder.values().append_null();
2809        builder.append(true);
2810        builder.values().append_value(32); // MASKED
2811        builder.values().append_value(52); // MASKED
2812        builder.values().append_value(13); // MASKED
2813        builder.append(false);
2814        builder.values().append_value(32);
2815        builder.values().append_null();
2816        builder.values().append_null();
2817        builder.append(true);
2818        builder.values().append_null();
2819        builder.values().append_null();
2820        builder.values().append_null();
2821        builder.append(true);
2822        builder.values().append_value(17); // MASKED
2823        builder.values().append_null(); // MASKED
2824        builder.values().append_value(77); // MASKED
2825        builder.append(false);
2826
2827        let list = Arc::new(builder.finish()) as ArrayRef;
2828        let d = list.data_type().clone();
2829
2830        // Default sorting (ascending, nulls first)
2831        let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
2832
2833        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2834        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
2835        assert!(rows.row(2) < rows.row(1)); // [32, 52, null] < [32, 52, 12]
2836        assert!(rows.row(3) < rows.row(2)); // null < [32, 52, null]
2837        assert!(rows.row(4) < rows.row(2)); // [32, null, null] < [32, 52, null]
2838        assert!(rows.row(5) < rows.row(2)); // [null, null, null] < [32, 52, null]
2839        assert!(rows.row(3) < rows.row(5)); // null < [null, null, null]
2840        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2841
2842        let back = converter.convert_rows(&rows).unwrap();
2843        assert_eq!(back.len(), 1);
2844        back[0].to_data().validate_full().unwrap();
2845        assert_eq!(&back[0], &list);
2846
2847        // Ascending, null last
2848        let options = SortOptions::default().asc().with_nulls_first(false);
2849        let field = SortField::new_with_options(d.clone(), options);
2850        let converter = RowConverter::new(vec![field]).unwrap();
2851        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2852        assert!(rows.row(0) > rows.row(1)); // [32, 52, 32] > [32, 52, 12]
2853        assert!(rows.row(2) > rows.row(1)); // [32, 52, null] > [32, 52, 12]
2854        assert!(rows.row(3) > rows.row(2)); // null > [32, 52, null]
2855        assert!(rows.row(4) > rows.row(2)); // [32, null, null] > [32, 52, null]
2856        assert!(rows.row(5) > rows.row(2)); // [null, null, null] > [32, 52, null]
2857        assert!(rows.row(3) > rows.row(5)); // null > [null, null, null]
2858        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2859
2860        let back = converter.convert_rows(&rows).unwrap();
2861        assert_eq!(back.len(), 1);
2862        back[0].to_data().validate_full().unwrap();
2863        assert_eq!(&back[0], &list);
2864
2865        // Descending, nulls last
2866        let options = SortOptions::default().desc().with_nulls_first(false);
2867        let field = SortField::new_with_options(d.clone(), options);
2868        let converter = RowConverter::new(vec![field]).unwrap();
2869        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2870        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
2871        assert!(rows.row(2) > rows.row(1)); // [32, 52, null] > [32, 52, 12]
2872        assert!(rows.row(3) > rows.row(2)); // null > [32, 52, null]
2873        assert!(rows.row(4) > rows.row(2)); // [32, null, null] > [32, 52, null]
2874        assert!(rows.row(5) > rows.row(2)); // [null, null, null] > [32, 52, null]
2875        assert!(rows.row(3) > rows.row(5)); // null > [null, null, null]
2876        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2877
2878        let back = converter.convert_rows(&rows).unwrap();
2879        assert_eq!(back.len(), 1);
2880        back[0].to_data().validate_full().unwrap();
2881        assert_eq!(&back[0], &list);
2882
