arrow_array/array/
run_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::any::Any;
use std::sync::Arc;

use arrow_buffer::{ArrowNativeType, BooleanBufferBuilder, NullBuffer, RunEndBuffer};
use arrow_data::{ArrayData, ArrayDataBuilder};
use arrow_schema::{ArrowError, DataType, Field};

use crate::{
    builder::StringRunBuilder,
    make_array,
    run_iterator::RunArrayIter,
    types::{Int16Type, Int32Type, Int64Type, RunEndIndexType},
    Array, ArrayAccessor, ArrayRef, PrimitiveArray,
};

/// An array of [run-end encoded values](https://arrow.apache.org/docs/format/Columnar.html#run-end-encoded-layout)
///
/// This encoding is variation on [run-length encoding (RLE)](https://en.wikipedia.org/wiki/Run-length_encoding)
/// and is good for representing data containing same values repeated consecutively.
///
/// [`RunArray`] contains `run_ends` array and `values` array of same length.
/// The `run_ends` array stores the indexes at which the run ends. The `values` array
/// stores the value of each run. Below example illustrates how a logical array is represented in
/// [`RunArray`]
///
///
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┐
///   ┌─────────────────┐  ┌─────────┐       ┌─────────────────┐
/// │ │        A        │  │    2    │ │     │        A        │
///   ├─────────────────┤  ├─────────┤       ├─────────────────┤
/// │ │        D        │  │    3    │ │     │        A        │    run length of 'A' = runs_ends[0] - 0 = 2
///   ├─────────────────┤  ├─────────┤       ├─────────────────┤
/// │ │        B        │  │    6    │ │     │        D        │    run length of 'D' = run_ends[1] - run_ends[0] = 1
///   └─────────────────┘  └─────────┘       ├─────────────────┤
/// │        values          run_ends  │     │        B        │
///                                          ├─────────────────┤
/// └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘     │        B        │
///                                          ├─────────────────┤
///                RunArray                  │        B        │    run length of 'B' = run_ends[2] - run_ends[1] = 3
///               length = 3                 └─────────────────┘
///
///                                             Logical array
///                                                Contents
/// ```
pub struct RunArray<R: RunEndIndexType> {
    data_type: DataType,
    run_ends: RunEndBuffer<R::Native>,
    values: ArrayRef,
}

impl<R: RunEndIndexType> Clone for RunArray<R> {
    fn clone(&self) -> Self {
        Self {
            data_type: self.data_type.clone(),
            run_ends: self.run_ends.clone(),
            values: self.values.clone(),
        }
    }
}

impl<R: RunEndIndexType> RunArray<R> {
    /// Calculates the logical length of the array encoded
    /// by the given run_ends array.
    pub fn logical_len(run_ends: &PrimitiveArray<R>) -> usize {
        let len = run_ends.len();
        if len == 0 {
            return 0;
        }
        run_ends.value(len - 1).as_usize()
    }

    /// Attempts to create RunArray using given run_ends (index where a run ends)
    /// and the values (value of the run). Returns an error if the given data is not compatible
    /// with RunEndEncoded specification.
    pub fn try_new(run_ends: &PrimitiveArray<R>, values: &dyn Array) -> Result<Self, ArrowError> {
        let run_ends_type = run_ends.data_type().clone();
        let values_type = values.data_type().clone();
        let ree_array_type = DataType::RunEndEncoded(
            Arc::new(Field::new("run_ends", run_ends_type, false)),
            Arc::new(Field::new("values", values_type, true)),
        );
        let len = RunArray::logical_len(run_ends);
        let builder = ArrayDataBuilder::new(ree_array_type)
            .len(len)
            .add_child_data(run_ends.to_data())
            .add_child_data(values.to_data());

        // `build_unchecked` is used to avoid recursive validation of child arrays.
        let array_data = unsafe { builder.build_unchecked() };

        // Safety: `validate_data` checks below
        //    1. The given array data has exactly two child arrays.
        //    2. The first child array (run_ends) has valid data type.
        //    3. run_ends array does not have null values
        //    4. run_ends array has non-zero and strictly increasing values.
        //    5. The length of run_ends array and values array are the same.
        array_data.validate_data()?;

        Ok(array_data.into())
    }

    /// Returns a reference to [`RunEndBuffer`]
    pub fn run_ends(&self) -> &RunEndBuffer<R::Native> {
        &self.run_ends
    }

