arrow_ord/partition.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines partition kernel for `ArrayRef`
use std::ops::Range;
use arrow_array::{Array, ArrayRef};
use arrow_buffer::BooleanBuffer;
use arrow_schema::ArrowError;
use crate::cmp::distinct;
use crate::sort::SortColumn;
/// A computed set of partitions, see [`partition`]
#[derive(Debug, Clone)]
pub struct Partitions(Option<BooleanBuffer>);
impl Partitions {
/// Returns the range of each partition
///
/// Consecutive ranges will be contiguous: i.e [`(a, b)` and `(b, c)`], and
/// `start = 0` and `end = self.len()` for the first and last range respectively
pub fn ranges(&self) -> Vec<Range<usize>> {
let boundaries = match &self.0 {
Some(boundaries) => boundaries,
None => return vec![],
};
let mut out = vec![];
let mut current = 0;
for idx in boundaries.set_indices() {
let t = current;
current = idx + 1;
out.push(t..current)
}
let last = boundaries.len() + 1;
if current != last {
out.push(current..last)
}
out
}
/// Returns the number of partitions
pub fn len(&self) -> usize {
match &self.0 {
Some(b) => b.count_set_bits() + 1,
None => 0,
}
}
/// Returns true if this contains no partitions
pub fn is_empty(&self) -> bool {
self.0.is_none()
}
}
/// Given a list of lexicographically sorted columns, computes the [`Partitions`],
/// where a partition consists of the set of consecutive rows with equal values
///
/// Returns an error if no columns are specified or all columns do not
/// have the same number of rows.
///
/// # Example:
///
/// For example, given columns `x`, `y` and `z`, calling
/// [`partition`]`(values, (x, y))` will divide the
/// rows into ranges where the values of `(x, y)` are equal:
///
/// ```text
/// ┌ ─ ┬───┬ ─ ─┌───┐─ ─ ┬───┬ ─ ─ ┐
/// │ 1 │ │ 1 │ │ A │ Range: 0..1 (x=1, y=1)
/// ├ ─ ┼───┼ ─ ─├───┤─ ─ ┼───┼ ─ ─ ┤
/// │ 1 │ │ 2 │ │ B │
/// │ ├───┤ ├───┤ ├───┤ │
/// │ 1 │ │ 2 │ │ C │ Range: 1..4 (x=1, y=2)
/// │ ├───┤ ├───┤ ├───┤ │
/// │ 1 │ │ 2 │ │ D │
/// ├ ─ ┼───┼ ─ ─├───┤─ ─ ┼───┼ ─ ─ ┤
/// │ 2 │ │ 1 │ │ E │ Range: 4..5 (x=2, y=1)
/// ├ ─ ┼───┼ ─ ─├───┤─ ─ ┼───┼ ─ ─ ┤
/// │ 3 │ │ 1 │ │ F │ Range: 5..6 (x=3, y=1)
/// └ ─ ┴───┴ ─ ─└───┘─ ─ ┴───┴ ─ ─ ┘
///
/// x y z partition(&[x, y])
/// ```
///
/// # Example Code
///
/// ```
/// # use std::{sync::Arc, ops::Range};
/// # use arrow_array::{RecordBatch, Int64Array, StringArray, ArrayRef};
/// # use arrow_ord::sort::{SortColumn, SortOptions};
/// # use arrow_ord::partition::partition;
/// let batch = RecordBatch::try_from_iter(vec![
/// ("x", Arc::new(Int64Array::from(vec![1, 1, 1, 1, 2, 3])) as ArrayRef),
/// ("y", Arc::new(Int64Array::from(vec![1, 2, 2, 2, 1, 1])) as ArrayRef),
/// ("z", Arc::new(StringArray::from(vec!["A", "B", "C", "D", "E", "F"])) as ArrayRef),
/// ]).unwrap();
///
/// // Partition on first two columns
/// let ranges = partition(&batch.columns()[..2]).unwrap().ranges();
///
/// let expected = vec![
/// (0..1),
/// (1..4),
/// (4..5),
/// (5..6),
/// ];
///
/// assert_eq!(ranges, expected);
/// ```
pub fn partition(columns: &[ArrayRef]) -> Result<Partitions, ArrowError> {
if columns.is_empty() {
return Err(ArrowError::InvalidArgumentError(
"Partition requires at least one column".to_string(),
));
}
let num_rows = columns[0].len();
if columns.iter().any(|item| item.len() != num_rows) {
return Err(ArrowError::InvalidArgumentError(
"Partition columns have different row counts".to_string(),
));
};
match num_rows {
0 => return Ok(Partitions(None)),
1 => return Ok(Partitions(Some(BooleanBuffer::new_unset(0)))),
_ => {}
}
let acc = find_boundaries(&columns[0])?;
let acc = columns
.iter()
.skip(1)
.try_fold(acc, |acc, c| find_boundaries(c.as_ref()).map(|b| &acc | &b))?;
Ok(Partitions(Some(acc)))
}
/// Returns a mask with bits set whenever the value or nullability changes
fn find_boundaries(v: &dyn Array) -> Result<BooleanBuffer, ArrowError> {
let slice_len = v.len() - 1;
let v1 = v.slice(0, slice_len);
let v2 = v.slice(1, slice_len);
Ok(distinct(&v1, &v2)?.values().clone())
}
/// Use [`partition`] instead. Given a list of already sorted columns, find
/// partition ranges that would partition lexicographically equal values across
/// columns.
