arrow_buffer/
bytes.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! This module contains an implementation of a contiguous immutable memory region that knows
//! how to de-allocate itself, [`Bytes`].
//! Note that this is a low-level functionality of this crate.

use core::slice;
use std::ptr::NonNull;
use std::{fmt::Debug, fmt::Formatter};

use crate::alloc::Deallocation;
use crate::buffer::dangling_ptr;

/// A continuous, fixed-size, immutable memory region that knows how to de-allocate itself.
///
/// Note that this structure is an internal implementation detail of the
/// arrow-rs crate. While it has the same name and similar API as
/// [`bytes::Bytes`] it is not limited to rust's global allocator nor u8
/// alignment. It is possible to create a `Bytes` from `bytes::Bytes` using the
/// `From` implementation.
///
/// In the most common case, this buffer is allocated using [`alloc`](std::alloc::alloc)
/// with an alignment of [`ALIGNMENT`](crate::alloc::ALIGNMENT)
///
/// When the region is allocated by a different allocator, [Deallocation::Custom], this calls the
/// custom deallocator to deallocate the region when it is no longer needed.
///
pub struct Bytes {
    /// The raw pointer to be beginning of the region
    ptr: NonNull<u8>,

    /// The number of bytes visible to this region. This is always smaller than its capacity (when available).
    len: usize,

    /// how to deallocate this region
    deallocation: Deallocation,
}

impl Bytes {
    /// Takes ownership of an allocated memory region,
    ///
    /// # Arguments
    ///
    /// * `ptr` - Pointer to raw parts
    /// * `len` - Length of raw parts in **bytes**
    /// * `deallocation` - Type of allocation
    ///
    /// # Safety
    ///
    /// This function is unsafe as there is no guarantee that the given pointer is valid for `len`
    /// bytes. If the `ptr` and `capacity` come from a `Buffer`, then this is guaranteed.
    #[inline]
    pub(crate) unsafe fn new(ptr: NonNull<u8>, len: usize, deallocation: Deallocation) -> Bytes {
        Bytes {
            ptr,
            len,
            deallocation,
        }
    }

    fn as_slice(&self) -> &[u8] {
        self
    }

    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    #[inline]
    pub fn ptr(&self) -> NonNull<u8> {
        self.ptr
    }

    pub fn capacity(&self) -> usize {
        match self.deallocation {
            Deallocation::Standard(layout) => layout.size(),
            // we only know the size of the custom allocation
            // its underlying capacity might be larger
            Deallocation::Custom(_, size) => size,
        }
    }

    /// Try to reallocate the underlying memory region to a new size (smaller or larger).
    ///
    /// Only works for bytes allocated with the standard allocator.
    /// Returns `Err` if the memory was allocated with a custom allocator,
    /// or the call to `realloc` failed, for whatever reason.
    /// In case of `Err`, the [`Bytes`] will remain as it was (i.e. have the old size).
    pub fn try_realloc(&mut self, new_len: usize) -> Result<(), ()> {
        if let Deallocation::Standard(old_layout) = self.deallocation {
            if old_layout.size() == new_len {
                return Ok(()); // Nothing to do
            }

            if let Ok(new_layout) = std::alloc::Layout::from_size_align(new_len, old_layout.align())
            {
                let old_ptr = self.ptr.as_ptr();

                let new_ptr = match new_layout.size() {
                    0 => {
                        // SAFETY: Verified that old_layout.size != new_len (0)
                        unsafe { std::alloc::dealloc(self.ptr.as_ptr(), old_layout) };
                        Some(dangling_ptr())
                    }
                    // SAFETY: the call to `realloc` is safe if all the following hold (from https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html#method.realloc):
                    // * `old_ptr` must be currently allocated via this allocator (guaranteed by the invariant/contract of `Bytes`)
                    // * `old_layout` must be the same layout that was used to allocate that block of memory (same)
                    // * `new_len` must be greater than zero
                    // * `new_len`, when rounded up to the nearest multiple of `layout.align()`, must not overflow `isize` (guaranteed by the success of `Layout::from_size_align`)
                    _ => NonNull::new(unsafe { std::alloc::realloc(old_ptr, old_layout, new_len) }),
                };

                if let Some(ptr) = new_ptr {
                    self.ptr = ptr;
                    self.len = new_len;
                    self.deallocation = Deallocation::Standard(new_layout);
                    return Ok(());
                }
            }
        }

        Err(())
    }

    #[inline]
    pub(crate) fn deallocation(&self) -> &Deallocation {
        &self.deallocation
    }
}

// Deallocation is Send + Sync, repeating the bound here makes that refactoring safe
// The only field that is not automatically Send+Sync then is the NonNull ptr
unsafe impl Send for Bytes where Deallocation: Send {}
unsafe impl Sync for Bytes where Deallocation: Sync {}

impl Drop for Bytes {
    #[inline]
    fn drop(&mut self) {
        match &self.deallocation {
            Deallocation::Standard(layout) => match layout.size() {
                0 => {} // Nothing to do
                _ => unsafe { std::alloc::dealloc(self.ptr.as_ptr(), *layout) },
            },
            // The automatic drop implementation will free the memory once the reference count reaches zero
            Deallocation::Custom(_allocation, _size) => (),
        }
    }
}

impl std::ops::Deref for Bytes {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
    }
}

impl PartialEq for Bytes {
    fn eq(&self, other: &Bytes) -> bool {
        self.as_slice() == other.as_slice()
    }
}

impl Debug for Bytes {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        write!(f, "Bytes {{ ptr: {:?}, len: {}, data: ", self.ptr, self.len,)?;

        f.debug_list().entries(self.iter()).finish()?;

        write!(f, " }}")
    }
}

impl From<bytes::Bytes> for Bytes {
    fn from(value: bytes::Bytes) -> Self {
        let len = value.len();
        Self {
            len,
            ptr: NonNull::new(value.as_ptr() as _).unwrap(),
            deallocation: Deallocation::Custom(std::sync::Arc::new(value), len),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_from_bytes() {
        let bytes = bytes::Bytes::from(vec![1, 2, 3, 4]);
        let arrow_bytes: Bytes = bytes.clone().into();

        assert_eq!(bytes.as_ptr(), arrow_bytes.as_ptr());

        drop(bytes);
        drop(arrow_bytes);

        let _ = Bytes::from(bytes::Bytes::new());
    }
}