arrow_integration_test/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Support for the [Apache Arrow JSON test data format](https://github.com/apache/arrow/blob/master/docs/source/format/Integration.rst#json-test-data-format)
//!
//! These utilities define structs that read the integration JSON format for integration testing purposes.
//!
//! This is not a canonical format, but provides a human-readable way of verifying language implementations

#![warn(missing_docs)]
use arrow_buffer::{IntervalDayTime, IntervalMonthDayNano, ScalarBuffer};
use hex::decode;
use num::BigInt;
use num::Signed;
use serde::{Deserialize, Serialize};
use serde_json::{Map as SJMap, Value};
use std::collections::HashMap;
use std::sync::Arc;

use arrow::array::*;
use arrow::buffer::{Buffer, MutableBuffer};
use arrow::datatypes::*;
use arrow::error::{ArrowError, Result};
use arrow::util::bit_util;

mod datatype;
mod field;
mod schema;

pub use datatype::*;
pub use field::*;
pub use schema::*;

/// A struct that represents an Arrow file with a schema and record batches
///
/// See <https://github.com/apache/arrow/blob/master/docs/source/format/Integration.rst#json-test-data-format>
#[derive(Deserialize, Serialize, Debug)]
pub struct ArrowJson {
    /// The Arrow schema for JSON file
    pub schema: ArrowJsonSchema,
    /// The `RecordBatch`es in the JSON file
    pub batches: Vec<ArrowJsonBatch>,
    /// The dictionaries in the JSON file
    #[serde(skip_serializing_if = "Option::is_none")]
    pub dictionaries: Option<Vec<ArrowJsonDictionaryBatch>>,
}

/// A struct that partially reads the Arrow JSON schema.
///
/// Fields are left as JSON `Value` as they vary by `DataType`
#[derive(Deserialize, Serialize, Debug)]
pub struct ArrowJsonSchema {
    /// An array of JSON fields
    pub fields: Vec<ArrowJsonField>,
    /// An array of metadata key-value pairs
    #[serde(skip_serializing_if = "Option::is_none")]
    pub metadata: Option<Vec<HashMap<String, String>>>,
}

/// Fields are left as JSON `Value` as they vary by `DataType`
#[derive(Deserialize, Serialize, Debug)]
pub struct ArrowJsonField {
    /// The name of the field
    pub name: String,
    /// The data type of the field,
    /// can be any valid JSON value
    #[serde(rename = "type")]
    pub field_type: Value,
    /// Whether the field is nullable
    pub nullable: bool,
    /// The children fields
    pub children: Vec<ArrowJsonField>,
    /// The dictionary for the field
    #[serde(skip_serializing_if = "Option::is_none")]
    pub dictionary: Option<ArrowJsonFieldDictionary>,
    /// The metadata for the field, if any
    #[serde(skip_serializing_if = "Option::is_none")]
    pub metadata: Option<Value>,
}

impl From<&FieldRef> for ArrowJsonField {
    fn from(value: &FieldRef) -> Self {
        Self::from(value.as_ref())
    }
}

impl From<&Field> for ArrowJsonField {
    fn from(field: &Field) -> Self {
        let metadata_value = match field.metadata().is_empty() {
            false => {
                let mut array = Vec::new();
                for (k, v) in field.metadata() {
                    let mut kv_map = SJMap::new();
                    kv_map.insert(k.clone(), Value::String(v.clone()));
                    array.push(Value::Object(kv_map));
                }
                if !array.is_empty() {
                    Some(Value::Array(array))
                } else {
                    None
                }
            }
            _ => None,
        };

        Self {
            name: field.name().to_string(),
            field_type: data_type_to_json(field.data_type()),
            nullable: field.is_nullable(),
            children: vec![],
            dictionary: None, // TODO: not enough info
            metadata: metadata_value,
        }
    }
}

/// Represents a dictionary-encoded field in the Arrow JSON format
#[derive(Deserialize, Serialize, Debug)]
pub struct ArrowJsonFieldDictionary {
    /// A unique identifier for the dictionary
    pub id: i64,
    /// The type of the dictionary index
    #[serde(rename = "indexType")]
    pub index_type: DictionaryIndexType,
    /// Whether the dictionary is ordered
    #[serde(rename = "isOrdered")]
    pub is_ordered: bool,
}

/// Type of an index for a dictionary-encoded field in the Arrow JSON format
#[derive(Deserialize, Serialize, Debug)]
pub struct DictionaryIndexType {
    /// The name of the dictionary index type
    pub name: String,
    /// Whether the dictionary index type is signed
    #[serde(rename = "isSigned")]
    pub is_signed: bool,
    /// The bit width of the dictionary index type
    #[serde(rename = "bitWidth")]
    pub bit_width: i64,
}