    /// Returns a reference to values array
    ///
    /// Note: any slicing of this [`RunArray`] array is not applied to the returned array
    /// and must be handled separately
    pub fn values(&self) -> &ArrayRef {
        &self.values
    }

    /// Returns the physical index at which the array slice starts.
    pub fn get_start_physical_index(&self) -> usize {
        self.run_ends.get_start_physical_index()
    }

    /// Returns the physical index at which the array slice ends.
    pub fn get_end_physical_index(&self) -> usize {
        self.run_ends.get_end_physical_index()
    }

    /// Downcast this [`RunArray`] to a [`TypedRunArray`]
    ///
    /// ```
    /// use arrow_array::{Array, ArrayAccessor, RunArray, StringArray, types::Int32Type};
    ///
    /// let orig = [Some("a"), Some("b"), None];
    /// let run_array = RunArray::<Int32Type>::from_iter(orig);
    /// let typed = run_array.downcast::<StringArray>().unwrap();
    /// assert_eq!(typed.value(0), "a");
    /// assert_eq!(typed.value(1), "b");
    /// assert!(typed.values().is_null(2));
    /// ```
    ///
    pub fn downcast<V: 'static>(&self) -> Option<TypedRunArray<'_, R, V>> {
        let values = self.values.as_any().downcast_ref()?;
        Some(TypedRunArray {
            run_array: self,
            values,
        })
    }

    /// Returns index to the physical array for the given index to the logical array.
    /// This function adjusts the input logical index based on `ArrayData::offset`
    /// Performs a binary search on the run_ends array for the input index.
    ///
    /// The result is arbitrary if `logical_index >= self.len()`
    pub fn get_physical_index(&self, logical_index: usize) -> usize {
        self.run_ends.get_physical_index(logical_index)
    }

    /// Returns the physical indices of the input logical indices. Returns error if any of the logical
    /// index cannot be converted to physical index. The logical indices are sorted and iterated along
    /// with run_ends array to find matching physical index. The approach used here was chosen over
    /// finding physical index for each logical index using binary search using the function
    /// `get_physical_index`. Running benchmarks on both approaches showed that the approach used here
    /// scaled well for larger inputs.
    /// See <https://github.com/apache/arrow-rs/pull/3622#issuecomment-1407753727> for more details.
    #[inline]
    pub fn get_physical_indices<I>(&self, logical_indices: &[I]) -> Result<Vec<usize>, ArrowError>
    where
        I: ArrowNativeType,
    {
        let len = self.run_ends().len();
        let offset = self.run_ends().offset();

        let indices_len = logical_indices.len();

        if indices_len == 0 {
            return Ok(vec![]);
        }

        // `ordered_indices` store index into `logical_indices` and can be used
        // to iterate `logical_indices` in sorted order.
        let mut ordered_indices: Vec<usize> = (0..indices_len).collect();

        // Instead of sorting `logical_indices` directly, sort the `ordered_indices`
        // whose values are index of `logical_indices`
        ordered_indices.sort_unstable_by(|lhs, rhs| {
            logical_indices[*lhs]
                .partial_cmp(&logical_indices[*rhs])
                .unwrap()
        });

        // Return early if all the logical indices cannot be converted to physical indices.
        let largest_logical_index = logical_indices[*ordered_indices.last().unwrap()].as_usize();
        if largest_logical_index >= len {
            return Err(ArrowError::InvalidArgumentError(format!(
                "Cannot convert all logical indices to physical indices. The logical index cannot be converted is {largest_logical_index}.",
            )));
        }

        // Skip some physical indices based on offset.
        let skip_value = self.get_start_physical_index();

        let mut physical_indices = vec![0; indices_len];

        let mut ordered_index = 0_usize;
        for (physical_index, run_end) in self.run_ends.values().iter().enumerate().skip(skip_value)
        {
            // Get the run end index (relative to offset) of current physical index
            let run_end_value = run_end.as_usize() - offset;

            // All the `logical_indices` that are less than current run end index
            // belongs to current physical index.
            while ordered_index < indices_len
                && logical_indices[ordered_indices[ordered_index]].as_usize() < run_end_value
            {
                physical_indices[ordered_indices[ordered_index]] = physical_index;
                ordered_index += 1;
            }
        }

        // If there are input values >= run_ends.last_value then we'll not be able to convert
        // all logical indices to physical indices.
        if ordered_index < logical_indices.len() {
            let logical_index = logical_indices[ordered_indices[ordered_index]].as_usize();
            return Err(ArrowError::InvalidArgumentError(format!(
                "Cannot convert all logical indices to physical indices. The logical index cannot be converted is {logical_index}.",
            )));
        }
        Ok(physical_indices)
    }

