arrow_array/scalar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::Array;
/// A possibly [`Scalar`] [`Array`]
///
/// This allows optimised binary kernels where one or more arguments are constant
///
/// ```
/// # use arrow_array::*;
/// # use arrow_buffer::{BooleanBuffer, MutableBuffer, NullBuffer};
/// # use arrow_schema::ArrowError;
/// #
/// fn eq_impl<T: ArrowPrimitiveType>(
/// a: &PrimitiveArray<T>,
/// a_scalar: bool,
/// b: &PrimitiveArray<T>,
/// b_scalar: bool,
/// ) -> BooleanArray {
/// let (array, scalar) = match (a_scalar, b_scalar) {
/// (true, true) | (false, false) => {
/// let len = a.len().min(b.len());
/// let nulls = NullBuffer::union(a.nulls(), b.nulls());
/// let buffer = BooleanBuffer::collect_bool(len, |idx| a.value(idx) == b.value(idx));
/// return BooleanArray::new(buffer, nulls);
/// }
/// (true, false) => (b, (a.null_count() == 0).then(|| a.value(0))),
/// (false, true) => (a, (b.null_count() == 0).then(|| b.value(0))),
/// };
/// match scalar {
/// Some(v) => {
/// let len = array.len();
/// let nulls = array.nulls().cloned();
/// let buffer = BooleanBuffer::collect_bool(len, |idx| array.value(idx) == v);
/// BooleanArray::new(buffer, nulls)
/// }
/// None => BooleanArray::new_null(array.len()),
/// }
/// }
///
/// pub fn eq(l: &dyn Datum, r: &dyn Datum) -> Result<BooleanArray, ArrowError> {
/// let (l_array, l_scalar) = l.get();
/// let (r_array, r_scalar) = r.get();
/// downcast_primitive_array!(
/// (l_array, r_array) => Ok(eq_impl(l_array, l_scalar, r_array, r_scalar)),
/// (a, b) => Err(ArrowError::NotYetImplemented(format!("{a} == {b}"))),
/// )
/// }
///
/// // Comparison of two arrays
/// let a = Int32Array::from(vec![1, 2, 3, 4, 5]);
/// let b = Int32Array::from(vec![1, 2, 4, 7, 3]);
/// let r = eq(&a, &b).unwrap();
/// let values: Vec<_> = r.values().iter().collect();
/// assert_eq!(values, &[true, true, false, false, false]);
///
/// // Comparison of an array and a scalar
/// let a = Int32Array::from(vec![1, 2, 3, 4, 5]);
/// let b = Int32Array::new_scalar(1);
/// let r = eq(&a, &b).unwrap();
/// let values: Vec<_> = r.values().iter().collect();
/// assert_eq!(values, &[true, false, false, false, false]);
pub trait Datum {
/// Returns the value for this [`Datum`] and a boolean indicating if the value is scalar
fn get(&self) -> (&dyn Array, bool);
}
impl<T: Array> Datum for T {
fn get(&self) -> (&dyn Array, bool) {
(self, false)
}
}
impl Datum for dyn Array {
fn get(&self) -> (&dyn Array, bool) {
(self, false)
}
}
impl Datum for &dyn Array {
fn get(&self) -> (&dyn Array, bool) {
(*self, false)
}
}
/// A wrapper around a single value [`Array`] that implements
/// [`Datum`] and indicates [compute] kernels should treat this array
/// as a scalar value (a single value).
///
/// Using a [`Scalar`] is often much more efficient than creating an
/// [`Array`] with the same (repeated) value.
///
/// See [`Datum`] for more information.
///
/// # Example
///
/// ```rust
/// # use arrow_array::{Scalar, Int32Array, ArrayRef};
/// # fn get_array() -> ArrayRef { std::sync::Arc::new(Int32Array::from(vec![42])) }
/// // Create a (typed) scalar for Int32Array for the value 42
/// let scalar = Scalar::new(Int32Array::from(vec![42]));
///
/// // Create a scalar using PrimtiveArray::scalar
/// let scalar = Int32Array::new_scalar(42);
///
/// // create a scalar from an ArrayRef (for dynamic typed Arrays)
/// let array: ArrayRef = get_array();
/// let scalar = Scalar::new(array);
/// ```
///
/// [compute]: https://docs.rs/arrow/latest/arrow/compute/index.html
#[derive(Debug, Copy, Clone)]
pub struct Scalar<T: Array>(T);
impl<T: Array> Scalar<T> {
/// Create a new [`Scalar`] from an [`Array`]
///
/// # Panics
///
/// Panics if `array.len() != 1`
pub fn new(array: T) -> Self {
assert_eq!(array.len(), 1);
Self(array)
}
/// Returns the inner array
#[inline]
pub fn into_inner(self) -> T {
self.0
}
}
impl<T: Array> Datum for Scalar<T> {
fn get(&self) -> (&dyn Array, bool) {
(&self.0, true)
}
}