/// A struct that partially reads the Arrow JSON record batch
#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct ArrowJsonBatch {
    count: usize,
    /// The columns in the record batch
    pub columns: Vec<ArrowJsonColumn>,
}

/// A struct that partially reads the Arrow JSON dictionary batch
#[derive(Deserialize, Serialize, Debug, Clone)]
#[allow(non_snake_case)]
pub struct ArrowJsonDictionaryBatch {
    /// The unique identifier for the dictionary
    pub id: i64,
    /// The data for the dictionary
    pub data: ArrowJsonBatch,
}

/// A struct that partially reads the Arrow JSON column/array
#[derive(Deserialize, Serialize, Clone, Debug)]
pub struct ArrowJsonColumn {
    name: String,
    /// The number of elements in the column
    pub count: usize,
    /// The validity bitmap to determine null values
    #[serde(rename = "VALIDITY")]
    pub validity: Option<Vec<u8>>,
    /// The data values in the column
    #[serde(rename = "DATA")]
    pub data: Option<Vec<Value>>,
    /// The offsets for variable-sized data types
    #[serde(rename = "OFFSET")]
    pub offset: Option<Vec<Value>>, // leaving as Value as 64-bit offsets are strings
    /// The type id for union types
    #[serde(rename = "TYPE_ID")]
    pub type_id: Option<Vec<i8>>,
    /// The children columns for nested types
    pub children: Option<Vec<ArrowJsonColumn>>,
}

impl ArrowJson {
    /// Compare the Arrow JSON with a record batch reader
    pub fn equals_reader(&self, reader: &mut dyn RecordBatchReader) -> Result<bool> {
        if !self.schema.equals_schema(&reader.schema()) {
            return Ok(false);
        }

        for json_batch in self.get_record_batches()?.into_iter() {
            let batch = reader.next();
            match batch {
                Some(Ok(batch)) => {
                    if json_batch != batch {
                        println!("json: {json_batch:?}");
                        println!("batch: {batch:?}");
                        return Ok(false);
                    }
                }
                Some(Err(e)) => return Err(e),
                None => return Ok(false),
            }
        }

        Ok(true)
    }

    /// Convert the stored dictionaries to `Vec[RecordBatch]`
    pub fn get_record_batches(&self) -> Result<Vec<RecordBatch>> {
        let schema = self.schema.to_arrow_schema()?;

        let mut dictionaries = HashMap::new();
        self.dictionaries.iter().for_each(|dict_batches| {
            dict_batches.iter().for_each(|d| {
                dictionaries.insert(d.id, d.clone());
            });
        });

        let batches: Result<Vec<_>> = self
            .batches
            .iter()
            .map(|col| record_batch_from_json(&schema, col.clone(), Some(&dictionaries)))
            .collect();

        batches
    }
}

impl ArrowJsonSchema {
    /// Compare the Arrow JSON schema with the Arrow `Schema`
    fn equals_schema(&self, schema: &Schema) -> bool {
        let field_len = self.fields.len();
        if field_len != schema.fields().len() {
            return false;
        }
        for i in 0..field_len {
            let json_field = &self.fields[i];
            let field = schema.field(i);
            if !json_field.equals_field(field) {
                return false;
            }
        }
        true
    }

    fn to_arrow_schema(&self) -> Result<Schema> {
        let arrow_fields: Result<Vec<_>> = self
            .fields
            .iter()
            .map(|field| field.to_arrow_field())
            .collect();

        if let Some(metadatas) = &self.metadata {
            let mut metadata: HashMap<String, String> = HashMap::new();

            metadatas.iter().for_each(|pair| {
                let key = pair.get("key").unwrap();
                let value = pair.get("value").unwrap();
                metadata.insert(key.clone(), value.clone());
            });

            Ok(Schema::new_with_metadata(arrow_fields?, metadata))
        } else {
            Ok(Schema::new(arrow_fields?))
        }
    }
}

impl ArrowJsonField {
    /// Compare the Arrow JSON field with the Arrow `Field`
    fn equals_field(&self, field: &Field) -> bool {
        // convert to a field
        match self.to_arrow_field() {
            Ok(self_field) => {
                assert_eq!(&self_field, field, "Arrow fields not the same");
                true
            }
            Err(e) => {
                eprintln!("Encountered error while converting JSON field to Arrow field: {e:?}");
                false
            }
        }
    }

    /// Convert to an Arrow Field
    /// TODO: convert to use an Into
    fn to_arrow_field(&self) -> Result<Field> {
        // a bit regressive, but we have to convert the field to JSON in order to convert it
        let field =
            serde_json::to_value(self).map_err(|error| ArrowError::JsonError(error.to_string()))?;
        field_from_json(&field)
    }
}