    /// Returns a zero-copy slice of this array with the indicated offset and length.
    pub fn slice(&self, offset: usize, length: usize) -> Self {
        Self {
            data_type: self.data_type.clone(),
            run_ends: self.run_ends.slice(offset, length),
            values: self.values.clone(),
        }
    }
}

impl<R: RunEndIndexType> From<ArrayData> for RunArray<R> {
    // The method assumes the caller already validated the data using `ArrayData::validate_data()`
    fn from(data: ArrayData) -> Self {
        match data.data_type() {
            DataType::RunEndEncoded(_, _) => {}
            _ => {
                panic!("Invalid data type for RunArray. The data type should be DataType::RunEndEncoded");
            }
        }

        // Safety
        // ArrayData is valid
        let child = &data.child_data()[0];
        assert_eq!(child.data_type(), &R::DATA_TYPE, "Incorrect run ends type");
        let run_ends = unsafe {
            let scalar = child.buffers()[0].clone().into();
            RunEndBuffer::new_unchecked(scalar, data.offset(), data.len())
        };

        let values = make_array(data.child_data()[1].clone());
        Self {
            data_type: data.data_type().clone(),
            run_ends,
            values,
        }
    }
}

impl<R: RunEndIndexType> From<RunArray<R>> for ArrayData {
    fn from(array: RunArray<R>) -> Self {
        let len = array.run_ends.len();
        let offset = array.run_ends.offset();

        let run_ends = ArrayDataBuilder::new(R::DATA_TYPE)
            .len(array.run_ends.values().len())
            .buffers(vec![array.run_ends.into_inner().into_inner()]);

        let run_ends = unsafe { run_ends.build_unchecked() };

        let builder = ArrayDataBuilder::new(array.data_type)
            .len(len)
            .offset(offset)
            .child_data(vec![run_ends, array.values.to_data()]);

        unsafe { builder.build_unchecked() }
    }
}

impl<T: RunEndIndexType> Array for RunArray<T> {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn to_data(&self) -> ArrayData {
        self.clone().into()
    }

    fn into_data(self) -> ArrayData {
        self.into()
    }

    fn data_type(&self) -> &DataType {
        &self.data_type
    }

    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
        Arc::new(self.slice(offset, length))
    }

    fn len(&self) -> usize {
        self.run_ends.len()
    }

    fn is_empty(&self) -> bool {
        self.run_ends.is_empty()
    }

    fn shrink_to_fit(&mut self) {
        self.run_ends.shrink_to_fit();
        self.values.shrink_to_fit();
    }

    fn offset(&self) -> usize {
        self.run_ends.offset()
    }

    fn nulls(&self) -> Option<&NullBuffer> {
        None
    }

    fn logical_nulls(&self) -> Option<NullBuffer> {
        let len = self.len();
        let nulls = self.values.logical_nulls()?;
        let mut out = BooleanBufferBuilder::new(len);
        let offset = self.run_ends.offset();
        let mut valid_start = 0;
        let mut last_end = 0;
        for (idx, end) in self.run_ends.values().iter().enumerate() {
            let end = end.as_usize();
            if end < offset {
                continue;
            }
            let end = (end - offset).min(len);
            if nulls.is_null(idx) {
                if valid_start < last_end {
                    out.append_n(last_end - valid_start, true);
                }
                out.append_n(end - last_end, false);
                valid_start = end;
            }
            last_end = end;
            if end == len {
                break;
            }
        }
        if valid_start < len {
            out.append_n(len - valid_start, true)
        }
        // Sanity check
        assert_eq!(out.len(), len);
        Some(out.finish().into())
    }

    fn is_nullable(&self) -> bool {
        !self.is_empty() && self.values.is_nullable()
    }

    fn get_buffer_memory_size(&self) -> usize {
        self.run_ends.inner().inner().capacity() + self.values.get_buffer_memory_size()
    }

    fn get_array_memory_size(&self) -> usize {
        std::mem::size_of::<Self>()
            + self.run_ends.inner().inner().capacity()
            + self.values.get_array_memory_size()
    }
}

impl<R: RunEndIndexType> std::fmt::Debug for RunArray<R> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        writeln!(
            f,
            "RunArray {{run_ends: {:?}, values: {:?}}}",
            self.run_ends.values(),
            self.values
        )
    }
}