2883        // Descending, nulls first
2884        let options = SortOptions::default().desc().with_nulls_first(true);
2885        let field = SortField::new_with_options(d, options);
2886        let converter = RowConverter::new(vec![field]).unwrap();
2887        let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
2888
2889        assert!(rows.row(0) < rows.row(1)); // [32, 52, 32] < [32, 52, 12]
2890        assert!(rows.row(2) < rows.row(1)); // [32, 52, null] > [32, 52, 12]
2891        assert!(rows.row(3) < rows.row(2)); // null < [32, 52, null]
2892        assert!(rows.row(4) < rows.row(2)); // [32, null, null] < [32, 52, null]
2893        assert!(rows.row(5) < rows.row(2)); // [null, null, null] > [32, 52, null]
2894        assert!(rows.row(3) < rows.row(5)); // null < [null, null, null]
2895        assert_eq!(rows.row(3), rows.row(6)); // null = null (different masked values)
2896
2897        let back = converter.convert_rows(&rows).unwrap();
2898        assert_eq!(back.len(), 1);
2899        back[0].to_data().validate_full().unwrap();
2900        assert_eq!(&back[0], &list);
2901
2902        let sliced_list = list.slice(1, 5);
2903        let rows_on_sliced_list = converter
2904            .convert_columns(&[Arc::clone(&sliced_list)])
2905            .unwrap();
2906
2907        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(1)); // null < [32, 52, null]
2908        assert!(rows_on_sliced_list.row(3) < rows_on_sliced_list.row(1)); // [32, null, null] < [32, 52, null]
2909        assert!(rows_on_sliced_list.row(4) < rows_on_sliced_list.row(1)); // [null, null, null] > [32, 52, null]
2910        assert!(rows_on_sliced_list.row(2) < rows_on_sliced_list.row(4)); // null < [null, null, null]
2911
2912        let back = converter.convert_rows(&rows_on_sliced_list).unwrap();
2913        assert_eq!(back.len(), 1);
2914        back[0].to_data().validate_full().unwrap();
2915        assert_eq!(&back[0], &sliced_list);
2916    }
2917
2918    #[test]
2919    fn test_two_fixed_size_lists() {
2920        let mut first = FixedSizeListBuilder::new(UInt8Builder::new(), 1);
2921        // 0: [100]
2922        first.values().append_value(100);
2923        first.append(true);
2924        // 1: [101]
2925        first.values().append_value(101);
2926        first.append(true);
2927        // 2: [102]
2928        first.values().append_value(102);
2929        first.append(true);
2930        // 3: [null]
2931        first.values().append_null();
2932        first.append(true);
2933        // 4: null
2934        first.values().append_null(); // MASKED
2935        first.append(false);
2936        let first = Arc::new(first.finish()) as ArrayRef;
2937        let first_type = first.data_type().clone();
2938
2939        let mut second = FixedSizeListBuilder::new(UInt8Builder::new(), 1);
2940        // 0: [200]
2941        second.values().append_value(200);
2942        second.append(true);
2943        // 1: [201]
2944        second.values().append_value(201);
2945        second.append(true);
2946        // 2: [202]
2947        second.values().append_value(202);
2948        second.append(true);
2949        // 3: [null]
2950        second.values().append_null();
2951        second.append(true);
2952        // 4: null
2953        second.values().append_null(); // MASKED
2954        second.append(false);
2955        let second = Arc::new(second.finish()) as ArrayRef;
2956        let second_type = second.data_type().clone();
2957
2958        let converter = RowConverter::new(vec![
2959            SortField::new(first_type.clone()),
2960            SortField::new(second_type.clone()),
2961        ])
2962        .unwrap();
2963
2964        let rows = converter
2965            .convert_columns(&[Arc::clone(&first), Arc::clone(&second)])
2966            .unwrap();
2967
2968        let back = converter.convert_rows(&rows).unwrap();
2969        assert_eq!(back.len(), 2);
2970        back[0].to_data().validate_full().unwrap();
2971        assert_eq!(&back[0], &first);
