arrow_array/array/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! The concrete array definitions

mod binary_array;

use crate::types::*;
use arrow_buffer::{ArrowNativeType, NullBuffer, OffsetBuffer, ScalarBuffer};
use arrow_data::ArrayData;
use arrow_schema::{DataType, IntervalUnit, TimeUnit};
use std::any::Any;
use std::sync::Arc;

pub use binary_array::*;

mod boolean_array;
pub use boolean_array::*;

mod byte_array;
pub use byte_array::*;

mod dictionary_array;
pub use dictionary_array::*;

mod fixed_size_binary_array;
pub use fixed_size_binary_array::*;

mod fixed_size_list_array;
pub use fixed_size_list_array::*;

mod list_array;
pub use list_array::*;

mod map_array;
pub use map_array::*;

mod null_array;
pub use null_array::*;

mod primitive_array;
pub use primitive_array::*;

mod string_array;
pub use string_array::*;

mod struct_array;
pub use struct_array::*;

mod union_array;
pub use union_array::*;

mod run_array;

pub use run_array::*;

mod byte_view_array;

pub use byte_view_array::*;

mod list_view_array;

pub use list_view_array::*;

use crate::iterator::ArrayIter;

/// An array in the [arrow columnar format](https://arrow.apache.org/docs/format/Columnar.html)
pub trait Array: std::fmt::Debug + Send + Sync {
    /// Returns the array as [`Any`] so that it can be
    /// downcasted to a specific implementation.
    ///
    /// # Example:
    ///
    /// ```
    /// # use std::sync::Arc;
    /// # use arrow_array::{Int32Array, RecordBatch};
    /// # use arrow_schema::{Schema, Field, DataType, ArrowError};
    ///
    /// let id = Int32Array::from(vec![1, 2, 3, 4, 5]);
    /// let batch = RecordBatch::try_new(
    ///     Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)])),
    ///     vec![Arc::new(id)]
    /// ).unwrap();
    ///
    /// let int32array = batch
    ///     .column(0)
    ///     .as_any()
    ///     .downcast_ref::<Int32Array>()
    ///     .expect("Failed to downcast");
    /// ```
    fn as_any(&self) -> &dyn Any;

    /// Returns the underlying data of this array
    fn to_data(&self) -> ArrayData;

    /// Returns the underlying data of this array
    ///
    /// Unlike [`Array::to_data`] this consumes self, allowing it avoid unnecessary clones
    fn into_data(self) -> ArrayData;

    /// Returns a reference to the [`DataType`] of this array.
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_schema::DataType;
    /// use arrow_array::{Array, Int32Array};
    ///
    /// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(*array.data_type(), DataType::Int32);
    /// ```
    fn data_type(&self) -> &DataType;

    /// Returns a zero-copy slice of this array with the indicated offset and length.
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array};
    ///
    /// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
    /// // Make slice over the values [2, 3, 4]
    /// let array_slice = array.slice(1, 3);
    ///
    /// assert_eq!(&array_slice, &Int32Array::from(vec![2, 3, 4]));
    /// ```
    fn slice(&self, offset: usize, length: usize) -> ArrayRef;

    /// Returns the length (i.e., number of elements) of this array.
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array};
    ///
    /// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(array.len(), 5);
    /// ```
    fn len(&self) -> usize;

    /// Returns whether this array is empty.
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array};
    ///
    /// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(array.is_empty(), false);
    /// ```
    fn is_empty(&self) -> bool;

    /// Shrinks the capacity of any exclusively owned buffer as much as possible
    ///
    /// Shared or externally allocated buffers will be ignored, and
    /// any buffer offsets will be preserved.
    fn shrink_to_fit(&mut self) {}

    /// Returns the offset into the underlying data used by this array(-slice).
    /// Note that the underlying data can be shared by many arrays.
    /// This defaults to `0`.
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, BooleanArray};
    ///
    /// let array = BooleanArray::from(vec![false, false, true, true]);
    /// let array_slice = array.slice(1, 3);
    ///
    /// assert_eq!(array.offset(), 0);
    /// assert_eq!(array_slice.offset(), 1);
    /// ```
    fn offset(&self) -> usize;

    /// Returns the null buffer of this array if any.
    ///
    /// The null buffer contains the "physical" nulls of an array, that is how
    /// the nulls are represented in the underlying arrow format.
    ///
    /// The physical representation is efficient, but is sometimes non intuitive
    /// for certain array types such as those with nullable child arrays like
    /// [`DictionaryArray::values`], [`RunArray::values`] or [`UnionArray`], or without a
    /// null buffer, such as [`NullArray`].
    ///
    /// To determine if each element of such an array is "logically" null,
    /// use the slower [`Array::logical_nulls`] to obtain a computed mask.
    fn nulls(&self) -> Option<&NullBuffer>;