/// Generates a [`RecordBatch`] from an Arrow JSON batch, given a schema
pub fn record_batch_from_json(
    schema: &Schema,
    json_batch: ArrowJsonBatch,
    json_dictionaries: Option<&HashMap<i64, ArrowJsonDictionaryBatch>>,
) -> Result<RecordBatch> {
    let mut columns = vec![];

    for (field, json_col) in schema.fields().iter().zip(json_batch.columns) {
        let col = array_from_json(field, json_col, json_dictionaries)?;
        columns.push(col);
    }

    RecordBatch::try_new(Arc::new(schema.clone()), columns)
}

/// Construct an Arrow array from a partially typed JSON column
pub fn array_from_json(
    field: &Field,
    json_col: ArrowJsonColumn,
    dictionaries: Option<&HashMap<i64, ArrowJsonDictionaryBatch>>,
) -> Result<ArrayRef> {
    match field.data_type() {
        DataType::Null => Ok(Arc::new(NullArray::new(json_col.count))),
        DataType::Boolean => {
            let mut b = BooleanBuilder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_bool().unwrap()),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Int8 => {
            let mut b = Int8Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_i64().ok_or_else(|| {
                        ArrowError::JsonError(format!("Unable to get {value:?} as int64"))
                    })? as i8),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Int16 => {
            let mut b = Int16Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_i64().unwrap() as i16),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Int32 | DataType::Date32 | DataType::Time32(_) => {
            let mut b = Int32Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_i64().unwrap() as i32),
                    _ => b.append_null(),
                };
            }
            let array = Arc::new(b.finish()) as ArrayRef;
            arrow::compute::cast(&array, field.data_type())
        }
        DataType::Interval(IntervalUnit::YearMonth) => {
            let mut b = IntervalYearMonthBuilder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_i64().unwrap() as i32),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Int64
        | DataType::Date64
        | DataType::Time64(_)
        | DataType::Timestamp(_, _)
        | DataType::Duration(_) => {
            let mut b = Int64Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(match value {
                        Value::Number(n) => n.as_i64().unwrap(),
                        Value::String(s) => s.parse().expect("Unable to parse string as i64"),
                        _ => panic!("Unable to parse {value:?} as number"),
                    }),
                    _ => b.append_null(),
                };
            }
            let array = Arc::new(b.finish()) as ArrayRef;
            arrow::compute::cast(&array, field.data_type())
        }
        DataType::Interval(IntervalUnit::DayTime) => {
            let mut b = IntervalDayTimeBuilder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(match value {
                        Value::Object(ref map)
                            if map.contains_key("days") && map.contains_key("milliseconds") =>
                        {
                            match field.data_type() {
                                DataType::Interval(IntervalUnit::DayTime) => {
                                    let days = map.get("days").unwrap();
                                    let milliseconds = map.get("milliseconds").unwrap();