2972        back[1].to_data().validate_full().unwrap();
2973        assert_eq!(&back[1], &second);
2974    }
2975
2976    #[test]
2977    fn test_fixed_size_list_with_variable_width_content() {
2978        let mut first = FixedSizeListBuilder::new(
2979            StructBuilder::from_fields(
2980                vec![
2981                    Field::new(
2982                        "timestamp",
2983                        DataType::Timestamp(TimeUnit::Microsecond, Some(Arc::from("UTC"))),
2984                        false,
2985                    ),
2986                    Field::new("offset_minutes", DataType::Int16, false),
2987                    Field::new("time_zone", DataType::Utf8, false),
2988                ],
2989                1,
2990            ),
2991            1,
2992        );
2993        // 0: null
2994        first
2995            .values()
2996            .field_builder::<TimestampMicrosecondBuilder>(0)
2997            .unwrap()
2998            .append_null();
2999        first
3000            .values()
3001            .field_builder::<Int16Builder>(1)
3002            .unwrap()
3003            .append_null();
3004        first
3005            .values()
3006            .field_builder::<StringBuilder>(2)
3007            .unwrap()
3008            .append_null();
3009        first.values().append(false);
3010        first.append(false);
3011        // 1: [null]
3012        first
3013            .values()
3014            .field_builder::<TimestampMicrosecondBuilder>(0)
3015            .unwrap()
3016            .append_null();
3017        first
3018            .values()
3019            .field_builder::<Int16Builder>(1)
3020            .unwrap()
3021            .append_null();
3022        first
3023            .values()
3024            .field_builder::<StringBuilder>(2)
3025            .unwrap()
3026            .append_null();
3027        first.values().append(false);
3028        first.append(true);
3029        // 2: [1970-01-01 00:00:00.000000 UTC]
3030        first
3031            .values()
3032            .field_builder::<TimestampMicrosecondBuilder>(0)
3033            .unwrap()
3034            .append_value(0);
3035        first
3036            .values()
3037            .field_builder::<Int16Builder>(1)
3038            .unwrap()
3039            .append_value(0);
3040        first
3041            .values()
3042            .field_builder::<StringBuilder>(2)
3043            .unwrap()
3044            .append_value("UTC");
3045        first.values().append(true);
3046        first.append(true);
3047        // 3: [2005-09-10 13:30:00.123456 Europe/Warsaw]
3048        first
3049            .values()
3050            .field_builder::<TimestampMicrosecondBuilder>(0)
3051            .unwrap()
3052            .append_value(1126351800123456);
3053        first
3054            .values()
3055            .field_builder::<Int16Builder>(1)
3056            .unwrap()
3057            .append_value(120);
3058        first
3059            .values()
3060            .field_builder::<StringBuilder>(2)
3061            .unwrap()
3062            .append_value("Europe/Warsaw");
3063        first.values().append(true);
3064        first.append(true);
3065        let first = Arc::new(first.finish()) as ArrayRef;
3066        let first_type = first.data_type().clone();
3067
3068        let mut second = StringBuilder::new();
3069        second.append_value("somewhere near");
3070        second.append_null();
3071        second.append_value("Greenwich");
3072        second.append_value("Warsaw");
3073        let second = Arc::new(second.finish()) as ArrayRef;
3074        let second_type = second.data_type().clone();
3075
3076        let converter = RowConverter::new(vec![
3077            SortField::new(first_type.clone()),
3078            SortField::new(second_type.clone()),
3079        ])
3080        .unwrap();
3081
3082        let rows = converter
3083            .convert_columns(&[Arc::clone(&first), Arc::clone(&second)])
3084            .unwrap();
3085
3086        let back = converter.convert_rows(&rows).unwrap();
