arrow_array/
run_iterator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Idiomatic iterator for [`RunArray`](crate::RunArray)

use crate::{array::ArrayAccessor, types::RunEndIndexType, Array, TypedRunArray};
use arrow_buffer::ArrowNativeType;

/// The [`RunArrayIter`] provides an idiomatic way to iterate over the run array.
/// It returns Some(T) if there is a value or None if the value is null.
///
/// The iterator comes with a cost as it has to iterate over three arrays to determine
/// the value to be returned. The run_ends array is used to determine the index of the value.
/// The nulls array is used to determine if the value is null and the values array is used to
/// get the value.
///
/// Unlike other iterators in this crate, [`RunArrayIter`] does not use [`ArrayAccessor`]
/// because the run array accessor does binary search to access each value which is too slow.
/// The run array iterator can determine the next value in constant time.
///
#[derive(Debug)]
pub struct RunArrayIter<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
    array: TypedRunArray<'a, R, V>,
    current_front_logical: usize,
    current_front_physical: usize,
    current_back_logical: usize,
    current_back_physical: usize,
}

impl<'a, R, V> RunArrayIter<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
    /// create a new iterator
    pub fn new(array: TypedRunArray<'a, R, V>) -> Self {
        let current_front_physical = array.run_array().get_start_physical_index();
        let current_back_physical = array.run_array().get_end_physical_index() + 1;
        RunArrayIter {
            array,
            current_front_logical: array.offset(),
            current_front_physical,
            current_back_logical: array.offset() + array.len(),
            current_back_physical,
        }
    }
}

impl<'a, R, V> Iterator for RunArrayIter<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
    type Item = Option<<&'a V as ArrayAccessor>::Item>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.current_front_logical == self.current_back_logical {
            return None;
        }

        // If current logical index is greater than current run end index then increment
        // the physical index.
        let run_ends = self.array.run_ends().values();
        if self.current_front_logical >= run_ends[self.current_front_physical].as_usize() {
            // As the run_ends is expected to be strictly increasing, there
            // should be at least one logical entry in one physical entry. Because of this
            // reason the next value can be accessed by incrementing physical index once.
            self.current_front_physical += 1;
        }
        if self.array.values().is_null(self.current_front_physical) {
            self.current_front_logical += 1;
            Some(None)
        } else {
            self.current_front_logical += 1;
            // Safety:
            // The self.current_physical is kept within bounds of self.current_logical.
            // The self.current_logical will not go out of bounds because of the check
            // `self.current_logical = self.current_end_logical` above.
            unsafe {
                Some(Some(
                    self.array
                        .values()
                        .value_unchecked(self.current_front_physical),
                ))
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (
            self.current_back_logical - self.current_front_logical,
            Some(self.current_back_logical - self.current_front_logical),
        )
    }
}

impl<'a, R, V> DoubleEndedIterator for RunArrayIter<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        if self.current_back_logical == self.current_front_logical {
            return None;
        }

        self.current_back_logical -= 1;

        let run_ends = self.array.run_ends().values();
        if self.current_back_physical > 0
            && self.current_back_logical < run_ends[self.current_back_physical - 1].as_usize()
        {
            // As the run_ends is expected to be strictly increasing, there
            // should be at least one logical entry in one physical entry. Because of this
            // reason the next value can be accessed by decrementing physical index once.
            self.current_back_physical -= 1;
        }
        Some(if self.array.values().is_null(self.current_back_physical) {
            None
        } else {
            // Safety:
            // The check `self.current_end_physical > 0` ensures the value will not underflow.
            // Also self.current_end_physical starts with array.len() and
            // decrements based on the bounds of self.current_end_logical.
            unsafe {
                Some(
                    self.array
                        .values()
                        .value_unchecked(self.current_back_physical),
                )
            }
        })
    }
}

/// all arrays have known size.
impl<'a, R, V> ExactSizeIterator for RunArrayIter<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
}

#[cfg(test)]
mod tests {
    use rand::{seq::SliceRandom, thread_rng, Rng};

    use crate::{
        array::{Int32Array, StringArray},
        builder::PrimitiveRunBuilder,
        types::{Int16Type, Int32Type},
        Array, Int64RunArray, PrimitiveArray, RunArray,
    };

    fn build_input_array(size: usize) -> Vec<Option<i32>> {
        // The input array is created by shuffling and repeating
        // the seed values random number of times.
        let mut seed: Vec<Option<i32>> = vec![
            None,
            None,
            None,
            Some(1),
            Some(2),
            Some(3),
            Some(4),
            Some(5),
            Some(6),
            Some(7),
            Some(8),
            Some(9),
        ];
        let mut result: Vec<Option<i32>> = Vec::with_capacity(size);
        let mut ix = 0;
        let mut rng = thread_rng();
        // run length can go up to 8. Cap the max run length for smaller arrays to size / 2.
        let max_run_length = 8_usize.min(1_usize.max(size / 2));
        while result.len() < size {
            // shuffle the seed array if all the values are iterated.
            if ix == 0 {
                seed.shuffle(&mut rng);
            }
            // repeat the items between 1 and 8 times. Cap the length for smaller sized arrays
            let num = max_run_length.min(rand::thread_rng().gen_range(1..=max_run_length));
            for _ in 0..num {
                result.push(seed[ix]);
            }
            ix += 1;
            if ix == seed.len() {
                ix = 0
            }
        }
        result.resize(size, None);
        result
    }