                                    match (days, milliseconds) {
                                        (Value::Number(d), Value::Number(m)) => {
                                            let days = d.as_i64().unwrap() as _;
                                            let millis = m.as_i64().unwrap() as _;
                                            IntervalDayTime::new(days, millis)
                                        }
                                        _ => {
                                            panic!("Unable to parse {value:?} as interval daytime")
                                        }
                                    }
                                }
                                _ => panic!("Unable to parse {value:?} as interval daytime"),
                            }
                        }
                        _ => panic!("Unable to parse {value:?} as number"),
                    }),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::UInt8 => {
            let mut b = UInt8Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_u64().unwrap() as u8),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::UInt16 => {
            let mut b = UInt16Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_u64().unwrap() as u16),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::UInt32 => {
            let mut b = UInt32Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_u64().unwrap() as u32),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::UInt64 => {
            let mut b = UInt64Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => {
                        if value.is_string() {
                            b.append_value(
                                value
                                    .as_str()
                                    .unwrap()
                                    .parse()
                                    .expect("Unable to parse string as u64"),
                            )
                        } else if value.is_number() {
                            b.append_value(value.as_u64().expect("Unable to read number as u64"))
                        } else {
                            panic!("Unable to parse value {value:?} as u64")
                        }
                    }
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Interval(IntervalUnit::MonthDayNano) => {
            let mut b = IntervalMonthDayNanoBuilder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(match value {
                        Value::Object(v) => {
                            let months = v.get("months").unwrap();
                            let days = v.get("days").unwrap();
                            let nanoseconds = v.get("nanoseconds").unwrap();
                            match (months, days, nanoseconds) {
                                (
                                    Value::Number(months),
                                    Value::Number(days),
                                    Value::Number(nanoseconds),
                                ) => {
                                    let months = months.as_i64().unwrap() as i32;
                                    let days = days.as_i64().unwrap() as i32;
                                    let nanoseconds = nanoseconds.as_i64().unwrap();
                                    IntervalMonthDayNano::new(months, days, nanoseconds)
                                }
                                (_, _, _) => {
                                    panic!("Unable to parse {v:?} as MonthDayNano")
                                }
                            }
                        }
                        _ => panic!("Unable to parse {value:?} as MonthDayNano"),
                    }),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Float32 => {
            let mut b = Float32Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_f64().unwrap() as f32),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Float64 => {
            let mut b = Float64Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_f64().unwrap()),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Binary => {
            let mut b = BinaryBuilder::with_capacity(json_col.count, 1024);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => {
                        let v = decode(value.as_str().unwrap()).unwrap();
                        b.append_value(&v)
                    }
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::LargeBinary => {
            let mut b = LargeBinaryBuilder::with_capacity(json_col.count, 1024);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => {
                        let v = decode(value.as_str().unwrap()).unwrap();
                        b.append_value(&v)
                    }
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::Utf8 => {
            let mut b = StringBuilder::with_capacity(json_col.count, 1024);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_str().unwrap()),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::LargeUtf8 => {
            let mut b = LargeStringBuilder::with_capacity(json_col.count, 1024);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_str().unwrap()),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::FixedSizeBinary(len) => {
            let mut b = FixedSizeBinaryBuilder::with_capacity(json_col.count, *len);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => {
                        let v = hex::decode(value.as_str().unwrap()).unwrap();
                        b.append_value(&v)?
                    }
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(b.finish()))
        }
        DataType::List(child_field) => {
            let null_buf = create_null_buf(&json_col);
            let children = json_col.children.clone().unwrap();
            let child_array = array_from_json(child_field, children[0].clone(), dictionaries)?;
            let offsets: Vec<i32> = json_col
                .offset
                .unwrap()
                .iter()
                .map(|v| v.as_i64().unwrap() as i32)
                .collect();
            let list_data = ArrayData::builder(field.data_type().clone())
                .len(json_col.count)
                .offset(0)
                .add_buffer(Buffer::from(offsets.to_byte_slice()))
                .add_child_data(child_array.into_data())
                .null_bit_buffer(Some(null_buf))
                .build()
                .unwrap();
            Ok(Arc::new(ListArray::from(list_data)))
        }
        DataType::LargeList(child_field) => {
            let null_buf = create_null_buf(&json_col);
            let children = json_col.children.clone().unwrap();
            let child_array = array_from_json(child_field, children[0].clone(), dictionaries)?;
            let offsets: Vec<i64> = json_col
                .offset
                .unwrap()
                .iter()
                .map(|v| match v {
                    Value::Number(n) => n.as_i64().unwrap(),
                    Value::String(s) => s.parse::<i64>().unwrap(),
                    _ => panic!("64-bit offset must be either string or number"),
                })
                .collect();
            let list_data = ArrayData::builder(field.data_type().clone())
                .len(json_col.count)
                .offset(0)
                .add_buffer(Buffer::from(offsets.to_byte_slice()))
                .add_child_data(child_array.into_data())
                .null_bit_buffer(Some(null_buf))
                .build()
                .unwrap();
            Ok(Arc::new(LargeListArray::from(list_data)))
        }
        DataType::FixedSizeList(child_field, _) => {
            let children = json_col.children.clone().unwrap();
            let child_array = array_from_json(child_field, children[0].clone(), dictionaries)?;
            let null_buf = create_null_buf(&json_col);
            let list_data = ArrayData::builder(field.data_type().clone())
                .len(json_col.count)
                .add_child_data(child_array.into_data())
                .null_bit_buffer(Some(null_buf))
                .build()
                .unwrap();
            Ok(Arc::new(FixedSizeListArray::from(list_data)))
        }
        DataType::Struct(fields) => {
            // construct struct with null data
            let null_buf = create_null_buf(&json_col);
            let mut array_data = ArrayData::builder(field.data_type().clone())
                .len(json_col.count)
                .null_bit_buffer(Some(null_buf));

            for (field, col) in fields.iter().zip(json_col.children.unwrap()) {
                let array = array_from_json(field, col, dictionaries)?;
                array_data = array_data.add_child_data(array.into_data());
            }