    /// Returns a potentially computed [`NullBuffer`] that represents the logical
    /// null values of this array, if any.
    ///
    /// Logical nulls represent the values that are null in the array,
    /// regardless of the underlying physical arrow representation.
    ///
    /// For most array types, this is equivalent to the "physical" nulls
    /// returned by [`Array::nulls`]. It is different for the following cases, because which
    /// elements are null is not encoded in a single null buffer:
    ///
    /// * [`DictionaryArray`] where [`DictionaryArray::values`] contains nulls
    /// * [`RunArray`] where [`RunArray::values`] contains nulls
    /// * [`NullArray`] where all indices are nulls
    /// * [`UnionArray`] where the selected values contains nulls
    ///
    /// In these cases a logical [`NullBuffer`] will be computed, encoding the
    /// logical nullability of these arrays, beyond what is encoded in
    /// [`Array::nulls`]
    fn logical_nulls(&self) -> Option<NullBuffer> {
        self.nulls().cloned()
    }

    /// Returns whether the element at `index` is null according to [`Array::nulls`]
    ///
    /// Note: For performance reasons, this method returns nullability solely as determined by the
    /// null buffer. This difference can lead to surprising results, for example, [`NullArray::is_null`] always
    /// returns `false` as the array lacks a null buffer. Similarly [`DictionaryArray`], [`RunArray`] and [`UnionArray`] may
    /// encode nullability in their children. See [`Self::logical_nulls`] for more information.
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array, NullArray};
    ///
    /// let array = Int32Array::from(vec![Some(1), None]);
    /// assert_eq!(array.is_null(0), false);
    /// assert_eq!(array.is_null(1), true);
    ///
    /// // NullArrays do not have a null buffer, and therefore always
    /// // return false for is_null.
    /// let array = NullArray::new(1);
    /// assert_eq!(array.is_null(0), false);
    /// ```
    fn is_null(&self, index: usize) -> bool {
        self.nulls().map(|n| n.is_null(index)).unwrap_or_default()
    }

    /// Returns whether the element at `index` is *not* null, the
    /// opposite of [`Self::is_null`].
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array};
    ///
    /// let array = Int32Array::from(vec![Some(1), None]);
    ///
    /// assert_eq!(array.is_valid(0), true);
    /// assert_eq!(array.is_valid(1), false);
    /// ```
    fn is_valid(&self, index: usize) -> bool {
        !self.is_null(index)
    }

    /// Returns the total number of physical null values in this array.
    ///
    /// Note: this method returns the physical null count, i.e. that encoded in [`Array::nulls`],
    /// see [`Array::logical_nulls`] for logical nullability
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array};
    ///
    /// // Construct an array with values [1, NULL, NULL]
    /// let array = Int32Array::from(vec![Some(1), None, None]);
    ///
    /// assert_eq!(array.null_count(), 2);
    /// ```
    fn null_count(&self) -> usize {
        self.nulls().map(|n| n.null_count()).unwrap_or_default()
    }

    /// Returns the total number of logical null values in this array.
    ///
    /// Note: this method returns the logical null count, i.e. that encoded in
    /// [`Array::logical_nulls`]. In general this is equivalent to [`Array::null_count`] but may differ in the
    /// presence of logical nullability, see [`Array::nulls`] and [`Array::logical_nulls`].
    ///
    /// # Example:
    ///
    /// ```
    /// use arrow_array::{Array, Int32Array};
    ///
    /// // Construct an array with values [1, NULL, NULL]
    /// let array = Int32Array::from(vec![Some(1), None, None]);
    ///
    /// assert_eq!(array.logical_null_count(), 2);
    /// ```
    fn logical_null_count(&self) -> usize {
        self.logical_nulls()
            .map(|n| n.null_count())
            .unwrap_or_default()
    }

    /// Returns `false` if the array is guaranteed to not contain any logical nulls
    ///
    /// This is generally equivalent to `Array::logical_null_count() != 0` unless determining
    /// the logical nulls is expensive, in which case this method can return true even for an
    /// array without nulls.
    ///
    /// This is also generally equivalent to `Array::null_count() != 0` but may differ in the
    /// presence of logical nullability, see [`Array::logical_null_count`] and [`Array::null_count`].
    ///
    /// Implementations will return `true` unless they can cheaply prove no logical nulls
    /// are present. For example a [`DictionaryArray`] with nullable values will still return true,
    /// even if the nulls present in [`DictionaryArray::values`] are not referenced by any key,
    /// and therefore would not appear in [`Array::logical_nulls`].
    fn is_nullable(&self) -> bool {
        self.logical_null_count() != 0
    }