/// Constructs a `RunArray` from an iterator of optional strings.
///
/// # Example:
/// ```
/// use arrow_array::{RunArray, PrimitiveArray, StringArray, types::Int16Type};
///
/// let test = vec!["a", "a", "b", "c", "c"];
/// let array: RunArray<Int16Type> = test
///     .iter()
///     .map(|&x| if x == "b" { None } else { Some(x) })
///     .collect();
/// assert_eq!(
///     "RunArray {run_ends: [2, 3, 5], values: StringArray\n[\n  \"a\",\n  null,\n  \"c\",\n]}\n",
///     format!("{:?}", array)
/// );
/// ```
impl<'a, T: RunEndIndexType> FromIterator<Option<&'a str>> for RunArray<T> {
    fn from_iter<I: IntoIterator<Item = Option<&'a str>>>(iter: I) -> Self {
        let it = iter.into_iter();
        let (lower, _) = it.size_hint();
        let mut builder = StringRunBuilder::with_capacity(lower, 256);
        it.for_each(|i| {
            builder.append_option(i);
        });

        builder.finish()
    }
}

/// Constructs a `RunArray` from an iterator of strings.
///
/// # Example:
///
/// ```
/// use arrow_array::{RunArray, PrimitiveArray, StringArray, types::Int16Type};
///
/// let test = vec!["a", "a", "b", "c"];
/// let array: RunArray<Int16Type> = test.into_iter().collect();
/// assert_eq!(
///     "RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n  \"a\",\n  \"b\",\n  \"c\",\n]}\n",
///     format!("{:?}", array)
/// );
/// ```
impl<'a, T: RunEndIndexType> FromIterator<&'a str> for RunArray<T> {
    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> Self {
        let it = iter.into_iter();
        let (lower, _) = it.size_hint();
        let mut builder = StringRunBuilder::with_capacity(lower, 256);
        it.for_each(|i| {
            builder.append_value(i);
        });

        builder.finish()
    }
}

///
/// A [`RunArray`] with `i16` run ends
///
/// # Example: Using `collect`
/// ```
/// # use arrow_array::{Array, Int16RunArray, Int16Array, StringArray};
/// # use std::sync::Arc;
///
/// let array: Int16RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
/// let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
/// assert_eq!(array.run_ends().values(), &[2, 3, 5]);
/// assert_eq!(array.values(), &values);
/// ```
pub type Int16RunArray = RunArray<Int16Type>;

///
/// A [`RunArray`] with `i32` run ends
///
/// # Example: Using `collect`
/// ```
/// # use arrow_array::{Array, Int32RunArray, Int32Array, StringArray};
/// # use std::sync::Arc;
///
/// let array: Int32RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
/// let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
/// assert_eq!(array.run_ends().values(), &[2, 3, 5]);
/// assert_eq!(array.values(), &values);
/// ```
pub type Int32RunArray = RunArray<Int32Type>;

///
/// A [`RunArray`] with `i64` run ends
///
/// # Example: Using `collect`
/// ```
/// # use arrow_array::{Array, Int64RunArray, Int64Array, StringArray};
/// # use std::sync::Arc;
///
/// let array: Int64RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
/// let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
/// assert_eq!(array.run_ends().values(), &[2, 3, 5]);
/// assert_eq!(array.values(), &values);
/// ```
pub type Int64RunArray = RunArray<Int64Type>;

/// A [`RunArray`] typed typed on its child values array
///
/// Implements [`ArrayAccessor`] and [`IntoIterator`] allowing fast access to its elements
///
/// ```
/// use arrow_array::{RunArray, StringArray, types::Int32Type};
///
/// let orig = ["a", "b", "a", "b"];
/// let ree_array = RunArray::<Int32Type>::from_iter(orig);
///
/// // `TypedRunArray` allows you to access the values directly
/// let typed = ree_array.downcast::<StringArray>().unwrap();
///
/// for (maybe_val, orig) in typed.into_iter().zip(orig) {
///     assert_eq!(maybe_val.unwrap(), orig)
/// }
/// ```
pub struct TypedRunArray<'a, R: RunEndIndexType, V> {
    /// The run array
    run_array: &'a RunArray<R>,