    #[test]
    fn test_primitive_array_iter_round_trip() {
        let mut input_vec = vec![
            Some(32),
            Some(32),
            None,
            Some(64),
            Some(64),
            Some(64),
            Some(72),
        ];
        let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
        builder.extend(input_vec.iter().copied());
        let ree_array = builder.finish();
        let ree_array = ree_array.downcast::<Int32Array>().unwrap();

        let output_vec: Vec<Option<i32>> = ree_array.into_iter().collect();
        assert_eq!(input_vec, output_vec);

        let rev_output_vec: Vec<Option<i32>> = ree_array.into_iter().rev().collect();
        input_vec.reverse();
        assert_eq!(input_vec, rev_output_vec);
    }

    #[test]
    fn test_double_ended() {
        let input_vec = vec![
            Some(32),
            Some(32),
            None,
            Some(64),
            Some(64),
            Some(64),
            Some(72),
        ];
        let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
        builder.extend(input_vec);
        let ree_array = builder.finish();
        let ree_array = ree_array.downcast::<Int32Array>().unwrap();

        let mut iter = ree_array.into_iter();
        assert_eq!(Some(Some(32)), iter.next());
        assert_eq!(Some(Some(72)), iter.next_back());
        assert_eq!(Some(Some(32)), iter.next());
        assert_eq!(Some(Some(64)), iter.next_back());
        assert_eq!(Some(None), iter.next());
        assert_eq!(Some(Some(64)), iter.next_back());
        assert_eq!(Some(Some(64)), iter.next());
        assert_eq!(None, iter.next_back());
        assert_eq!(None, iter.next());
    }

    #[test]
    fn test_run_iterator_comprehensive() {
        // Test forward and backward iterator for different array lengths.
        let logical_lengths = vec![1_usize, 2, 3, 4, 15, 16, 17, 63, 64, 65];

        for logical_len in logical_lengths {
            let input_array = build_input_array(logical_len);

            let mut run_array_builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
            run_array_builder.extend(input_array.iter().copied());
            let run_array = run_array_builder.finish();
            let typed_array = run_array.downcast::<Int32Array>().unwrap();

            // test forward iterator
            let mut input_iter = input_array.iter().copied();
            let mut run_array_iter = typed_array.into_iter();
            for _ in 0..logical_len {
                assert_eq!(input_iter.next(), run_array_iter.next());
            }
            assert_eq!(None, run_array_iter.next());

            // test reverse iterator
            let mut input_iter = input_array.iter().rev().copied();
            let mut run_array_iter = typed_array.into_iter().rev();
            for _ in 0..logical_len {
                assert_eq!(input_iter.next(), run_array_iter.next());
            }
            assert_eq!(None, run_array_iter.next());
        }
    }

    #[test]
    fn test_string_array_iter_round_trip() {
        let input_vec = vec!["ab", "ab", "ba", "cc", "cc"];
        let input_ree_array: Int64RunArray = input_vec.into_iter().collect();
        let string_ree_array = input_ree_array.downcast::<StringArray>().unwrap();

        // to and from iter, with a +1
        let result: Vec<Option<String>> = string_ree_array
            .into_iter()
            .map(|e| {
                e.map(|e| {
                    let mut a = e.to_string();
                    a.push('b');
                    a
                })
            })
            .collect();

        let result_asref: Vec<Option<&str>> = result.iter().map(|f| f.as_deref()).collect();

        let expected_vec = vec![
            Some("abb"),
            Some("abb"),
            Some("bab"),
            Some("ccb"),
            Some("ccb"),
        ];

        assert_eq!(expected_vec, result_asref);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Takes too long
    fn test_sliced_run_array_iterator() {
        let total_len = 80;
        let input_array = build_input_array(total_len);

        // Encode the input_array to run array
        let mut builder =
            PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
        builder.extend(input_array.iter().copied());
        let run_array = builder.finish();

        // test for all slice lengths.
        for slice_len in 1..=total_len {
            // test for offset = 0, slice length = slice_len
            let sliced_run_array: RunArray<Int16Type> =
                run_array.slice(0, slice_len).into_data().into();
            let sliced_typed_run_array = sliced_run_array
                .downcast::<PrimitiveArray<Int32Type>>()
                .unwrap();

            // Iterate on sliced typed run array
            let actual: Vec<Option<i32>> = sliced_typed_run_array.into_iter().collect();
            let expected: Vec<Option<i32>> = input_array.iter().take(slice_len).copied().collect();
            assert_eq!(expected, actual);

            // test for offset = total_len - slice_len, length = slice_len
            let sliced_run_array: RunArray<Int16Type> = run_array
                .slice(total_len - slice_len, slice_len)
                .into_data()
                .into();
            let sliced_typed_run_array = sliced_run_array
                .downcast::<PrimitiveArray<Int32Type>>()
                .unwrap();

            // Iterate on sliced typed run array
            let actual: Vec<Option<i32>> = sliced_typed_run_array.into_iter().collect();
            let expected: Vec<Option<i32>> = input_array
                .iter()
                .skip(total_len - slice_len)
                .copied()
                .collect();
            assert_eq!(expected, actual);
        }
    }
}