3087        assert_eq!(back.len(), 2);
3088        back[0].to_data().validate_full().unwrap();
3089        assert_eq!(&back[0], &first);
3090        back[1].to_data().validate_full().unwrap();
3091        assert_eq!(&back[1], &second);
3092    }
3093
3094    fn generate_primitive_array<K>(len: usize, valid_percent: f64) -> PrimitiveArray<K>
3095    where
3096        K: ArrowPrimitiveType,
3097        StandardUniform: Distribution<K::Native>,
3098    {
3099        let mut rng = rng();
3100        (0..len)
3101            .map(|_| rng.random_bool(valid_percent).then(|| rng.random()))
3102            .collect()
3103    }
3104
3105    fn generate_strings<O: OffsetSizeTrait>(
3106        len: usize,
3107        valid_percent: f64,
3108    ) -> GenericStringArray<O> {
3109        let mut rng = rng();
3110        (0..len)
3111            .map(|_| {
3112                rng.random_bool(valid_percent).then(|| {
3113                    let len = rng.random_range(0..100);
3114                    let bytes = (0..len).map(|_| rng.random_range(0..128)).collect();
3115                    String::from_utf8(bytes).unwrap()
3116                })
3117            })
3118            .collect()
3119    }
3120
3121    fn generate_string_view(len: usize, valid_percent: f64) -> StringViewArray {
3122        let mut rng = rng();
3123        (0..len)
3124            .map(|_| {
3125                rng.random_bool(valid_percent).then(|| {
3126                    let len = rng.random_range(0..100);
3127                    let bytes = (0..len).map(|_| rng.random_range(0..128)).collect();
3128                    String::from_utf8(bytes).unwrap()
3129                })
3130            })
3131            .collect()
3132    }
3133
3134    fn generate_byte_view(len: usize, valid_percent: f64) -> BinaryViewArray {
3135        let mut rng = rng();
3136        (0..len)
3137            .map(|_| {
3138                rng.random_bool(valid_percent).then(|| {
3139                    let len = rng.random_range(0..100);
3140                    let bytes: Vec<_> = (0..len).map(|_| rng.random_range(0..128)).collect();
3141                    bytes
3142                })
3143            })
3144            .collect()
3145    }
3146
3147    fn generate_fixed_stringview_column(len: usize) -> StringViewArray {
3148        let edge_cases = vec![
3149            Some("bar".to_string()),
3150            Some("bar\0".to_string()),
3151            Some("LongerThan12Bytes".to_string()),
3152            Some("LongerThan12Bytez".to_string()),
3153            Some("LongerThan12Bytes\0".to_string()),
3154            Some("LongerThan12Byt".to_string()),
3155            Some("backend one".to_string()),
3156            Some("backend two".to_string()),
3157            Some("a".repeat(257)),
3158            Some("a".repeat(300)),
3159        ];
3160
3161        // Fill up to `len` by repeating edge cases and trimming
3162        let mut values = Vec::with_capacity(len);
3163        for i in 0..len {
3164            values.push(
3165                edge_cases
3166                    .get(i % edge_cases.len())
3167                    .cloned()
3168                    .unwrap_or(None),
3169            );
3170        }
3171
3172        StringViewArray::from(values)
3173    }
3174
3175    fn generate_dictionary<K>(
3176        values: ArrayRef,
3177        len: usize,
3178        valid_percent: f64,
3179    ) -> DictionaryArray<K>
3180    where
3181        K: ArrowDictionaryKeyType,
3182        K::Native: SampleUniform,
3183    {
3184        let mut rng = rng();
3185        let min_key = K::Native::from_usize(0).unwrap();
3186        let max_key = K::Native::from_usize(values.len()).unwrap();
3187        let keys: PrimitiveArray<K> = (0..len)
3188            .map(|_| {
3189                rng.random_bool(valid_percent)
3190                    .then(|| rng.random_range(min_key..max_key))
3191            })
3192            .collect();
3193
3194        let data_type =