///
/// The returned vec would be of size k where k is cardinality of the sorted values; Consecutive
/// values will be connected: (a, b) and (b, c), where start = 0 and end = n for the first and last
/// range.
#[deprecated(note = "Use partition")]
pub fn lexicographical_partition_ranges(
columns: &[SortColumn],
) -> Result<impl Iterator<Item = Range<usize>> + '_, ArrowError> {
let cols: Vec<_> = columns.iter().map(|x| x.values.clone()).collect();
Ok(partition(&cols)?.ranges().into_iter())
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow_array::*;
use arrow_schema::DataType;
use super::*;
#[test]
fn test_partition_empty() {
let err = partition(&[]).unwrap_err();
assert_eq!(
err.to_string(),
"Invalid argument error: Partition requires at least one column"
);
}
#[test]
fn test_partition_unaligned_rows() {
let input = vec![
Arc::new(Int64Array::from(vec![None, Some(-1)])) as _,
Arc::new(StringArray::from(vec![Some("foo")])) as _,
];
let err = partition(&input).unwrap_err();
assert_eq!(
err.to_string(),
"Invalid argument error: Partition columns have different row counts"
)
}
#[test]
fn test_partition_small() {
let results = partition(&[
Arc::new(Int32Array::new(vec![].into(), None)) as _,
Arc::new(Int32Array::new(vec![].into(), None)) as _,
Arc::new(Int32Array::new(vec![].into(), None)) as _,
])
.unwrap();
assert_eq!(results.len(), 0);
assert!(results.is_empty());
let results = partition(&[
Arc::new(Int32Array::from(vec![1])) as _,
Arc::new(Int32Array::from(vec![1])) as _,
])
.unwrap()
.ranges();
assert_eq!(results.len(), 1);
assert_eq!(results[0], 0..1);
}
#[test]
fn test_partition_single_column() {
let a = Int64Array::from(vec![1, 2, 2, 2, 2, 2, 2, 2, 9]);
let input = vec![Arc::new(a) as _];
assert_eq!(
partition(&input).unwrap().ranges(),
vec![(0..1), (1..8), (8..9)],
);
}
#[test]
fn test_partition_all_equal_values() {
let a = Int64Array::from_value(1, 1000);
let input = vec![Arc::new(a) as _];
assert_eq!(partition(&input).unwrap().ranges(), vec![(0..1000)]);
}
#[test]
fn test_partition_all_null_values() {
let input = vec![
new_null_array(&DataType::Int8, 1000),
new_null_array(&DataType::UInt16, 1000),
];
assert_eq!(partition(&input).unwrap().ranges(), vec![(0..1000)]);
}
#[test]
fn test_partition_unique_column_1() {
let input = vec![
Arc::new(Int64Array::from(vec![None, Some(-1)])) as _,
Arc::new(StringArray::from(vec![Some("foo"), Some("bar")])) as _,
];
assert_eq!(partition(&input).unwrap().ranges(), vec![(0..1), (1..2)],);
}
#[test]
fn test_partition_unique_column_2() {
let input = vec![
Arc::new(Int64Array::from(vec![None, Some(-1), Some(-1)])) as _,
Arc::new(StringArray::from(vec![
Some("foo"),
Some("bar"),
Some("apple"),
])) as _,
];
assert_eq!(
partition(&input).unwrap().ranges(),
vec![(0..1), (1..2), (2..3),],
);
}
#[test]
fn test_partition_non_unique_column_1() {
let input = vec![
Arc::new(Int64Array::from(vec![None, Some(-1), Some(-1), Some(1)])) as _,
Arc::new(StringArray::from(vec![
Some("foo"),
Some("bar"),
Some("bar"),
Some("bar"),
])) as _,
];
assert_eq!(
partition(&input).unwrap().ranges(),
vec![(0..1), (1..3), (3..4),],
);
}
#[test]
fn test_partition_masked_nulls() {
let input = vec![
Arc::new(Int64Array::new(vec![1; 9].into(), None)) as _,
Arc::new(Int64Array::new(
vec![1, 1, 2, 2, 2, 3, 3, 3, 3].into(),
Some(vec![false, true, true, true, true, false, false, true, false].into()),
)) as _,
Arc::new(Int64Array::new(
vec![1, 1, 2, 2, 2, 2, 2, 3, 7].into(),
Some(vec![true, true, true, true, false, true, true, true, false].into()),
)) as _,
];
assert_eq!(
partition(&input).unwrap().ranges(),
vec![(0..1), (1..2), (2..4), (4..5), (5..7), (7..8), (8..9)],
);
}
}