arrow_buffer/util/
bit_mask.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utils for working with packed bit masks

use crate::bit_util::ceil;

/// Util function to set bits in a slice of bytes.
///
/// This will sets all bits on `write_data` in the range `[offset_write..offset_write+len]`
/// to be equal to the bits in `data` in the range `[offset_read..offset_read+len]`
/// returns the number of `0` bits `data[offset_read..offset_read+len]`
/// `offset_write`, `offset_read`, and `len` are in terms of bits
pub fn set_bits(
    write_data: &mut [u8],
    data: &[u8],
    offset_write: usize,
    offset_read: usize,
    len: usize,
) -> usize {
    assert!(offset_write + len <= write_data.len() * 8);
    assert!(offset_read + len <= data.len() * 8);
    let mut null_count = 0;
    let mut acc = 0;
    while len > acc {
        // SAFETY: the arguments to `set_upto_64bits` are within the valid range because
        // (offset_write + acc) + (len - acc) == offset_write + len <= write_data.len() * 8
        // (offset_read + acc) + (len - acc) == offset_read + len <= data.len() * 8
        let (n, len_set) = unsafe {
            set_upto_64bits(
                write_data,
                data,
                offset_write + acc,
                offset_read + acc,
                len - acc,
            )
        };
        null_count += n;
        acc += len_set;
    }

    null_count
}

/// Similar to `set_bits` but sets only upto 64 bits, actual number of bits set may vary.
/// Returns a pair of the number of `0` bits and the number of bits set
///
/// # Safety
/// The caller must ensure all arguments are within the valid range.
#[inline]
unsafe fn set_upto_64bits(
    write_data: &mut [u8],
    data: &[u8],
    offset_write: usize,
    offset_read: usize,
    len: usize,
) -> (usize, usize) {
    let read_byte = offset_read / 8;
    let read_shift = offset_read % 8;
    let write_byte = offset_write / 8;
    let write_shift = offset_write % 8;

    if len >= 64 {
        let chunk = unsafe { (data.as_ptr().add(read_byte) as *const u64).read_unaligned() };
        if read_shift == 0 {
            if write_shift == 0 {
                // no shifting necessary
                let len = 64;
                let null_count = chunk.count_zeros() as usize;
                unsafe { write_u64_bytes(write_data, write_byte, chunk) };
                (null_count, len)
            } else {
                // only write shifting necessary
                let len = 64 - write_shift;
                let chunk = chunk << write_shift;
                let null_count = len - chunk.count_ones() as usize;
                unsafe { or_write_u64_bytes(write_data, write_byte, chunk) };
                (null_count, len)
            }
        } else if write_shift == 0 {
            // only read shifting necessary
            let len = 64 - 8; // 56 bits so the next set_upto_64bits call will see write_shift == 0
            let chunk = (chunk >> read_shift) & 0x00FFFFFFFFFFFFFF; // 56 bits mask
            let null_count = len - chunk.count_ones() as usize;
            unsafe { write_u64_bytes(write_data, write_byte, chunk) };
            (null_count, len)
        } else {
            let len = 64 - std::cmp::max(read_shift, write_shift);
            let chunk = (chunk >> read_shift) << write_shift;
            let null_count = len - chunk.count_ones() as usize;
            unsafe { or_write_u64_bytes(write_data, write_byte, chunk) };
            (null_count, len)
        }
    } else if len == 1 {
        let byte_chunk = (unsafe { data.get_unchecked(read_byte) } >> read_shift) & 1;
        unsafe { *write_data.get_unchecked_mut(write_byte) |= byte_chunk << write_shift };
        ((byte_chunk ^ 1) as usize, 1)
    } else {
        let len = std::cmp::min(len, 64 - std::cmp::max(read_shift, write_shift));
        let bytes = ceil(len + read_shift, 8);
        // SAFETY: the args of `read_bytes_to_u64` are valid as read_byte + bytes <= data.len()
        let chunk = unsafe { read_bytes_to_u64(data, read_byte, bytes) };
        let mask = u64::MAX >> (64 - len);
        let chunk = (chunk >> read_shift) & mask; // masking to read `len` bits only
        let chunk = chunk << write_shift; // shifting back to align with `write_data`
        let null_count = len - chunk.count_ones() as usize;
        let bytes = ceil(len + write_shift, 8);
        for (i, c) in chunk.to_le_bytes().iter().enumerate().take(bytes) {
            unsafe { *write_data.get_unchecked_mut(write_byte + i) |= c };
        }
        (null_count, len)
    }
}