3195            DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(values.data_type().clone()));
3196
3197        let data = keys
3198            .into_data()
3199            .into_builder()
3200            .data_type(data_type)
3201            .add_child_data(values.to_data())
3202            .build()
3203            .unwrap();
3204
3205        DictionaryArray::from(data)
3206    }
3207
3208    fn generate_fixed_size_binary(len: usize, valid_percent: f64) -> FixedSizeBinaryArray {
3209        let mut rng = rng();
3210        let width = rng.random_range(0..20);
3211        let mut builder = FixedSizeBinaryBuilder::new(width);
3212
3213        let mut b = vec![0; width as usize];
3214        for _ in 0..len {
3215            match rng.random_bool(valid_percent) {
3216                true => {
3217                    b.iter_mut().for_each(|x| *x = rng.random());
3218                    builder.append_value(&b).unwrap();
3219                }
3220                false => builder.append_null(),
3221            }
3222        }
3223
3224        builder.finish()
3225    }
3226
3227    fn generate_struct(len: usize, valid_percent: f64) -> StructArray {
3228        let mut rng = rng();
3229        let nulls = NullBuffer::from_iter((0..len).map(|_| rng.random_bool(valid_percent)));
3230        let a = generate_primitive_array::<Int32Type>(len, valid_percent);
3231        let b = generate_strings::<i32>(len, valid_percent);
3232        let fields = Fields::from(vec![
3233            Field::new("a", DataType::Int32, true),
3234            Field::new("b", DataType::Utf8, true),
3235        ]);
3236        let values = vec![Arc::new(a) as _, Arc::new(b) as _];
3237        StructArray::new(fields, values, Some(nulls))
3238    }
3239
3240    fn generate_list<F>(len: usize, valid_percent: f64, values: F) -> ListArray
3241    where
3242        F: FnOnce(usize) -> ArrayRef,
3243    {
3244        let mut rng = rng();
3245        let offsets = OffsetBuffer::<i32>::from_lengths((0..len).map(|_| rng.random_range(0..10)));
3246        let values_len = offsets.last().unwrap().to_usize().unwrap();
3247        let values = values(values_len);
3248        let nulls = NullBuffer::from_iter((0..len).map(|_| rng.random_bool(valid_percent)));
3249        let field = Arc::new(Field::new_list_field(values.data_type().clone(), true));
3250        ListArray::new(field, offsets, values, Some(nulls))
3251    }
3252
3253    fn generate_column(len: usize) -> ArrayRef {
3254        let mut rng = rng();
3255        match rng.random_range(0..18) {
3256            0 => Arc::new(generate_primitive_array::<Int32Type>(len, 0.8)),
3257            1 => Arc::new(generate_primitive_array::<UInt32Type>(len, 0.8)),
3258            2 => Arc::new(generate_primitive_array::<Int64Type>(len, 0.8)),
3259            3 => Arc::new(generate_primitive_array::<UInt64Type>(len, 0.8)),
3260            4 => Arc::new(generate_primitive_array::<Float32Type>(len, 0.8)),
3261            5 => Arc::new(generate_primitive_array::<Float64Type>(len, 0.8)),
3262            6 => Arc::new(generate_strings::<i32>(len, 0.8)),
3263            7 => Arc::new(generate_dictionary::<Int64Type>(
3264                // Cannot test dictionaries containing null values because of #2687
3265                Arc::new(generate_strings::<i32>(rng.random_range(1..len), 1.0)),
3266                len,
3267                0.8,
3268            )),
3269            8 => Arc::new(generate_dictionary::<Int64Type>(
3270                // Cannot test dictionaries containing null values because of #2687
3271                Arc::new(generate_primitive_array::<Int64Type>(
3272                    rng.random_range(1..len),
3273                    1.0,
3274                )),
3275                len,
3276                0.8,
3277            )),
3278            9 => Arc::new(generate_fixed_size_binary(len, 0.8)),
3279            10 => Arc::new(generate_struct(len, 0.8)),
3280            11 => Arc::new(generate_list(len, 0.8, |values_len| {
3281                Arc::new(generate_primitive_array::<Int64Type>(values_len, 0.8))
