arrow_buffer/bytes.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! This module contains an implementation of a contiguous immutable memory region that knows
//! how to de-allocate itself, [`Bytes`].
//! Note that this is a low-level functionality of this crate.
use core::slice;
use std::ptr::NonNull;
use std::{fmt::Debug, fmt::Formatter};
use crate::alloc::Deallocation;
use crate::buffer::dangling_ptr;
/// A continuous, fixed-size, immutable memory region that knows how to de-allocate itself.
///
/// Note that this structure is an internal implementation detail of the
/// arrow-rs crate. While it has the same name and similar API as
/// [`bytes::Bytes`] it is not limited to rust's global allocator nor u8
/// alignment. It is possible to create a `Bytes` from `bytes::Bytes` using the
/// `From` implementation.
///
/// In the most common case, this buffer is allocated using [`alloc`](std::alloc::alloc)
/// with an alignment of [`ALIGNMENT`](crate::alloc::ALIGNMENT)
///
/// When the region is allocated by a different allocator, [Deallocation::Custom], this calls the
/// custom deallocator to deallocate the region when it is no longer needed.
///
pub struct Bytes {
/// The raw pointer to be beginning of the region
ptr: NonNull<u8>,
/// The number of bytes visible to this region. This is always smaller than its capacity (when available).
len: usize,
/// how to deallocate this region
deallocation: Deallocation,
}
impl Bytes {
/// Takes ownership of an allocated memory region,
///
/// # Arguments
///
/// * `ptr` - Pointer to raw parts
/// * `len` - Length of raw parts in **bytes**
/// * `deallocation` - Type of allocation
///
/// # Safety
///
/// This function is unsafe as there is no guarantee that the given pointer is valid for `len`
/// bytes. If the `ptr` and `capacity` come from a `Buffer`, then this is guaranteed.
#[inline]
pub(crate) unsafe fn new(ptr: NonNull<u8>, len: usize, deallocation: Deallocation) -> Bytes {
Bytes {
ptr,
len,
deallocation,
}
}
fn as_slice(&self) -> &[u8] {
self
}
#[inline]
pub fn len(&self) -> usize {
self.len
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
#[inline]
pub fn ptr(&self) -> NonNull<u8> {
self.ptr
}
pub fn capacity(&self) -> usize {
match self.deallocation {
Deallocation::Standard(layout) => layout.size(),
// we only know the size of the custom allocation
// its underlying capacity might be larger
Deallocation::Custom(_, size) => size,
}
}
/// Try to reallocate the underlying memory region to a new size (smaller or larger).
///
/// Only works for bytes allocated with the standard allocator.
/// Returns `Err` if the memory was allocated with a custom allocator,
/// or the call to `realloc` failed, for whatever reason.
/// In case of `Err`, the [`Bytes`] will remain as it was (i.e. have the old size).
pub fn try_realloc(&mut self, new_len: usize) -> Result<(), ()> {
if let Deallocation::Standard(old_layout) = self.deallocation {
if old_layout.size() == new_len {
return Ok(()); // Nothing to do
}
if let Ok(new_layout) = std::alloc::Layout::from_size_align(new_len, old_layout.align())
{
let old_ptr = self.ptr.as_ptr();
let new_ptr = match new_layout.size() {
0 => {
// SAFETY: Verified that old_layout.size != new_len (0)
unsafe { std::alloc::dealloc(self.ptr.as_ptr(), old_layout) };
Some(dangling_ptr())
}
// SAFETY: the call to `realloc` is safe if all the following hold (from https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html#method.realloc):
// * `old_ptr` must be currently allocated via this allocator (guaranteed by the invariant/contract of `Bytes`)
// * `old_layout` must be the same layout that was used to allocate that block of memory (same)
// * `new_len` must be greater than zero
// * `new_len`, when rounded up to the nearest multiple of `layout.align()`, must not overflow `isize` (guaranteed by the success of `Layout::from_size_align`)
_ => NonNull::new(unsafe { std::alloc::realloc(old_ptr, old_layout, new_len) }),
};
if let Some(ptr) = new_ptr {
self.ptr = ptr;
self.len = new_len;
self.deallocation = Deallocation::Standard(new_layout);
return Ok(());
}
}
}
Err(())
}
#[inline]
pub(crate) fn deallocation(&self) -> &Deallocation {
&self.deallocation
}
}
// Deallocation is Send + Sync, repeating the bound here makes that refactoring safe
// The only field that is not automatically Send+Sync then is the NonNull ptr
unsafe impl Send for Bytes where Deallocation: Send {}
unsafe impl Sync for Bytes where Deallocation: Sync {}
impl Drop for Bytes {
#[inline]
fn drop(&mut self) {
match &self.deallocation {
Deallocation::Standard(layout) => match layout.size() {
0 => {} // Nothing to do
_ => unsafe { std::alloc::dealloc(self.ptr.as_ptr(), *layout) },
},
// The automatic drop implementation will free the memory once the reference count reaches zero
Deallocation::Custom(_allocation, _size) => (),
}
}
}
impl std::ops::Deref for Bytes {
type Target = [u8];
fn deref(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
}
}
impl PartialEq for Bytes {
fn eq(&self, other: &Bytes) -> bool {
self.as_slice() == other.as_slice()
}
}
impl Debug for Bytes {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(f, "Bytes {{ ptr: {:?}, len: {}, data: ", self.ptr, self.len,)?;
f.debug_list().entries(self.iter()).finish()?;
write!(f, " }}")
}
}
impl From<bytes::Bytes> for Bytes {
fn from(value: bytes::Bytes) -> Self {
let len = value.len();
Self {
len,
ptr: NonNull::new(value.as_ptr() as _).unwrap(),
deallocation: Deallocation::Custom(std::sync::Arc::new(value), len),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_from_bytes() {
let bytes = bytes::Bytes::from(vec![1, 2, 3, 4]);
let arrow_bytes: Bytes = bytes.clone().into();
assert_eq!(bytes.as_ptr(), arrow_bytes.as_ptr());
drop(bytes);
drop(arrow_bytes);
let _ = Bytes::from(bytes::Bytes::new());
}
}