    /// The values of the run_array
    values: &'a V,
}

// Manually implement `Clone` to avoid `V: Clone` type constraint
impl<R: RunEndIndexType, V> Clone for TypedRunArray<'_, R, V> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<R: RunEndIndexType, V> Copy for TypedRunArray<'_, R, V> {}

impl<R: RunEndIndexType, V> std::fmt::Debug for TypedRunArray<'_, R, V> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        writeln!(f, "TypedRunArray({:?})", self.run_array)
    }
}

impl<'a, R: RunEndIndexType, V> TypedRunArray<'a, R, V> {
    /// Returns the run_ends of this [`TypedRunArray`]
    pub fn run_ends(&self) -> &'a RunEndBuffer<R::Native> {
        self.run_array.run_ends()
    }

    /// Returns the values of this [`TypedRunArray`]
    pub fn values(&self) -> &'a V {
        self.values
    }

    /// Returns the run array of this [`TypedRunArray`]
    pub fn run_array(&self) -> &'a RunArray<R> {
        self.run_array
    }
}

impl<R: RunEndIndexType, V: Sync> Array for TypedRunArray<'_, R, V> {
    fn as_any(&self) -> &dyn Any {
        self.run_array
    }

    fn to_data(&self) -> ArrayData {
        self.run_array.to_data()
    }

    fn into_data(self) -> ArrayData {
        self.run_array.into_data()
    }

    fn data_type(&self) -> &DataType {
        self.run_array.data_type()
    }

    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
        Arc::new(self.run_array.slice(offset, length))
    }

    fn len(&self) -> usize {
        self.run_array.len()
    }

    fn is_empty(&self) -> bool {
        self.run_array.is_empty()
    }

    fn offset(&self) -> usize {
        self.run_array.offset()
    }

    fn nulls(&self) -> Option<&NullBuffer> {
        self.run_array.nulls()
    }

    fn logical_nulls(&self) -> Option<NullBuffer> {
        self.run_array.logical_nulls()
    }

    fn logical_null_count(&self) -> usize {
        self.run_array.logical_null_count()
    }

    fn is_nullable(&self) -> bool {
        self.run_array.is_nullable()
    }

    fn get_buffer_memory_size(&self) -> usize {
        self.run_array.get_buffer_memory_size()
    }

    fn get_array_memory_size(&self) -> usize {
        self.run_array.get_array_memory_size()
    }
}

// Array accessor converts the index of logical array to the index of the physical array
// using binary search. The time complexity is O(log N) where N is number of runs.
impl<'a, R, V> ArrayAccessor for TypedRunArray<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
    type Item = <&'a V as ArrayAccessor>::Item;

    fn value(&self, logical_index: usize) -> Self::Item {
        assert!(
            logical_index < self.len(),
            "Trying to access an element at index {} from a TypedRunArray of length {}",
            logical_index,
            self.len()
        );
        unsafe { self.value_unchecked(logical_index) }
    }

    unsafe fn value_unchecked(&self, logical_index: usize) -> Self::Item {
        let physical_index = self.run_array.get_physical_index(logical_index);
        self.values().value_unchecked(physical_index)
    }
}

impl<'a, R, V> IntoIterator for TypedRunArray<'a, R, V>
where
    R: RunEndIndexType,
    V: Sync + Send,
    &'a V: ArrayAccessor,
    <&'a V as ArrayAccessor>::Item: Default,
{
    type Item = Option<<&'a V as ArrayAccessor>::Item>;
    type IntoIter = RunArrayIter<'a, R, V>;

    fn into_iter(self) -> Self::IntoIter {
        RunArrayIter::new(self)
    }
}

#[cfg(test)]
mod tests {
    use rand::seq::SliceRandom;
    use rand::thread_rng;
    use rand::Rng;

    use super::*;
    use crate::builder::PrimitiveRunBuilder;
    use crate::cast::AsArray;
    use crate::types::{Int8Type, UInt32Type};
    use crate::{Int32Array, StringArray};

    fn build_input_array(size: usize) -> Vec<Option<i32>> {
        // The input array is created by shuffling and repeating
        // the seed values random number of times.
        let mut seed: Vec<Option<i32>> = vec![
            None,
            None,
            None,
            Some(1),
            Some(2),
            Some(3),
            Some(4),
            Some(5),
            Some(6),
            Some(7),
            Some(8),
            Some(9),
        ];
        let mut result: Vec<Option<i32>> = Vec::with_capacity(size);
        let mut ix = 0;
        let mut rng = thread_rng();
        // run length can go up to 8. Cap the max run length for smaller arrays to size / 2.
        let max_run_length = 8_usize.min(1_usize.max(size / 2));
        while result.len() < size {
            // shuffle the seed array if all the values are iterated.
            if ix == 0 {
                seed.shuffle(&mut rng);
            }
            // repeat the items between 1 and 8 times. Cap the length for smaller sized arrays
            let num = max_run_length.min(rand::thread_rng().gen_range(1..=max_run_length));
            for _ in 0..num {
                result.push(seed[ix]);
            }
            ix += 1;
            if ix == seed.len() {
                ix = 0
            }
        }
        result.resize(size, None);
        result
    }