3282            })),
3283            12 => Arc::new(generate_list(len, 0.8, |values_len| {
3284                Arc::new(generate_strings::<i32>(values_len, 0.8))
3285            })),
3286            13 => Arc::new(generate_list(len, 0.8, |values_len| {
3287                Arc::new(generate_struct(values_len, 0.8))
3288            })),
3289            14 => Arc::new(generate_string_view(len, 0.8)),
3290            15 => Arc::new(generate_byte_view(len, 0.8)),
3291            16 => Arc::new(generate_fixed_stringview_column(len)),
3292            17 => Arc::new(
3293                generate_list(len + 1000, 0.8, |values_len| {
3294                    Arc::new(generate_primitive_array::<Int64Type>(values_len, 0.8))
3295                })
3296                .slice(500, len),
3297            ),
3298            _ => unreachable!(),
3299        }
3300    }
3301
3302    fn print_row(cols: &[SortColumn], row: usize) -> String {
3303        let t: Vec<_> = cols
3304            .iter()
3305            .map(|x| match x.values.is_valid(row) {
3306                true => {
3307                    let opts = FormatOptions::default().with_null("NULL");
3308                    let formatter = ArrayFormatter::try_new(x.values.as_ref(), &opts).unwrap();
3309                    formatter.value(row).to_string()
3310                }
3311                false => "NULL".to_string(),
3312            })
3313            .collect();
3314        t.join(",")
3315    }
3316
3317    fn print_col_types(cols: &[SortColumn]) -> String {
3318        let t: Vec<_> = cols
3319            .iter()
3320            .map(|x| x.values.data_type().to_string())
3321            .collect();
3322        t.join(",")
3323    }
3324
3325    #[test]
3326    #[cfg_attr(miri, ignore)]
3327    fn fuzz_test() {
3328        for _ in 0..100 {
3329            let mut rng = rng();
3330            let num_columns = rng.random_range(1..5);
3331            let len = rng.random_range(5..100);
3332            let arrays: Vec<_> = (0..num_columns).map(|_| generate_column(len)).collect();
3333
3334            let options: Vec<_> = (0..num_columns)
3335                .map(|_| SortOptions {
3336                    descending: rng.random_bool(0.5),
3337                    nulls_first: rng.random_bool(0.5),
3338                })
3339                .collect();
3340
3341            let sort_columns: Vec<_> = options
3342                .iter()
3343                .zip(&arrays)
3344                .map(|(o, c)| SortColumn {
3345                    values: Arc::clone(c),
3346                    options: Some(*o),
3347                })
3348                .collect();
3349
3350            let comparator = LexicographicalComparator::try_new(&sort_columns).unwrap();
3351
3352            let columns: Vec<SortField> = options
3353                .into_iter()
3354                .zip(&arrays)
3355                .map(|(o, a)| SortField::new_with_options(a.data_type().clone(), o))
3356                .collect();
3357
3358            let converter = RowConverter::new(columns).unwrap();
3359            let rows = converter.convert_columns(&arrays).unwrap();
3360
3361            for i in 0..len {
3362                for j in 0..len {
3363                    let row_i = rows.row(i);
3364                    let row_j = rows.row(j);
3365                    let row_cmp = row_i.cmp(&row_j);
3366                    let lex_cmp = comparator.compare(i, j);
3367                    assert_eq!(
3368                        row_cmp,
3369                        lex_cmp,
3370                        "({:?} vs {:?}) vs ({:?} vs {:?}) for types {}",
3371                        print_row(&sort_columns, i),
3372                        print_row(&sort_columns, j),
3373                        row_i,
3374                        row_j,
3375                        print_col_types(&sort_columns)
3376                    );
3377                }
3378            }
3379
3380            // Convert rows produced from convert_columns().