/// # Safety
/// The caller must ensure `data` has `offset..(offset + 8)` range, and `count <= 8`.
#[inline]
unsafe fn read_bytes_to_u64(data: &[u8], offset: usize, count: usize) -> u64 {
    debug_assert!(count <= 8);
    let mut tmp: u64 = 0;
    let src = data.as_ptr().add(offset);
    unsafe {
        std::ptr::copy_nonoverlapping(src, &mut tmp as *mut _ as *mut u8, count);
    }
    tmp
}

/// # Safety
/// The caller must ensure `data` has `offset..(offset + 8)` range
#[inline]
unsafe fn write_u64_bytes(data: &mut [u8], offset: usize, chunk: u64) {
    let ptr = data.as_mut_ptr().add(offset) as *mut u64;
    ptr.write_unaligned(chunk);
}

/// Similar to `write_u64_bytes`, but this method ORs the offset addressed `data` and `chunk`
/// instead of overwriting
///
/// # Safety
/// The caller must ensure `data` has `offset..(offset + 8)` range
#[inline]
unsafe fn or_write_u64_bytes(data: &mut [u8], offset: usize, chunk: u64) {
    let ptr = data.as_mut_ptr().add(offset);
    let chunk = chunk | (*ptr) as u64;
    (ptr as *mut u64).write_unaligned(chunk);
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::bit_util::{get_bit, set_bit, unset_bit};
    use rand::prelude::StdRng;
    use rand::{Fill, Rng, SeedableRng};
    use std::fmt::Display;

    #[test]
    fn test_set_bits_aligned() {
        SetBitsTest {
            write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            data: vec![
                0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
                0b10100101,
            ],
            offset_write: 8,
            offset_read: 0,
            len: 64,
            expected_data: vec![
                0, 0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011,
                0b11100111, 0b10100101, 0,
            ],
            expected_null_count: 24,
        }
        .verify();
    }

    #[test]
    fn test_set_bits_unaligned_destination_start() {
        SetBitsTest {
            write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            data: vec![
                0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
                0b10100101,
            ],
            offset_write: 3,
            offset_read: 0,
            len: 64,
            expected_data: vec![
                0b00111000, 0b00101111, 0b11001101, 0b11011100, 0b01011110, 0b00011111, 0b00111110,
                0b00101111, 0b00000101, 0b00000000,
            ],
            expected_null_count: 24,
        }
        .verify();
    }

    #[test]
    fn test_set_bits_unaligned_destination_end() {
        SetBitsTest {
            write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            data: vec![
                0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
                0b10100101,
            ],
            offset_write: 8,
            offset_read: 0,
            len: 62,
            expected_data: vec![
                0, 0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011,
                0b11100111, 0b00100101, 0,
            ],
            expected_null_count: 23,
        }
        .verify();
    }

    #[test]
    fn test_set_bits_unaligned() {
        SetBitsTest {
            write_data: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            data: vec![
                0b11100111, 0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111,
                0b10100101, 0b10011001, 0b11011011, 0b11101011, 0b11000011, 0b11100111, 0b10100101,
                0b10011001, 0b11011011, 0b11101011, 0b11000011,
            ],
            offset_write: 3,
            offset_read: 5,
            len: 95,
            expected_data: vec![
                0b01111000, 0b01101001, 0b11100110, 0b11110110, 0b11111010, 0b11110000, 0b01111001,
                0b01101001, 0b11100110, 0b11110110, 0b11111010, 0b11110000, 0b00000001,
            ],
            expected_null_count: 35,
        }
        .verify();
    }

    #[test]
    fn set_bits_fuzz() {
        let mut rng = StdRng::seed_from_u64(42);
        let mut data = SetBitsTest::new();
        for _ in 0..100 {
            data.regen(&mut rng);
            data.verify();
        }
    }

    #[derive(Debug, Default)]
    struct SetBitsTest {
        /// target write data
        write_data: Vec<u8>,
        /// source data
        data: Vec<u8>,
        offset_write: usize,
        offset_read: usize,
        len: usize,
        /// the expected contents of write_data after the test
        expected_data: Vec<u8>,
        /// the expected number of nulls copied at the end of the test
        expected_null_count: usize,
    }