            let array = StructArray::from(array_data.build().unwrap());
            Ok(Arc::new(array))
        }
        DataType::Dictionary(key_type, value_type) => {
            let dict_id = field.dict_id().ok_or_else(|| {
                ArrowError::JsonError(format!("Unable to find dict_id for field {field:?}"))
            })?;
            // find dictionary
            let dictionary = dictionaries
                .ok_or_else(|| {
                    ArrowError::JsonError(format!(
                        "Unable to find any dictionaries for field {field:?}"
                    ))
                })?
                .get(&dict_id);
            match dictionary {
                Some(dictionary) => dictionary_array_from_json(
                    field,
                    json_col,
                    key_type,
                    value_type,
                    dictionary,
                    dictionaries,
                ),
                None => Err(ArrowError::JsonError(format!(
                    "Unable to find dictionary for field {field:?}"
                ))),
            }
        }
        DataType::Decimal128(precision, scale) => {
            let mut b = Decimal128Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => b.append_value(value.as_str().unwrap().parse::<i128>().unwrap()),
                    _ => b.append_null(),
                };
            }
            Ok(Arc::new(
                b.finish().with_precision_and_scale(*precision, *scale)?,
            ))
        }
        DataType::Decimal256(precision, scale) => {
            let mut b = Decimal256Builder::with_capacity(json_col.count);
            for (is_valid, value) in json_col
                .validity
                .as_ref()
                .unwrap()
                .iter()
                .zip(json_col.data.unwrap())
            {
                match is_valid {
                    1 => {
                        let str = value.as_str().unwrap();
                        let integer = BigInt::parse_bytes(str.as_bytes(), 10).unwrap();
                        let integer_bytes = integer.to_signed_bytes_le();
                        let mut bytes = if integer.is_positive() {
                            [0_u8; 32]
                        } else {
                            [255_u8; 32]
                        };
                        bytes[0..integer_bytes.len()].copy_from_slice(integer_bytes.as_slice());
                        b.append_value(i256::from_le_bytes(bytes));
                    }
                    _ => b.append_null(),
                }
            }
            Ok(Arc::new(
                b.finish().with_precision_and_scale(*precision, *scale)?,
            ))
        }
        DataType::Map(child_field, _) => {
            let null_buf = create_null_buf(&json_col);
            let children = json_col.children.clone().unwrap();
            let child_array = array_from_json(child_field, children[0].clone(), dictionaries)?;
            let offsets: Vec<i32> = json_col
                .offset
                .unwrap()
                .iter()
                .map(|v| v.as_i64().unwrap() as i32)
                .collect();
            let array_data = ArrayData::builder(field.data_type().clone())
                .len(json_col.count)
                .add_buffer(Buffer::from(offsets.to_byte_slice()))
                .add_child_data(child_array.into_data())
                .null_bit_buffer(Some(null_buf))
                .build()
                .unwrap();

            let array = MapArray::from(array_data);
            Ok(Arc::new(array))
        }
        DataType::Union(fields, _) => {
            let type_ids = if let Some(type_id) = json_col.type_id {
                type_id
            } else {
                return Err(ArrowError::JsonError(
                    "Cannot find expected type_id in json column".to_string(),
                ));
            };

            let offset: Option<ScalarBuffer<i32>> = json_col
                .offset
                .map(|offsets| offsets.iter().map(|v| v.as_i64().unwrap() as i32).collect());

            let mut children = Vec::with_capacity(fields.len());
            for ((_, field), col) in fields.iter().zip(json_col.children.unwrap()) {
                let array = array_from_json(field, col, dictionaries)?;
                children.push(array);
            }

            let array =
                UnionArray::try_new(fields.clone(), type_ids.into(), offset, children).unwrap();
            Ok(Arc::new(array))
        }
        t => Err(ArrowError::JsonError(format!(
            "data type {t:?} not supported"
        ))),
    }
}

/// Construct a [`DictionaryArray`] from a partially typed JSON column
pub fn dictionary_array_from_json(
    field: &Field,
    json_col: ArrowJsonColumn,
    dict_key: &DataType,
    dict_value: &DataType,
    dictionary: &ArrowJsonDictionaryBatch,
    dictionaries: Option<&HashMap<i64, ArrowJsonDictionaryBatch>>,
) -> Result<ArrayRef> {
    match dict_key {
        DataType::Int8
        | DataType::Int16
        | DataType::Int32
        | DataType::Int64
        | DataType::UInt8
        | DataType::UInt16
        | DataType::UInt32
        | DataType::UInt64 => {
            let null_buf = create_null_buf(&json_col);

            // build the key data into a buffer, then construct values separately
            let key_field = Field::new_dict(
                "key",
                dict_key.clone(),
                field.is_nullable(),
                field
                    .dict_id()
                    .expect("Dictionary fields must have a dict_id value"),
                field
                    .dict_is_ordered()
                    .expect("Dictionary fields must have a dict_is_ordered value"),
            );
            let keys = array_from_json(&key_field, json_col, None)?;
            // note: not enough info on nullability of dictionary
            let value_field = Field::new("value", dict_value.clone(), true);
            let values = array_from_json(
                &value_field,
                dictionary.data.columns[0].clone(),
                dictionaries,
            )?;