3381            // Note: validate_utf8 is set to false since Row is initialized through empty_rows()
3382            let back = converter.convert_rows(&rows).unwrap();
3383            for (actual, expected) in back.iter().zip(&arrays) {
3384                actual.to_data().validate_full().unwrap();
3385                dictionary_eq(actual, expected)
3386            }
3387
3388            // Check that we can convert rows into ByteArray and then parse, convert it back to array
3389            // Note: validate_utf8 is set to true since Row is initialized through RowParser
3390            let rows = rows.try_into_binary().expect("reasonable size");
3391            let parser = converter.parser();
3392            let back = converter
3393                .convert_rows(rows.iter().map(|b| parser.parse(b.expect("valid bytes"))))
3394                .unwrap();
3395            for (actual, expected) in back.iter().zip(&arrays) {
3396                actual.to_data().validate_full().unwrap();
3397                dictionary_eq(actual, expected)
3398            }
3399
3400            let rows = converter.from_binary(rows);
3401            let back = converter.convert_rows(&rows).unwrap();
3402            for (actual, expected) in back.iter().zip(&arrays) {
3403                actual.to_data().validate_full().unwrap();
3404                dictionary_eq(actual, expected)
3405            }
3406        }
3407    }
3408
3409    #[test]
3410    fn test_clear() {
3411        let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
3412        let mut rows = converter.empty_rows(3, 128);
3413
3414        let first = Int32Array::from(vec![None, Some(2), Some(4)]);
3415        let second = Int32Array::from(vec![Some(2), None, Some(4)]);
3416        let arrays = [Arc::new(first) as ArrayRef, Arc::new(second) as ArrayRef];
3417
3418        for array in arrays.iter() {
3419            rows.clear();
3420            converter
3421                .append(&mut rows, std::slice::from_ref(array))
3422                .unwrap();
3423            let back = converter.convert_rows(&rows).unwrap();
3424            assert_eq!(&back[0], array);
3425        }
3426
3427        let mut rows_expected = converter.empty_rows(3, 128);
3428        converter.append(&mut rows_expected, &arrays[1..]).unwrap();
3429
3430        for (i, (actual, expected)) in rows.iter().zip(rows_expected.iter()).enumerate() {
3431            assert_eq!(
3432                actual, expected,
3433                "For row {i}: expected {expected:?}, actual: {actual:?}",
3434            );
3435        }
3436    }
3437
3438    #[test]
3439    fn test_append_codec_dictionary_binary() {
3440        use DataType::*;
3441        // Dictionary RowConverter
3442        let converter = RowConverter::new(vec![SortField::new(Dictionary(
3443            Box::new(Int32),
3444            Box::new(Binary),
3445        ))])
3446        .unwrap();
3447        let mut rows = converter.empty_rows(4, 128);
3448
3449        let keys = Int32Array::from_iter_values([0, 1, 2, 3]);
3450        let values = BinaryArray::from(vec![
3451            Some("a".as_bytes()),
3452            Some(b"b"),
3453            Some(b"c"),
3454            Some(b"d"),
3455        ]);
3456        let dict_array = DictionaryArray::new(keys, Arc::new(values));
3457
3458        rows.clear();
3459        let array = Arc::new(dict_array) as ArrayRef;
3460        converter
3461            .append(&mut rows, std::slice::from_ref(&array))
3462            .unwrap();
3463        let back = converter.convert_rows(&rows).unwrap();
3464
3465        dictionary_eq(&back[0], &array);
3466    }
3467
3468    #[test]
3469    fn test_list_prefix() {
3470        let mut a = ListBuilder::new(Int8Builder::new());
3471        a.append_value([None]);
3472        a.append_value([None, None]);
3473        let a = a.finish();
3474
3475        let converter = RowConverter::new(vec![SortField::new(a.data_type().clone())]).unwrap();
3476        let rows = converter.convert_columns(&[Arc::new(a) as _]).unwrap();
3477        assert_eq!(rows.row(0).cmp(&rows.row(1)), Ordering::Less);
3478    }
3479
3480    #[test]
3481    fn map_should_be_marked_as_unsupported() {
3482        let map_data_type = Field::new_map(
3483            "map",
3484            "entries",
3485            Field::new("key", DataType::Utf8, false),
3486            Field::new("value", DataType::Utf8, true),
3487            false,