    /// Returns the total number of bytes of memory pointed to by this array.
    /// The buffers store bytes in the Arrow memory format, and include the data as well as the validity map.
    /// Note that this does not always correspond to the exact memory usage of an array,
    /// since multiple arrays can share the same buffers or slices thereof.
    fn get_buffer_memory_size(&self) -> usize;

    /// Returns the total number of bytes of memory occupied physically by this array.
    /// This value will always be greater than returned by `get_buffer_memory_size()` and
    /// includes the overhead of the data structures that contain the pointers to the various buffers.
    fn get_array_memory_size(&self) -> usize;
}

/// A reference-counted reference to a generic `Array`
pub type ArrayRef = Arc<dyn Array>;

/// Ergonomics: Allow use of an ArrayRef as an `&dyn Array`
impl Array for ArrayRef {
    fn as_any(&self) -> &dyn Any {
        self.as_ref().as_any()
    }

    fn to_data(&self) -> ArrayData {
        self.as_ref().to_data()
    }

    fn into_data(self) -> ArrayData {
        self.to_data()
    }

    fn data_type(&self) -> &DataType {
        self.as_ref().data_type()
    }

    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
        self.as_ref().slice(offset, length)
    }

    fn len(&self) -> usize {
        self.as_ref().len()
    }

    fn is_empty(&self) -> bool {
        self.as_ref().is_empty()
    }

    /// For shared buffers, this is a no-op.
    fn shrink_to_fit(&mut self) {
        if let Some(slf) = Arc::get_mut(self) {
            slf.shrink_to_fit();
        } else {
            // We ignore shared buffers.
        }
    }

    fn offset(&self) -> usize {
        self.as_ref().offset()
    }

    fn nulls(&self) -> Option<&NullBuffer> {
        self.as_ref().nulls()
    }

    fn logical_nulls(&self) -> Option<NullBuffer> {
        self.as_ref().logical_nulls()
    }

    fn is_null(&self, index: usize) -> bool {
        self.as_ref().is_null(index)
    }

    fn is_valid(&self, index: usize) -> bool {
        self.as_ref().is_valid(index)
    }

    fn null_count(&self) -> usize {
        self.as_ref().null_count()
    }

    fn logical_null_count(&self) -> usize {
        self.as_ref().logical_null_count()
    }

    fn is_nullable(&self) -> bool {
        self.as_ref().is_nullable()
    }

    fn get_buffer_memory_size(&self) -> usize {
        self.as_ref().get_buffer_memory_size()
    }

    fn get_array_memory_size(&self) -> usize {
        self.as_ref().get_array_memory_size()
    }
}

impl<T: Array> Array for &T {
    fn as_any(&self) -> &dyn Any {
        T::as_any(self)
    }

    fn to_data(&self) -> ArrayData {
        T::to_data(self)
    }

    fn into_data(self) -> ArrayData {
        self.to_data()
    }

    fn data_type(&self) -> &DataType {
        T::data_type(self)
    }

    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
        T::slice(self, offset, length)
    }

    fn len(&self) -> usize {
        T::len(self)
    }

    fn is_empty(&self) -> bool {
        T::is_empty(self)
    }

    fn offset(&self) -> usize {
        T::offset(self)
    }

    fn nulls(&self) -> Option<&NullBuffer> {
        T::nulls(self)
    }

    fn logical_nulls(&self) -> Option<NullBuffer> {
        T::logical_nulls(self)
    }

    fn is_null(&self, index: usize) -> bool {
        T::is_null(self, index)
    }

    fn is_valid(&self, index: usize) -> bool {
        T::is_valid(self, index)
    }

    fn null_count(&self) -> usize {
        T::null_count(self)
    }

    fn logical_null_count(&self) -> usize {
        T::logical_null_count(self)
    }

    fn is_nullable(&self) -> bool {
        T::is_nullable(self)
    }

    fn get_buffer_memory_size(&self) -> usize {
        T::get_buffer_memory_size(self)
    }

    fn get_array_memory_size(&self) -> usize {
        T::get_array_memory_size(self)
    }
}