    // Asserts that `logical_array[logical_indices[*]] == physical_array[physical_indices[*]]`
    fn compare_logical_and_physical_indices(
        logical_indices: &[u32],
        logical_array: &[Option<i32>],
        physical_indices: &[usize],
        physical_array: &PrimitiveArray<Int32Type>,
    ) {
        assert_eq!(logical_indices.len(), physical_indices.len());

        // check value in logical index in the logical_array matches physical index in physical_array
        logical_indices
            .iter()
            .map(|f| f.as_usize())
            .zip(physical_indices.iter())
            .for_each(|(logical_ix, physical_ix)| {
                let expected = logical_array[logical_ix];
                match expected {
                    Some(val) => {
                        assert!(physical_array.is_valid(*physical_ix));
                        let actual = physical_array.value(*physical_ix);
                        assert_eq!(val, actual);
                    }
                    None => {
                        assert!(physical_array.is_null(*physical_ix))
                    }
                };
            });
    }
    #[test]
    fn test_run_array() {
        // Construct a value array
        let value_data =
            PrimitiveArray::<Int8Type>::from_iter_values([10_i8, 11, 12, 13, 14, 15, 16, 17]);

        // Construct a run_ends array:
        let run_ends_values = [4_i16, 6, 7, 9, 13, 18, 20, 22];
        let run_ends_data =
            PrimitiveArray::<Int16Type>::from_iter_values(run_ends_values.iter().copied());

        // Construct a run ends encoded array from the above two
        let ree_array = RunArray::<Int16Type>::try_new(&run_ends_data, &value_data).unwrap();

        assert_eq!(ree_array.len(), 22);
        assert_eq!(ree_array.null_count(), 0);

        let values = ree_array.values();
        assert_eq!(value_data.into_data(), values.to_data());
        assert_eq!(&DataType::Int8, values.data_type());

        let run_ends = ree_array.run_ends();
        assert_eq!(run_ends.values(), &run_ends_values);
    }

    #[test]
    fn test_run_array_fmt_debug() {
        let mut builder = PrimitiveRunBuilder::<Int16Type, UInt32Type>::with_capacity(3);
        builder.append_value(12345678);
        builder.append_null();
        builder.append_value(22345678);
        let array = builder.finish();
        assert_eq!(
            "RunArray {run_ends: [1, 2, 3], values: PrimitiveArray<UInt32>\n[\n  12345678,\n  null,\n  22345678,\n]}\n",
            format!("{array:?}")
        );

        let mut builder = PrimitiveRunBuilder::<Int16Type, UInt32Type>::with_capacity(20);
        for _ in 0..20 {
            builder.append_value(1);
        }
        let array = builder.finish();

        assert_eq!(array.len(), 20);
        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 0);

        assert_eq!(
            "RunArray {run_ends: [20], values: PrimitiveArray<UInt32>\n[\n  1,\n]}\n",
            format!("{array:?}")
        );
    }

    #[test]
    fn test_run_array_from_iter() {
        let test = vec!["a", "a", "b", "c"];
        let array: RunArray<Int16Type> = test
            .iter()
            .map(|&x| if x == "b" { None } else { Some(x) })
            .collect();
        assert_eq!(
            "RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n  \"a\",\n  null,\n  \"c\",\n]}\n",
            format!("{array:?}")
        );

        assert_eq!(array.len(), 4);
        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 1);

        let array: RunArray<Int16Type> = test.into_iter().collect();
        assert_eq!(
            "RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n  \"a\",\n  \"b\",\n  \"c\",\n]}\n",
            format!("{array:?}")
        );
    }

    #[test]
    fn test_run_array_run_ends_as_primitive_array() {
        let test = vec!["a", "b", "c", "a"];
        let array: RunArray<Int16Type> = test.into_iter().collect();

        assert_eq!(array.len(), 4);
        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 0);

        let run_ends = array.run_ends();
        assert_eq!(&[1, 2, 3, 4], run_ends.values());
    }