            // convert key and value to dictionary data
            let dict_data = ArrayData::builder(field.data_type().clone())
                .len(keys.len())
                .add_buffer(keys.to_data().buffers()[0].clone())
                .null_bit_buffer(Some(null_buf))
                .add_child_data(values.into_data())
                .build()
                .unwrap();

            let array = match dict_key {
                DataType::Int8 => Arc::new(Int8DictionaryArray::from(dict_data)) as ArrayRef,
                DataType::Int16 => Arc::new(Int16DictionaryArray::from(dict_data)),
                DataType::Int32 => Arc::new(Int32DictionaryArray::from(dict_data)),
                DataType::Int64 => Arc::new(Int64DictionaryArray::from(dict_data)),
                DataType::UInt8 => Arc::new(UInt8DictionaryArray::from(dict_data)),
                DataType::UInt16 => Arc::new(UInt16DictionaryArray::from(dict_data)),
                DataType::UInt32 => Arc::new(UInt32DictionaryArray::from(dict_data)),
                DataType::UInt64 => Arc::new(UInt64DictionaryArray::from(dict_data)),
                _ => unreachable!(),
            };
            Ok(array)
        }
        _ => Err(ArrowError::JsonError(format!(
            "Dictionary key type {dict_key:?} not supported"
        ))),
    }
}

/// A helper to create a null buffer from a `Vec<bool>`
fn create_null_buf(json_col: &ArrowJsonColumn) -> Buffer {
    let num_bytes = bit_util::ceil(json_col.count, 8);
    let mut null_buf = MutableBuffer::new(num_bytes).with_bitset(num_bytes, false);
    json_col
        .validity
        .clone()
        .unwrap()
        .iter()
        .enumerate()
        .for_each(|(i, v)| {
            let null_slice = null_buf.as_slice_mut();
            if *v != 0 {
                bit_util::set_bit(null_slice, i);
            }
        });
    null_buf.into()
}

impl ArrowJsonBatch {
    /// Convert a [`RecordBatch`] to an [`ArrowJsonBatch`]
    pub fn from_batch(batch: &RecordBatch) -> ArrowJsonBatch {
        let mut json_batch = ArrowJsonBatch {
            count: batch.num_rows(),
            columns: Vec::with_capacity(batch.num_columns()),
        };

        for (col, field) in batch.columns().iter().zip(batch.schema().fields.iter()) {
            let json_col = match field.data_type() {
                DataType::Int8 => {
                    let col = col.as_any().downcast_ref::<Int8Array>().unwrap();

                    let mut validity: Vec<u8> = Vec::with_capacity(col.len());
                    let mut data: Vec<Value> = Vec::with_capacity(col.len());

                    for i in 0..col.len() {
                        if col.is_null(i) {
                            validity.push(1);
                            data.push(0i8.into());
                        } else {
                            validity.push(0);
                            data.push(col.value(i).into());
                        }
                    }

                    ArrowJsonColumn {
                        name: field.name().clone(),
                        count: col.len(),
                        validity: Some(validity),
                        data: Some(data),
                        offset: None,
                        type_id: None,
                        children: None,
                    }
                }
                _ => ArrowJsonColumn {
                    name: field.name().clone(),
                    count: col.len(),
                    validity: None,
                    data: None,
                    offset: None,
                    type_id: None,
                    children: None,
                },
            };

            json_batch.columns.push(json_col);
        }

        json_batch
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::fs::File;
    use std::io::Read;

    #[test]
    fn test_schema_equality() {
        let json = r#"
        {
            "fields": [
                {
                    "name": "c1",
                    "type": {"name": "int", "isSigned": true, "bitWidth": 32},
                    "nullable": true,
                    "children": []
                },
                {
                    "name": "c2",
                    "type": {"name": "floatingpoint", "precision": "DOUBLE"},
                    "nullable": true,
                    "children": []
                },
                {
                    "name": "c3",
                    "type": {"name": "utf8"},
                    "nullable": true,
                    "children": []
                },
                {
                    "name": "c4",
                    "type": {
                        "name": "list"
                    },
                    "nullable": true,
                    "children": [
                        {
                            "name": "custom_item",
                            "type": {
                                "name": "int",
                                "isSigned": true,
                                "bitWidth": 32
                            },
                            "nullable": false,
                            "children": []
                        }
                    ]
                }
            ]
        }"#;
        let json_schema: ArrowJsonSchema = serde_json::from_str(json).unwrap();
        let schema = Schema::new(vec![
            Field::new("c1", DataType::Int32, true),
            Field::new("c2", DataType::Float64, true),
            Field::new("c3", DataType::Utf8, true),
            Field::new(
                "c4",
                DataType::List(Arc::new(Field::new("custom_item", DataType::Int32, false))),
                true,
            ),
        ]);
        assert!(json_schema.equals_schema(&schema));
    }