/// A generic trait for accessing the values of an [`Array`]
///
/// This trait helps write specialized implementations of algorithms for
/// different array types. Specialized implementations allow the compiler
/// to optimize the code for the specific array type, which can lead to
/// significant performance improvements.
///
/// # Example
/// For example, to write three different implementations of a string length function
/// for [`StringArray`], [`LargeStringArray`], and [`StringViewArray`], you can write
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::{ArrayAccessor, ArrayRef, ArrowPrimitiveType, OffsetSizeTrait, PrimitiveArray};
/// # use arrow_buffer::ArrowNativeType;
/// # use arrow_array::cast::AsArray;
/// # use arrow_array::iterator::ArrayIter;
/// # use arrow_array::types::{Int32Type, Int64Type};
/// # use arrow_schema::{ArrowError, DataType};
/// /// This function takes a dynamically typed `ArrayRef` and calls
/// /// calls one of three specialized implementations
/// fn character_length(arg: ArrayRef) -> Result<ArrayRef, ArrowError> {
///     match arg.data_type() {
///         DataType::Utf8 => {
///             // downcast the ArrayRef to a StringArray and call the specialized implementation
///             let string_array = arg.as_string::<i32>();
///             character_length_general::<Int32Type, _>(string_array)
///         }
///         DataType::LargeUtf8 => {
///             character_length_general::<Int64Type, _>(arg.as_string::<i64>())
///         }
///         DataType::Utf8View => {
///             character_length_general::<Int32Type, _>(arg.as_string_view())
///         }
///         _ => Err(ArrowError::InvalidArgumentError("Unsupported data type".to_string())),
///     }
/// }
///
/// /// A generic implementation of the character_length function
/// /// This function uses the `ArrayAccessor` trait to access the values of the array
/// /// so the compiler can generated specialized implementations for different array types
/// ///
/// /// Returns a new array with the length of each string in the input array
/// /// * Int32Array for Utf8 and Utf8View arrays (lengths are 32-bit integers)
/// /// * Int64Array for LargeUtf8 arrays (lengths are 64-bit integers)
/// ///
/// /// This is generic on the type of the primitive array (different string arrays have
/// /// different lengths) and the type of the array accessor (different string arrays
/// /// have different ways to access the values)
/// fn character_length_general<'a, T: ArrowPrimitiveType, V: ArrayAccessor<Item = &'a str>>(
///     array: V,
/// ) -> Result<ArrayRef, ArrowError>
/// where
///     T::Native: OffsetSizeTrait,
/// {
///     let iter = ArrayIter::new(array);
///     // Create a Int32Array / Int64Array with the length of each string
///     let result = iter
///         .map(|string| {
///             string.map(|string: &str| {
///                 T::Native::from_usize(string.chars().count())
///                     .expect("should not fail as string.chars will always return integer")
///             })
///         })
///         .collect::<PrimitiveArray<T>>();
///
///     /// Return the result as a new ArrayRef (dynamically typed)
///     Ok(Arc::new(result) as ArrayRef)
/// }
/// ```
///
/// # Validity
///
/// An [`ArrayAccessor`] must always return a well-defined value for an index
/// that is within the bounds `0..Array::len`, including for null indexes where
/// [`Array::is_null`] is true.
///
/// The value at null indexes is unspecified, and implementations must not rely
/// on a specific value such as [`Default::default`] being returned, however, it
/// must not be undefined
pub trait ArrayAccessor: Array {
    /// The Arrow type of the element being accessed.
    type Item: Send + Sync;

    /// Returns the element at index `i`
    /// # Panics
    /// Panics if the value is outside the bounds of the array
    fn value(&self, index: usize) -> Self::Item;

    /// Returns the element at index `i`
    /// # Safety
    /// Caller is responsible for ensuring that the index is within the bounds of the array
    unsafe fn value_unchecked(&self, index: usize) -> Self::Item;
}

/// A trait for Arrow String Arrays, currently three types are supported:
/// - `StringArray`
/// - `LargeStringArray`
/// - `StringViewArray`
///
/// This trait helps to abstract over the different types of string arrays
/// so that we don't need to duplicate the implementation for each type.
pub trait StringArrayType<'a>: ArrayAccessor<Item = &'a str> + Sized {
    /// Returns true if all data within this string array is ASCII
    fn is_ascii(&self) -> bool;

    /// Constructs a new iterator
    fn iter(&self) -> ArrayIter<Self>;
}

impl<'a, O: OffsetSizeTrait> StringArrayType<'a> for &'a GenericStringArray<O> {
    fn is_ascii(&self) -> bool {
        GenericStringArray::<O>::is_ascii(self)
    }

    fn iter(&self) -> ArrayIter<Self> {
        GenericStringArray::<O>::iter(self)
    }
}
impl<'a> StringArrayType<'a> for &'a StringViewArray {
    fn is_ascii(&self) -> bool {
        StringViewArray::is_ascii(self)
    }

    fn iter(&self) -> ArrayIter<Self> {
        StringViewArray::iter(self)
    }
}

impl PartialEq for dyn Array + '_ {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<T: Array> PartialEq<T> for dyn Array + '_ {
    fn eq(&self, other: &T) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl PartialEq for NullArray {
    fn eq(&self, other: &NullArray) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<T: ArrowPrimitiveType> PartialEq for PrimitiveArray<T> {
    fn eq(&self, other: &PrimitiveArray<T>) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<K: ArrowDictionaryKeyType> PartialEq for DictionaryArray<K> {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl PartialEq for BooleanArray {
    fn eq(&self, other: &BooleanArray) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericStringArray<OffsetSize> {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericBinaryArray<OffsetSize> {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl PartialEq for FixedSizeBinaryArray {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericListArray<OffsetSize> {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericListViewArray<OffsetSize> {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl PartialEq for MapArray {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl PartialEq for FixedSizeListArray {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl PartialEq for StructArray {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

impl<T: ByteViewType + ?Sized> PartialEq for GenericByteViewArray<T> {
    fn eq(&self, other: &Self) -> bool {
        self.to_data().eq(&other.to_data())
    }
}