    /// prints a byte slice as a binary string like "01010101 10101010"
    struct BinaryFormatter<'a>(&'a [u8]);
    impl Display for BinaryFormatter<'_> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            for byte in self.0 {
                write!(f, "{:08b} ", byte)?;
            }
            write!(f, " ")?;
            Ok(())
        }
    }

    impl Display for SetBitsTest {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            writeln!(f, "SetBitsTest {{")?;
            writeln!(f, "  write_data:    {}", BinaryFormatter(&self.write_data))?;
            writeln!(f, "  data:          {}", BinaryFormatter(&self.data))?;
            writeln!(
                f,
                "  expected_data: {}",
                BinaryFormatter(&self.expected_data)
            )?;
            writeln!(f, "  offset_write: {}", self.offset_write)?;
            writeln!(f, "  offset_read: {}", self.offset_read)?;
            writeln!(f, "  len: {}", self.len)?;
            writeln!(f, "  expected_null_count: {}", self.expected_null_count)?;
            writeln!(f, "}}")
        }
    }

    impl SetBitsTest {
        /// create a new instance of FuzzData
        fn new() -> Self {
            Self::default()
        }

        /// Update this instance's fields with randomly selected values and expected data
        fn regen(&mut self, rng: &mut StdRng) {
            //  (read) data
            // ------------------+-----------------+-------
            // .. offset_read .. | data            | ...
            // ------------------+-----------------+-------

            // Write data
            // -------------------+-----------------+-------
            // .. offset_write .. | (data to write) | ...
            // -------------------+-----------------+-------

            // length of data to copy
            let len = rng.gen_range(0..=200);

            // randomly pick where we will write to
            let offset_write_bits = rng.gen_range(0..=200);
            let offset_write_bytes = if offset_write_bits % 8 == 0 {
                offset_write_bits / 8
            } else {
                (offset_write_bits / 8) + 1
            };
            let extra_write_data_bytes = rng.gen_range(0..=5); // ensure 0 shows up often

            // randomly decide where we will read from
            let extra_read_data_bytes = rng.gen_range(0..=5); // make sure 0 shows up often
            let offset_read_bits = rng.gen_range(0..=200);
            let offset_read_bytes = if offset_read_bits % 8 != 0 {
                (offset_read_bits / 8) + 1
            } else {
                offset_read_bits / 8
            };

            // create space for writing
            self.write_data.clear();
            self.write_data
                .resize(offset_write_bytes + len + extra_write_data_bytes, 0);

            // interestingly set_bits seems to assume the output is already zeroed
            // the fuzz tests fail when this is uncommented
            //self.write_data.try_fill(rng).unwrap();
            self.offset_write = offset_write_bits;

            // make source data
            self.data
                .resize(offset_read_bytes + len + extra_read_data_bytes, 0);
            // fill source data with random bytes
            self.data.try_fill(rng).unwrap();
            self.offset_read = offset_read_bits;

            self.len = len;

            // generated expectated output (not efficient)
            self.expected_data.resize(self.write_data.len(), 0);
            self.expected_data.copy_from_slice(&self.write_data);

            self.expected_null_count = 0;
            for i in 0..self.len {
                let bit = get_bit(&self.data, self.offset_read + i);
                if bit {
                    set_bit(&mut self.expected_data, self.offset_write + i);
                } else {
                    unset_bit(&mut self.expected_data, self.offset_write + i);
                    self.expected_null_count += 1;
                }
            }
        }

        /// call set_bits with the given parameters and compare with the expected output
        fn verify(&self) {
            // call set_bits and compare
            let mut actual = self.write_data.to_vec();
            let null_count = set_bits(
                &mut actual,
                &self.data,
                self.offset_write,
                self.offset_read,
                self.len,
            );

            assert_eq!(actual, self.expected_data, "self: {}", self);
            assert_eq!(null_count, self.expected_null_count, "self: {}", self);
        }
    }

    #[test]
    fn test_set_upto_64bits() {
        // len >= 64
        let write_data: &mut [u8] = &mut [0; 9];
        let data: &[u8] = &[
            0b00000001, 0b00000001, 0b00000001, 0b00000001, 0b00000001, 0b00000001, 0b00000001,
            0b00000001, 0b00000001,
        ];
        let offset_write = 1;
        let offset_read = 0;
        let len = 65;
        let (n, len_set) =
            unsafe { set_upto_64bits(write_data, data, offset_write, offset_read, len) };
        assert_eq!(n, 55);
        assert_eq!(len_set, 63);
        assert_eq!(
            write_data,
            &[
                0b00000010, 0b00000010, 0b00000010, 0b00000010, 0b00000010, 0b00000010, 0b00000010,
                0b00000010, 0b00000000
            ]
        );

        // len = 1
        let write_data: &mut [u8] = &mut [0b00000000];
        let data: &[u8] = &[0b00000001];
        let offset_write = 1;
        let offset_read = 0;
        let len = 1;
        let (n, len_set) =
            unsafe { set_upto_64bits(write_data, data, offset_write, offset_read, len) };
        assert_eq!(n, 0);
        assert_eq!(len_set, 1);
        assert_eq!(write_data, &[0b00000010]);
    }
}