    #[test]
    fn test_arrow_data_equality() {
        let secs_tz = Some("Europe/Budapest".into());
        let millis_tz = Some("America/New_York".into());
        let micros_tz = Some("UTC".into());
        let nanos_tz = Some("Africa/Johannesburg".into());

        let schema = Schema::new(vec![
            Field::new("bools-with-metadata-map", DataType::Boolean, true).with_metadata(
                [("k".to_string(), "v".to_string())]
                    .iter()
                    .cloned()
                    .collect(),
            ),
            Field::new("bools-with-metadata-vec", DataType::Boolean, true).with_metadata(
                [("k2".to_string(), "v2".to_string())]
                    .iter()
                    .cloned()
                    .collect(),
            ),
            Field::new("bools", DataType::Boolean, true),
            Field::new("int8s", DataType::Int8, true),
            Field::new("int16s", DataType::Int16, true),
            Field::new("int32s", DataType::Int32, true),
            Field::new("int64s", DataType::Int64, true),
            Field::new("uint8s", DataType::UInt8, true),
            Field::new("uint16s", DataType::UInt16, true),
            Field::new("uint32s", DataType::UInt32, true),
            Field::new("uint64s", DataType::UInt64, true),
            Field::new("float32s", DataType::Float32, true),
            Field::new("float64s", DataType::Float64, true),
            Field::new("date_days", DataType::Date32, true),
            Field::new("date_millis", DataType::Date64, true),
            Field::new("time_secs", DataType::Time32(TimeUnit::Second), true),
            Field::new("time_millis", DataType::Time32(TimeUnit::Millisecond), true),
            Field::new("time_micros", DataType::Time64(TimeUnit::Microsecond), true),
            Field::new("time_nanos", DataType::Time64(TimeUnit::Nanosecond), true),
            Field::new("ts_secs", DataType::Timestamp(TimeUnit::Second, None), true),
            Field::new(
                "ts_millis",
                DataType::Timestamp(TimeUnit::Millisecond, None),
                true,
            ),
            Field::new(
                "ts_micros",
                DataType::Timestamp(TimeUnit::Microsecond, None),
                true,
            ),
            Field::new(
                "ts_nanos",
                DataType::Timestamp(TimeUnit::Nanosecond, None),
                true,
            ),
            Field::new(
                "ts_secs_tz",
                DataType::Timestamp(TimeUnit::Second, secs_tz.clone()),
                true,
            ),
            Field::new(
                "ts_millis_tz",
                DataType::Timestamp(TimeUnit::Millisecond, millis_tz.clone()),
                true,
            ),
            Field::new(
                "ts_micros_tz",
                DataType::Timestamp(TimeUnit::Microsecond, micros_tz.clone()),
                true,
            ),
            Field::new(
                "ts_nanos_tz",
                DataType::Timestamp(TimeUnit::Nanosecond, nanos_tz.clone()),
                true,
            ),
            Field::new("utf8s", DataType::Utf8, true),
            Field::new(
                "lists",
                DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
                true,
            ),
            Field::new(
                "structs",
                DataType::Struct(Fields::from(vec![
                    Field::new("int32s", DataType::Int32, true),
                    Field::new("utf8s", DataType::Utf8, true),
                ])),
                true,
            ),
        ]);