/// Constructs an array using the input `data`.
/// Returns a reference-counted `Array` instance.
pub fn make_array(data: ArrayData) -> ArrayRef {
    match data.data_type() {
        DataType::Boolean => Arc::new(BooleanArray::from(data)) as ArrayRef,
        DataType::Int8 => Arc::new(Int8Array::from(data)) as ArrayRef,
        DataType::Int16 => Arc::new(Int16Array::from(data)) as ArrayRef,
        DataType::Int32 => Arc::new(Int32Array::from(data)) as ArrayRef,
        DataType::Int64 => Arc::new(Int64Array::from(data)) as ArrayRef,
        DataType::UInt8 => Arc::new(UInt8Array::from(data)) as ArrayRef,
        DataType::UInt16 => Arc::new(UInt16Array::from(data)) as ArrayRef,
        DataType::UInt32 => Arc::new(UInt32Array::from(data)) as ArrayRef,
        DataType::UInt64 => Arc::new(UInt64Array::from(data)) as ArrayRef,
        DataType::Float16 => Arc::new(Float16Array::from(data)) as ArrayRef,
        DataType::Float32 => Arc::new(Float32Array::from(data)) as ArrayRef,
        DataType::Float64 => Arc::new(Float64Array::from(data)) as ArrayRef,
        DataType::Date32 => Arc::new(Date32Array::from(data)) as ArrayRef,
        DataType::Date64 => Arc::new(Date64Array::from(data)) as ArrayRef,
        DataType::Time32(TimeUnit::Second) => Arc::new(Time32SecondArray::from(data)) as ArrayRef,
        DataType::Time32(TimeUnit::Millisecond) => {
            Arc::new(Time32MillisecondArray::from(data)) as ArrayRef
        }
        DataType::Time64(TimeUnit::Microsecond) => {
            Arc::new(Time64MicrosecondArray::from(data)) as ArrayRef
        }
        DataType::Time64(TimeUnit::Nanosecond) => {
            Arc::new(Time64NanosecondArray::from(data)) as ArrayRef
        }
        DataType::Timestamp(TimeUnit::Second, _) => {
            Arc::new(TimestampSecondArray::from(data)) as ArrayRef
        }
        DataType::Timestamp(TimeUnit::Millisecond, _) => {
            Arc::new(TimestampMillisecondArray::from(data)) as ArrayRef
        }
        DataType::Timestamp(TimeUnit::Microsecond, _) => {
            Arc::new(TimestampMicrosecondArray::from(data)) as ArrayRef
        }
        DataType::Timestamp(TimeUnit::Nanosecond, _) => {
            Arc::new(TimestampNanosecondArray::from(data)) as ArrayRef
        }
        DataType::Interval(IntervalUnit::YearMonth) => {
            Arc::new(IntervalYearMonthArray::from(data)) as ArrayRef
        }
        DataType::Interval(IntervalUnit::DayTime) => {
            Arc::new(IntervalDayTimeArray::from(data)) as ArrayRef
        }
        DataType::Interval(IntervalUnit::MonthDayNano) => {
            Arc::new(IntervalMonthDayNanoArray::from(data)) as ArrayRef
        }
        DataType::Duration(TimeUnit::Second) => {
            Arc::new(DurationSecondArray::from(data)) as ArrayRef
        }
        DataType::Duration(TimeUnit::Millisecond) => {
            Arc::new(DurationMillisecondArray::from(data)) as ArrayRef
        }
        DataType::Duration(TimeUnit::Microsecond) => {
            Arc::new(DurationMicrosecondArray::from(data)) as ArrayRef
        }
        DataType::Duration(TimeUnit::Nanosecond) => {
            Arc::new(DurationNanosecondArray::from(data)) as ArrayRef
        }
        DataType::Binary => Arc::new(BinaryArray::from(data)) as ArrayRef,
        DataType::LargeBinary => Arc::new(LargeBinaryArray::from(data)) as ArrayRef,
        DataType::FixedSizeBinary(_) => Arc::new(FixedSizeBinaryArray::from(data)) as ArrayRef,
        DataType::BinaryView => Arc::new(BinaryViewArray::from(data)) as ArrayRef,
        DataType::Utf8 => Arc::new(StringArray::from(data)) as ArrayRef,
        DataType::LargeUtf8 => Arc::new(LargeStringArray::from(data)) as ArrayRef,
        DataType::Utf8View => Arc::new(StringViewArray::from(data)) as ArrayRef,
        DataType::List(_) => Arc::new(ListArray::from(data)) as ArrayRef,
        DataType::LargeList(_) => Arc::new(LargeListArray::from(data)) as ArrayRef,
        DataType::ListView(_) => Arc::new(ListViewArray::from(data)) as ArrayRef,
        DataType::LargeListView(_) => Arc::new(LargeListViewArray::from(data)) as ArrayRef,
        DataType::Struct(_) => Arc::new(StructArray::from(data)) as ArrayRef,
        DataType::Map(_, _) => Arc::new(MapArray::from(data)) as ArrayRef,
        DataType::Union(_, _) => Arc::new(UnionArray::from(data)) as ArrayRef,
        DataType::FixedSizeList(_, _) => Arc::new(FixedSizeListArray::from(data)) as ArrayRef,
        DataType::Dictionary(ref key_type, _) => match key_type.as_ref() {
            DataType::Int8 => Arc::new(DictionaryArray::<Int8Type>::from(data)) as ArrayRef,
            DataType::Int16 => Arc::new(DictionaryArray::<Int16Type>::from(data)) as ArrayRef,
            DataType::Int32 => Arc::new(DictionaryArray::<Int32Type>::from(data)) as ArrayRef,
            DataType::Int64 => Arc::new(DictionaryArray::<Int64Type>::from(data)) as ArrayRef,
            DataType::UInt8 => Arc::new(DictionaryArray::<UInt8Type>::from(data)) as ArrayRef,
            DataType::UInt16 => Arc::new(DictionaryArray::<UInt16Type>::from(data)) as ArrayRef,
            DataType::UInt32 => Arc::new(DictionaryArray::<UInt32Type>::from(data)) as ArrayRef,
            DataType::UInt64 => Arc::new(DictionaryArray::<UInt64Type>::from(data)) as ArrayRef,
            dt => panic!("Unexpected dictionary key type {dt:?}"),
        },
        DataType::RunEndEncoded(ref run_ends_type, _) => match run_ends_type.data_type() {
            DataType::Int16 => Arc::new(RunArray::<Int16Type>::from(data)) as ArrayRef,
            DataType::Int32 => Arc::new(RunArray::<Int32Type>::from(data)) as ArrayRef,
            DataType::Int64 => Arc::new(RunArray::<Int64Type>::from(data)) as ArrayRef,
            dt => panic!("Unexpected data type for run_ends array {dt:?}"),
        },
        DataType::Null => Arc::new(NullArray::from(data)) as ArrayRef,
        DataType::Decimal128(_, _) => Arc::new(Decimal128Array::from(data)) as ArrayRef,
        DataType::Decimal256(_, _) => Arc::new(Decimal256Array::from(data)) as ArrayRef,
        dt => panic!("Unexpected data type {dt:?}"),
    }
}