3488            true,
3489        )
3490        .data_type()
3491        .clone();
3492
3493        let is_supported = RowConverter::supports_fields(&[SortField::new(map_data_type)]);
3494
3495        assert!(!is_supported, "Map should not be supported");
3496    }
3497
3498    #[test]
3499    fn should_fail_to_create_row_converter_for_unsupported_map_type() {
3500        let map_data_type = Field::new_map(
3501            "map",
3502            "entries",
3503            Field::new("key", DataType::Utf8, false),
3504            Field::new("value", DataType::Utf8, true),
3505            false,
3506            true,
3507        )
3508        .data_type()
3509        .clone();
3510
3511        let converter = RowConverter::new(vec![SortField::new(map_data_type)]);
3512
3513        match converter {
3514            Err(ArrowError::NotYetImplemented(message)) => {
3515                assert!(
3516                    message.contains("Row format support not yet implemented for"),
3517                    "Expected NotYetImplemented error for map data type, got: {message}",
3518                );
3519            }
3520            Err(e) => panic!("Expected NotYetImplemented error, got: {e}"),
3521            Ok(_) => panic!("Expected NotYetImplemented error for map data type"),
3522        }
3523    }
3524
3525    #[test]
3526    fn test_values_buffer_smaller_when_utf8_validation_disabled() {
3527        fn get_values_buffer_len(col: ArrayRef) -> (usize, usize) {
3528            // 1. Convert cols into rows
3529            let converter = RowConverter::new(vec![SortField::new(DataType::Utf8View)]).unwrap();
3530
3531            // 2a. Convert rows into colsa (validate_utf8 = false)
3532            let rows = converter.convert_columns(&[col]).unwrap();
3533            let converted = converter.convert_rows(&rows).unwrap();
3534            let unchecked_values_len = converted[0].as_string_view().data_buffers()[0].len();
3535
3536            // 2b. Convert rows into cols (validate_utf8 = true since Row is initialized through RowParser)
3537            let rows = rows.try_into_binary().expect("reasonable size");
3538            let parser = converter.parser();
3539            let converted = converter
3540                .convert_rows(rows.iter().map(|b| parser.parse(b.expect("valid bytes"))))
3541                .unwrap();
3542            let checked_values_len = converted[0].as_string_view().data_buffers()[0].len();
3543            (unchecked_values_len, checked_values_len)
3544        }
3545
3546        // Case1. StringViewArray with inline strings
3547        let col = Arc::new(StringViewArray::from_iter([
3548            Some("hello"), // short(5)
3549            None,          // null
3550            Some("short"), // short(5)
3551            Some("tiny"),  // short(4)
3552        ])) as ArrayRef;
3553
3554        let (unchecked_values_len, checked_values_len) = get_values_buffer_len(col);
3555        // Since there are no long (>12) strings, len of values buffer is 0
3556        assert_eq!(unchecked_values_len, 0);
3557        // When utf8 validation enabled, values buffer includes inline strings (5+5+4)
3558        assert_eq!(checked_values_len, 14);
3559
3560        // Case2. StringViewArray with long(>12) strings
3561        let col = Arc::new(StringViewArray::from_iter([
3562            Some("this is a very long string over 12 bytes"),
3563            Some("another long string to test the buffer"),
3564        ])) as ArrayRef;
3565
3566        let (unchecked_values_len, checked_values_len) = get_values_buffer_len(col);
3567        // Since there are no inline strings, expected length of values buffer is the same
3568        assert!(unchecked_values_len > 0);
3569        assert_eq!(unchecked_values_len, checked_values_len);
3570
3571        // Case3. StringViewArray with both short and long strings
3572        let col = Arc::new(StringViewArray::from_iter([
3573            Some("tiny"),          // 4 (short)
3574            Some("thisisexact13"), // 13 (long)
3575            None,
3576            Some("short"), // 5 (short)
3577        ])) as ArrayRef;
3578
3579        let (unchecked_values_len, checked_values_len) = get_values_buffer_len(col);
3580        // Since there is single long string, len of values buffer is 13
3581        assert_eq!(unchecked_values_len, 13);
3582        assert!(checked_values_len > unchecked_values_len);
3583    }
3584}