    #[test]
    fn test_run_array_as_primitive_array_with_null() {
        let test = vec![Some("a"), None, Some("b"), None, None, Some("a")];
        let array: RunArray<Int32Type> = test.into_iter().collect();

        assert_eq!(array.len(), 6);
        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 3);

        let run_ends = array.run_ends();
        assert_eq!(&[1, 2, 3, 5, 6], run_ends.values());

        let values_data = array.values();
        assert_eq!(2, values_data.null_count());
        assert_eq!(5, values_data.len());
    }

    #[test]
    fn test_run_array_all_nulls() {
        let test = vec![None, None, None];
        let array: RunArray<Int32Type> = test.into_iter().collect();

        assert_eq!(array.len(), 3);
        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 3);

        let run_ends = array.run_ends();
        assert_eq!(3, run_ends.len());
        assert_eq!(&[3], run_ends.values());

        let values_data = array.values();
        assert_eq!(1, values_data.null_count());
    }

    #[test]
    fn test_run_array_try_new() {
        let values: StringArray = [Some("foo"), Some("bar"), None, Some("baz")]
            .into_iter()
            .collect();
        let run_ends: Int32Array = [Some(1), Some(2), Some(3), Some(4)].into_iter().collect();

        let array = RunArray::<Int32Type>::try_new(&run_ends, &values).unwrap();
        assert_eq!(array.values().data_type(), &DataType::Utf8);

        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 1);
        assert_eq!(array.len(), 4);
        assert_eq!(array.values().null_count(), 1);

        assert_eq!(
            "RunArray {run_ends: [1, 2, 3, 4], values: StringArray\n[\n  \"foo\",\n  \"bar\",\n  null,\n  \"baz\",\n]}\n",
            format!("{array:?}")
        );
    }

    #[test]
    fn test_run_array_int16_type_definition() {
        let array: Int16RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
        let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
        assert_eq!(array.run_ends().values(), &[2, 3, 5]);
        assert_eq!(array.values(), &values);
    }

    #[test]
    fn test_run_array_empty_string() {
        let array: Int16RunArray = vec!["a", "a", "", "", "c"].into_iter().collect();
        let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "", "c"]));
        assert_eq!(array.run_ends().values(), &[2, 4, 5]);
        assert_eq!(array.values(), &values);
    }

    #[test]
    fn test_run_array_length_mismatch() {
        let values: StringArray = [Some("foo"), Some("bar"), None, Some("baz")]
            .into_iter()
            .collect();
        let run_ends: Int32Array = [Some(1), Some(2), Some(3)].into_iter().collect();

        let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
        let expected = ArrowError::InvalidArgumentError("The run_ends array length should be the same as values array length. Run_ends array length is 3, values array length is 4".to_string());
        assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
    }

    #[test]
    fn test_run_array_run_ends_with_null() {
        let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
            .into_iter()
            .collect();
        let run_ends: Int32Array = [Some(1), None, Some(3)].into_iter().collect();

        let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
        let expected = ArrowError::InvalidArgumentError(
            "Found null values in run_ends array. The run_ends array should not have null values."
                .to_string(),
        );
        assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
    }

    #[test]
    fn test_run_array_run_ends_with_zeroes() {
        let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
            .into_iter()
            .collect();
        let run_ends: Int32Array = [Some(0), Some(1), Some(3)].into_iter().collect();

        let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
        let expected = ArrowError::InvalidArgumentError("The values in run_ends array should be strictly positive. Found value 0 at index 0 that does not match the criteria.".to_string());
        assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
    }

    #[test]
    fn test_run_array_run_ends_non_increasing() {
        let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
            .into_iter()
            .collect();
        let run_ends: Int32Array = [Some(1), Some(4), Some(4)].into_iter().collect();

        let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
        let expected = ArrowError::InvalidArgumentError("The values in run_ends array should be strictly increasing. Found value 4 at index 2 with previous value 4 that does not match the criteria.".to_string());
        assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
    }

    #[test]
    #[should_panic(expected = "Incorrect run ends type")]
    fn test_run_array_run_ends_data_type_mismatch() {
        let a = RunArray::<Int32Type>::from_iter(["32"]);
        let _ = RunArray::<Int64Type>::from(a.into_data());
    }

    #[test]
    fn test_ree_array_accessor() {
        let input_array = build_input_array(256);