/// Creates a new empty array
///
/// ```
/// use std::sync::Arc;
/// use arrow_schema::DataType;
/// use arrow_array::{ArrayRef, Int32Array, new_empty_array};
///
/// let empty_array = new_empty_array(&DataType::Int32);
/// let array: ArrayRef = Arc::new(Int32Array::from(vec![] as Vec<i32>));
///
/// assert_eq!(&array, &empty_array);
/// ```
pub fn new_empty_array(data_type: &DataType) -> ArrayRef {
    let data = ArrayData::new_empty(data_type);
    make_array(data)
}

/// Creates a new array of `data_type` of length `length` filled
/// entirely of `NULL` values
///
/// ```
/// use std::sync::Arc;
/// use arrow_schema::DataType;
/// use arrow_array::{ArrayRef, Int32Array, new_null_array};
///
/// let null_array = new_null_array(&DataType::Int32, 3);
/// let array: ArrayRef = Arc::new(Int32Array::from(vec![None, None, None]));
///
/// assert_eq!(&array, &null_array);
/// ```
pub fn new_null_array(data_type: &DataType, length: usize) -> ArrayRef {
    make_array(ArrayData::new_null(data_type, length))
}

/// Helper function that gets offset from an [`ArrayData`]
///
/// # Safety
///
/// - ArrayData must contain a valid [`OffsetBuffer`] as its first buffer
unsafe fn get_offsets<O: ArrowNativeType>(data: &ArrayData) -> OffsetBuffer<O> {
    match data.is_empty() && data.buffers()[0].is_empty() {
        true => OffsetBuffer::new_empty(),
        false => {
            let buffer =
                ScalarBuffer::new(data.buffers()[0].clone(), data.offset(), data.len() + 1);
            // Safety:
            // ArrayData is valid
            unsafe { OffsetBuffer::new_unchecked(buffer) }
        }
    }
}

