arrow_ord/
partition.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines partition kernel for `ArrayRef`

use std::ops::Range;

use arrow_array::{Array, ArrayRef};
use arrow_buffer::BooleanBuffer;
use arrow_schema::ArrowError;

use crate::cmp::distinct;
use crate::sort::SortColumn;

/// A computed set of partitions, see [`partition`]
#[derive(Debug, Clone)]
pub struct Partitions(Option<BooleanBuffer>);

impl Partitions {
    /// Returns the range of each partition
    ///
    /// Consecutive ranges will be contiguous: i.e [`(a, b)` and `(b, c)`], and
    /// `start = 0` and `end = self.len()` for the first and last range respectively
    pub fn ranges(&self) -> Vec<Range<usize>> {
        let boundaries = match &self.0 {
            Some(boundaries) => boundaries,
            None => return vec![],
        };

        let mut out = vec![];
        let mut current = 0;
        for idx in boundaries.set_indices() {
            let t = current;
            current = idx + 1;
            out.push(t..current)
        }
        let last = boundaries.len() + 1;
        if current != last {
            out.push(current..last)
        }
        out
    }

    /// Returns the number of partitions
    pub fn len(&self) -> usize {
        match &self.0 {
            Some(b) => b.count_set_bits() + 1,
            None => 0,
        }
    }

    /// Returns true if this contains no partitions
    pub fn is_empty(&self) -> bool {
        self.0.is_none()
    }
}

/// Given a list of lexicographically sorted columns, computes the [`Partitions`],
/// where a partition consists of the set of consecutive rows with equal values
///
/// Returns an error if no columns are specified or all columns do not
/// have the same number of rows.
///
/// # Example:
///
/// For example, given columns `x`, `y` and `z`, calling
/// [`partition`]`(values, (x, y))` will divide the
/// rows into ranges where the values of `(x, y)` are equal:
///
/// ```text
/// ┌ ─ ┬───┬ ─ ─┌───┐─ ─ ┬───┬ ─ ─ ┐
///     │ 1 │    │ 1 │    │ A │        Range: 0..1 (x=1, y=1)
/// ├ ─ ┼───┼ ─ ─├───┤─ ─ ┼───┼ ─ ─ ┤
///     │ 1 │    │ 2 │    │ B │
/// │   ├───┤    ├───┤    ├───┤     │
///     │ 1 │    │ 2 │    │ C │        Range: 1..4 (x=1, y=2)
/// │   ├───┤    ├───┤    ├───┤     │
///     │ 1 │    │ 2 │    │ D │
/// ├ ─ ┼───┼ ─ ─├───┤─ ─ ┼───┼ ─ ─ ┤
///     │ 2 │    │ 1 │    │ E │        Range: 4..5 (x=2, y=1)
/// ├ ─ ┼───┼ ─ ─├───┤─ ─ ┼───┼ ─ ─ ┤
///     │ 3 │    │ 1 │    │ F │        Range: 5..6 (x=3, y=1)
/// └ ─ ┴───┴ ─ ─└───┘─ ─ ┴───┴ ─ ─ ┘
///
///       x        y        z     partition(&[x, y])
/// ```
///
/// # Example Code
///
/// ```
/// # use std::{sync::Arc, ops::Range};
/// # use arrow_array::{RecordBatch, Int64Array, StringArray, ArrayRef};
/// # use arrow_ord::sort::{SortColumn, SortOptions};
/// # use arrow_ord::partition::partition;
/// let batch = RecordBatch::try_from_iter(vec![
///     ("x", Arc::new(Int64Array::from(vec![1, 1, 1, 1, 2, 3])) as ArrayRef),
///     ("y", Arc::new(Int64Array::from(vec![1, 2, 2, 2, 1, 1])) as ArrayRef),
///     ("z", Arc::new(StringArray::from(vec!["A", "B", "C", "D", "E", "F"])) as ArrayRef),
/// ]).unwrap();
///
/// // Partition on first two columns
/// let ranges = partition(&batch.columns()[..2]).unwrap().ranges();
///
/// let expected = vec![
///     (0..1),
///     (1..4),
///     (4..5),
///     (5..6),
/// ];
///
/// assert_eq!(ranges, expected);
/// ```
pub fn partition(columns: &[ArrayRef]) -> Result<Partitions, ArrowError> {
    if columns.is_empty() {
        return Err(ArrowError::InvalidArgumentError(
            "Partition requires at least one column".to_string(),
        ));
    }
    let num_rows = columns[0].len();
    if columns.iter().any(|item| item.len() != num_rows) {
        return Err(ArrowError::InvalidArgumentError(
            "Partition columns have different row counts".to_string(),
        ));
    };

    match num_rows {
        0 => return Ok(Partitions(None)),
        1 => return Ok(Partitions(Some(BooleanBuffer::new_unset(0)))),
        _ => {}
    }

    let acc = find_boundaries(&columns[0])?;
    let acc = columns
        .iter()
        .skip(1)
        .try_fold(acc, |acc, c| find_boundaries(c.as_ref()).map(|b| &acc | &b))?;