        // Encode the input_array to ree_array
        let mut builder =
            PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
        builder.extend(input_array.iter().copied());
        let run_array = builder.finish();
        let typed = run_array.downcast::<PrimitiveArray<Int32Type>>().unwrap();

        // Access every index and check if the value in the input array matches returned value.
        for (i, inp_val) in input_array.iter().enumerate() {
            if let Some(val) = inp_val {
                let actual = typed.value(i);
                assert_eq!(*val, actual)
            } else {
                let physical_ix = run_array.get_physical_index(i);
                assert!(typed.values().is_null(physical_ix));
            };
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Takes too long
    fn test_get_physical_indices() {
        // Test for logical lengths starting from 10 to 250 increasing by 10
        for logical_len in (0..250).step_by(10) {
            let input_array = build_input_array(logical_len);

            // create run array using input_array
            let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
            builder.extend(input_array.clone().into_iter());

            let run_array = builder.finish();
            let physical_values_array = run_array.values().as_primitive::<Int32Type>();

            // create an array consisting of all the indices repeated twice and shuffled.
            let mut logical_indices: Vec<u32> = (0_u32..(logical_len as u32)).collect();
            // add same indices once more
            logical_indices.append(&mut logical_indices.clone());
            let mut rng = thread_rng();
            logical_indices.shuffle(&mut rng);

            let physical_indices = run_array.get_physical_indices(&logical_indices).unwrap();

            assert_eq!(logical_indices.len(), physical_indices.len());

            // check value in logical index in the input_array matches physical index in typed_run_array
            compare_logical_and_physical_indices(
                &logical_indices,
                &input_array,
                &physical_indices,
                physical_values_array,
            );
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Takes too long
    fn test_get_physical_indices_sliced() {
        let total_len = 80;
        let input_array = build_input_array(total_len);

        // Encode the input_array to run array
        let mut builder =
            PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
        builder.extend(input_array.iter().copied());
        let run_array = builder.finish();
        let physical_values_array = run_array.values().as_primitive::<Int32Type>();

        // test for all slice lengths.
        for slice_len in 1..=total_len {
            // create an array consisting of all the indices repeated twice and shuffled.
            let mut logical_indices: Vec<u32> = (0_u32..(slice_len as u32)).collect();
            // add same indices once more
            logical_indices.append(&mut logical_indices.clone());
            let mut rng = thread_rng();
            logical_indices.shuffle(&mut rng);

            // test for offset = 0 and slice length = slice_len
            // slice the input array using which the run array was built.
            let sliced_input_array = &input_array[0..slice_len];

            // slice the run array
            let sliced_run_array: RunArray<Int16Type> =
                run_array.slice(0, slice_len).into_data().into();

            // Get physical indices.
            let physical_indices = sliced_run_array
                .get_physical_indices(&logical_indices)
                .unwrap();

            compare_logical_and_physical_indices(
                &logical_indices,
                sliced_input_array,
                &physical_indices,
                physical_values_array,
            );

            // test for offset = total_len - slice_len and slice length = slice_len
            // slice the input array using which the run array was built.
            let sliced_input_array = &input_array[total_len - slice_len..total_len];

            // slice the run array
            let sliced_run_array: RunArray<Int16Type> = run_array
                .slice(total_len - slice_len, slice_len)
                .into_data()
                .into();

            // Get physical indices
            let physical_indices = sliced_run_array
                .get_physical_indices(&logical_indices)
                .unwrap();

            compare_logical_and_physical_indices(
                &logical_indices,
                sliced_input_array,
                &physical_indices,
                physical_values_array,
            );
        }
    }

    #[test]
    fn test_logical_nulls() {
        let run = Int32Array::from(vec![3, 6, 9, 12]);
        let values = Int32Array::from(vec![Some(0), None, Some(1), None]);
        let array = RunArray::try_new(&run, &values).unwrap();

        let expected = [
            true, true, true, false, false, false, true, true, true, false, false, false,
        ];

        let n = array.logical_nulls().unwrap();
        assert_eq!(n.null_count(), 6);

        let slices = [(0, 12), (0, 2), (2, 5), (3, 0), (3, 3), (3, 4), (4, 8)];
        for (offset, length) in slices {
            let a = array.slice(offset, length);
            let n = a.logical_nulls().unwrap();
            let n = n.into_iter().collect::<Vec<_>>();
            assert_eq!(&n, &expected[offset..offset + length], "{offset} {length}");
        }
    }
}