/// Helper function for printing potentially long arrays.
fn print_long_array<A, F>(array: &A, f: &mut std::fmt::Formatter, print_item: F) -> std::fmt::Result
where
    A: Array,
    F: Fn(&A, usize, &mut std::fmt::Formatter) -> std::fmt::Result,
{
    let head = std::cmp::min(10, array.len());

    for i in 0..head {
        if array.is_null(i) {
            writeln!(f, "  null,")?;
        } else {
            write!(f, "  ")?;
            print_item(array, i, f)?;
            writeln!(f, ",")?;
        }
    }
    if array.len() > 10 {
        if array.len() > 20 {
            writeln!(f, "  ...{} elements...,", array.len() - 20)?;
        }

        let tail = std::cmp::max(head, array.len() - 10);

        for i in tail..array.len() {
            if array.is_null(i) {
                writeln!(f, "  null,")?;
            } else {
                write!(f, "  ")?;
                print_item(array, i, f)?;
                writeln!(f, ",")?;
            }
        }
    }
    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::cast::{as_union_array, downcast_array};
    use crate::downcast_run_array;
    use arrow_buffer::MutableBuffer;
    use arrow_schema::{Field, Fields, UnionFields, UnionMode};

    #[test]
    fn test_empty_primitive() {
        let array = new_empty_array(&DataType::Int32);
        let a = array.as_any().downcast_ref::<Int32Array>().unwrap();
        assert_eq!(a.len(), 0);
        let expected: &[i32] = &[];
        assert_eq!(a.values(), expected);
    }

    #[test]
    fn test_empty_variable_sized() {
        let array = new_empty_array(&DataType::Utf8);
        let a = array.as_any().downcast_ref::<StringArray>().unwrap();
        assert_eq!(a.len(), 0);
        assert_eq!(a.value_offsets()[0], 0i32);
    }

    #[test]
    fn test_empty_list_primitive() {
        let data_type = DataType::List(Arc::new(Field::new_list_field(DataType::Int32, false)));
        let array = new_empty_array(&data_type);
        let a = array.as_any().downcast_ref::<ListArray>().unwrap();
        assert_eq!(a.len(), 0);
        assert_eq!(a.value_offsets()[0], 0i32);
    }

    #[test]
    fn test_null_boolean() {
        let array = new_null_array(&DataType::Boolean, 9);
        let a = array.as_any().downcast_ref::<BooleanArray>().unwrap();
        assert_eq!(a.len(), 9);
        for i in 0..9 {
            assert!(a.is_null(i));
        }
    }

    #[test]
    fn test_null_primitive() {
        let array = new_null_array(&DataType::Int32, 9);
        let a = array.as_any().downcast_ref::<Int32Array>().unwrap();
        assert_eq!(a.len(), 9);
        for i in 0..9 {
            assert!(a.is_null(i));
        }
    }

    #[test]
    fn test_null_struct() {
        // It is possible to create a null struct containing a non-nullable child
        // see https://github.com/apache/arrow-rs/pull/3244 for details
        let struct_type = DataType::Struct(vec![Field::new("data", DataType::Int64, false)].into());
        let array = new_null_array(&struct_type, 9);

        let a = array.as_any().downcast_ref::<StructArray>().unwrap();
        assert_eq!(a.len(), 9);
        assert_eq!(a.column(0).len(), 9);
        for i in 0..9 {
            assert!(a.is_null(i));
        }

        // Make sure we can slice the resulting array.
        a.slice(0, 5);
    }

    #[test]
    fn test_null_variable_sized() {
        let array = new_null_array(&DataType::Utf8, 9);
        let a = array.as_any().downcast_ref::<StringArray>().unwrap();
        assert_eq!(a.len(), 9);
        assert_eq!(a.value_offsets()[9], 0i32);
        for i in 0..9 {
            assert!(a.is_null(i));
        }
    }

    #[test]
    fn test_null_list_primitive() {
        let data_type = DataType::List(Arc::new(Field::new_list_field(DataType::Int32, true)));
        let array = new_null_array(&data_type, 9);
        let a = array.as_any().downcast_ref::<ListArray>().unwrap();
        assert_eq!(a.len(), 9);
        assert_eq!(a.value_offsets()[9], 0i32);
        for i in 0..9 {
            assert!(a.is_null(i));
        }
    }