    Ok(Partitions(Some(acc)))
}

/// Returns a mask with bits set whenever the value or nullability changes
fn find_boundaries(v: &dyn Array) -> Result<BooleanBuffer, ArrowError> {
    let slice_len = v.len() - 1;
    let v1 = v.slice(0, slice_len);
    let v2 = v.slice(1, slice_len);
    Ok(distinct(&v1, &v2)?.values().clone())
}

/// Use [`partition`] instead. Given a list of already sorted columns, find
/// partition ranges that would partition lexicographically equal values across
/// columns.
///
/// The returned vec would be of size k where k is cardinality of the sorted values; Consecutive
/// values will be connected: (a, b) and (b, c), where start = 0 and end = n for the first and last
/// range.
#[deprecated(note = "Use partition")]
pub fn lexicographical_partition_ranges(
    columns: &[SortColumn],
) -> Result<impl Iterator<Item = Range<usize>> + '_, ArrowError> {
    let cols: Vec<_> = columns.iter().map(|x| x.values.clone()).collect();
    Ok(partition(&cols)?.ranges().into_iter())
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use arrow_array::*;
    use arrow_schema::DataType;

    use super::*;

    #[test]
    fn test_partition_empty() {
        let err = partition(&[]).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid argument error: Partition requires at least one column"
        );
    }

    #[test]
    fn test_partition_unaligned_rows() {
        let input = vec![
            Arc::new(Int64Array::from(vec![None, Some(-1)])) as _,
            Arc::new(StringArray::from(vec![Some("foo")])) as _,
        ];
        let err = partition(&input).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid argument error: Partition columns have different row counts"
        )
    }

    #[test]
    fn test_partition_small() {
        let results = partition(&[
            Arc::new(Int32Array::new(vec![].into(), None)) as _,
            Arc::new(Int32Array::new(vec![].into(), None)) as _,
            Arc::new(Int32Array::new(vec![].into(), None)) as _,
        ])
        .unwrap();
        assert_eq!(results.len(), 0);
        assert!(results.is_empty());

        let results = partition(&[
            Arc::new(Int32Array::from(vec![1])) as _,
            Arc::new(Int32Array::from(vec![1])) as _,
        ])
        .unwrap()
        .ranges();
        assert_eq!(results.len(), 1);
        assert_eq!(results[0], 0..1);
    }

    #[test]
    fn test_partition_single_column() {
        let a = Int64Array::from(vec![1, 2, 2, 2, 2, 2, 2, 2, 9]);
        let input = vec![Arc::new(a) as _];
        assert_eq!(
            partition(&input).unwrap().ranges(),
            vec![(0..1), (1..8), (8..9)],
        );
    }

    #[test]
    fn test_partition_all_equal_values() {
        let a = Int64Array::from_value(1, 1000);
        let input = vec![Arc::new(a) as _];
        assert_eq!(partition(&input).unwrap().ranges(), vec![(0..1000)]);
    }

    #[test]
    fn test_partition_all_null_values() {
        let input = vec![
            new_null_array(&DataType::Int8, 1000),
            new_null_array(&DataType::UInt16, 1000),
        ];
        assert_eq!(partition(&input).unwrap().ranges(), vec![(0..1000)]);
    }

    #[test]
    fn test_partition_unique_column_1() {
        let input = vec![
            Arc::new(Int64Array::from(vec![None, Some(-1)])) as _,
            Arc::new(StringArray::from(vec![Some("foo"), Some("bar")])) as _,
        ];
        assert_eq!(partition(&input).unwrap().ranges(), vec![(0..1), (1..2)],);
    }

    #[test]
    fn test_partition_unique_column_2() {
        let input = vec![
            Arc::new(Int64Array::from(vec![None, Some(-1), Some(-1)])) as _,
            Arc::new(StringArray::from(vec![
                Some("foo"),
                Some("bar"),
                Some("apple"),
            ])) as _,
        ];
        assert_eq!(
            partition(&input).unwrap().ranges(),
            vec![(0..1), (1..2), (2..3),],
        );
    }

    #[test]
    fn test_partition_non_unique_column_1() {
        let input = vec![
            Arc::new(Int64Array::from(vec![None, Some(-1), Some(-1), Some(1)])) as _,
            Arc::new(StringArray::from(vec![
                Some("foo"),
                Some("bar"),
                Some("bar"),
                Some("bar"),
            ])) as _,
        ];
        assert_eq!(
            partition(&input).unwrap().ranges(),
            vec![(0..1), (1..3), (3..4),],
        );
    }

    #[test]
    fn test_partition_masked_nulls() {
        let input = vec![
            Arc::new(Int64Array::new(vec![1; 9].into(), None)) as _,
            Arc::new(Int64Array::new(
                vec![1, 1, 2, 2, 2, 3, 3, 3, 3].into(),
                Some(vec![false, true, true, true, true, false, false, true, false].into()),
            )) as _,
            Arc::new(Int64Array::new(
                vec![1, 1, 2, 2, 2, 2, 2, 3, 7].into(),
                Some(vec![true, true, true, true, false, true, true, true, false].into()),
            )) as _,
        ];

        assert_eq!(
            partition(&input).unwrap().ranges(),
            vec![(0..1), (1..2), (2..4), (4..5), (5..7), (7..8), (8..9)],
        );
    }
}