        let bools_with_metadata_map = BooleanArray::from(vec![Some(true), None, Some(false)]);
        let bools_with_metadata_vec = BooleanArray::from(vec![Some(true), None, Some(false)]);
        let bools = BooleanArray::from(vec![Some(true), None, Some(false)]);
        let int8s = Int8Array::from(vec![Some(1), None, Some(3)]);
        let int16s = Int16Array::from(vec![Some(1), None, Some(3)]);
        let int32s = Int32Array::from(vec![Some(1), None, Some(3)]);
        let int64s = Int64Array::from(vec![Some(1), None, Some(3)]);
        let uint8s = UInt8Array::from(vec![Some(1), None, Some(3)]);
        let uint16s = UInt16Array::from(vec![Some(1), None, Some(3)]);
        let uint32s = UInt32Array::from(vec![Some(1), None, Some(3)]);
        let uint64s = UInt64Array::from(vec![Some(1), None, Some(3)]);
        let float32s = Float32Array::from(vec![Some(1.0), None, Some(3.0)]);
        let float64s = Float64Array::from(vec![Some(1.0), None, Some(3.0)]);
        let date_days = Date32Array::from(vec![Some(1196848), None, None]);
        let date_millis = Date64Array::from(vec![
            Some(167903550396207),
            Some(29923997007884),
            Some(30612271819236),
        ]);
        let time_secs = Time32SecondArray::from(vec![Some(27974), Some(78592), Some(43207)]);
        let time_millis =
            Time32MillisecondArray::from(vec![Some(6613125), Some(74667230), Some(52260079)]);
        let time_micros = Time64MicrosecondArray::from(vec![Some(62522958593), None, None]);
        let time_nanos =
            Time64NanosecondArray::from(vec![Some(73380123595985), None, Some(16584393546415)]);
        let ts_secs = TimestampSecondArray::from(vec![None, Some(193438817552), None]);
        let ts_millis =
            TimestampMillisecondArray::from(vec![None, Some(38606916383008), Some(58113709376587)]);
        let ts_micros = TimestampMicrosecondArray::from(vec![None, None, None]);
        let ts_nanos = TimestampNanosecondArray::from(vec![None, None, Some(-6473623571954960143)]);
        let ts_secs_tz = TimestampSecondArray::from(vec![None, Some(193438817552), None])
            .with_timezone_opt(secs_tz);
        let ts_millis_tz =
            TimestampMillisecondArray::from(vec![None, Some(38606916383008), Some(58113709376587)])
                .with_timezone_opt(millis_tz);
        let ts_micros_tz =
            TimestampMicrosecondArray::from(vec![None, None, None]).with_timezone_opt(micros_tz);
        let ts_nanos_tz =
            TimestampNanosecondArray::from(vec![None, None, Some(-6473623571954960143)])
                .with_timezone_opt(nanos_tz);
        let utf8s = StringArray::from(vec![Some("aa"), None, Some("bbb")]);

        let value_data = Int32Array::from(vec![None, Some(2), None, None]);
        let value_offsets = Buffer::from_slice_ref([0, 3, 4, 4]);
        let list_data_type = DataType::List(Arc::new(Field::new("item", DataType::Int32, true)));
        let list_data = ArrayData::builder(list_data_type)
            .len(3)
            .add_buffer(value_offsets)
            .add_child_data(value_data.into_data())
            .null_bit_buffer(Some(Buffer::from([0b00000011])))
            .build()
            .unwrap();
        let lists = ListArray::from(list_data);

        let structs_int32s = Int32Array::from(vec![None, Some(-2), None]);
        let structs_utf8s = StringArray::from(vec![None, None, Some("aaaaaa")]);
        let struct_data_type = DataType::Struct(Fields::from(vec![
            Field::new("int32s", DataType::Int32, true),
            Field::new("utf8s", DataType::Utf8, true),
        ]));
        let struct_data = ArrayData::builder(struct_data_type)
            .len(3)
            .add_child_data(structs_int32s.into_data())
            .add_child_data(structs_utf8s.into_data())
            .null_bit_buffer(Some(Buffer::from([0b00000011])))
            .build()
            .unwrap();
        let structs = StructArray::from(struct_data);

        let record_batch = RecordBatch::try_new(
            Arc::new(schema.clone()),
            vec![
                Arc::new(bools_with_metadata_map),
                Arc::new(bools_with_metadata_vec),
                Arc::new(bools),
                Arc::new(int8s),
                Arc::new(int16s),
                Arc::new(int32s),
                Arc::new(int64s),
                Arc::new(uint8s),
                Arc::new(uint16s),
                Arc::new(uint32s),
                Arc::new(uint64s),
                Arc::new(float32s),
                Arc::new(float64s),
                Arc::new(date_days),
                Arc::new(date_millis),
                Arc::new(time_secs),
                Arc::new(time_millis),
                Arc::new(time_micros),
                Arc::new(time_nanos),
                Arc::new(ts_secs),
                Arc::new(ts_millis),
                Arc::new(ts_micros),
                Arc::new(ts_nanos),
                Arc::new(ts_secs_tz),
                Arc::new(ts_millis_tz),
                Arc::new(ts_micros_tz),
                Arc::new(ts_nanos_tz),
                Arc::new(utf8s),
                Arc::new(lists),
                Arc::new(structs),
            ],
        )
        .unwrap();
        let mut file = File::open("data/integration.json").unwrap();
        let mut json = String::new();
        file.read_to_string(&mut json).unwrap();
        let arrow_json: ArrowJson = serde_json::from_str(&json).unwrap();
        // test schemas
        assert!(arrow_json.schema.equals_schema(&schema));
        // test record batch
        assert_eq!(arrow_json.get_record_batches().unwrap()[0], record_batch);
    }
}