    #[test]
    fn test_null_map() {
        let data_type = DataType::Map(
            Arc::new(Field::new(
                "entry",
                DataType::Struct(Fields::from(vec![
                    Field::new("key", DataType::Utf8, false),
                    Field::new("value", DataType::Int32, true),
                ])),
                false,
            )),
            false,
        );
        let array = new_null_array(&data_type, 9);
        let a = array.as_any().downcast_ref::<MapArray>().unwrap();
        assert_eq!(a.len(), 9);
        assert_eq!(a.value_offsets()[9], 0i32);
        for i in 0..9 {
            assert!(a.is_null(i));
        }
    }

    #[test]
    fn test_null_dictionary() {
        let values =
            vec![None, None, None, None, None, None, None, None, None] as Vec<Option<&str>>;

        let array: DictionaryArray<Int8Type> = values.into_iter().collect();
        let array = Arc::new(array) as ArrayRef;

        let null_array = new_null_array(array.data_type(), 9);
        assert_eq!(&array, &null_array);
        assert_eq!(
            array.to_data().buffers()[0].len(),
            null_array.to_data().buffers()[0].len()
        );
    }

    #[test]
    fn test_null_union() {
        for mode in [UnionMode::Sparse, UnionMode::Dense] {
            let data_type = DataType::Union(
                UnionFields::new(
                    vec![2, 1],
                    vec![
                        Field::new("foo", DataType::Int32, true),
                        Field::new("bar", DataType::Int64, true),
                    ],
                ),
                mode,
            );
            let array = new_null_array(&data_type, 4);

            let array = as_union_array(array.as_ref());
            assert_eq!(array.len(), 4);
            assert_eq!(array.null_count(), 0);
            assert_eq!(array.logical_null_count(), 4);

            for i in 0..4 {
                let a = array.value(i);
                assert_eq!(a.len(), 1);
                assert_eq!(a.null_count(), 1);
                assert_eq!(a.logical_null_count(), 1);
                assert!(a.is_null(0))
            }

            array.to_data().validate_full().unwrap();
        }
    }

    #[test]
    #[allow(unused_parens)]
    fn test_null_runs() {
        for r in [DataType::Int16, DataType::Int32, DataType::Int64] {
            let data_type = DataType::RunEndEncoded(
                Arc::new(Field::new("run_ends", r, false)),
                Arc::new(Field::new("values", DataType::Utf8, true)),
            );

            let array = new_null_array(&data_type, 4);
            let array = array.as_ref();

            downcast_run_array! {
                array => {
                    assert_eq!(array.len(), 4);
                    assert_eq!(array.null_count(), 0);
                    assert_eq!(array.logical_null_count(), 4);
                    assert_eq!(array.values().len(), 1);
                    assert_eq!(array.values().null_count(), 1);
                    assert_eq!(array.run_ends().len(), 4);
                    assert_eq!(array.run_ends().values(), &[4]);

                    let idx = array.get_physical_indices(&[0, 1, 2, 3]).unwrap();
                    assert_eq!(idx, &[0,0,0,0]);
                }
                d => unreachable!("{d}")
            }
        }
    }

    #[test]
    fn test_null_fixed_size_binary() {
        for size in [1, 2, 7] {
            let array = new_null_array(&DataType::FixedSizeBinary(size), 6);
            let array = array
                .as_ref()
                .as_any()
                .downcast_ref::<FixedSizeBinaryArray>()
                .unwrap();

            assert_eq!(array.len(), 6);
            assert_eq!(array.null_count(), 6);
            assert_eq!(array.logical_null_count(), 6);
            array.iter().for_each(|x| assert!(x.is_none()));
        }
    }

    #[test]
    fn test_memory_size_null() {
        let null_arr = NullArray::new(32);

        assert_eq!(0, null_arr.get_buffer_memory_size());
        assert_eq!(
            std::mem::size_of::<usize>(),
            null_arr.get_array_memory_size()
        );
    }

    #[test]
    fn test_memory_size_primitive() {
        let arr = PrimitiveArray::<Int64Type>::from_iter_values(0..128);
        let empty = PrimitiveArray::<Int64Type>::from(ArrayData::new_empty(arr.data_type()));

        // subtract empty array to avoid magic numbers for the size of additional fields
        assert_eq!(
            arr.get_array_memory_size() - empty.get_array_memory_size(),
            128 * std::mem::size_of::<i64>()
        );
    }

    #[test]
    fn test_memory_size_primitive_sliced() {
        let arr = PrimitiveArray::<Int64Type>::from_iter_values(0..128);
        let slice1 = arr.slice(0, 64);
        let slice2 = arr.slice(64, 64);

        // both slices report the full buffer memory usage, even though the buffers are shared
        assert_eq!(slice1.get_array_memory_size(), arr.get_array_memory_size());
        assert_eq!(slice2.get_array_memory_size(), arr.get_array_memory_size());
    }

    #[test]
    fn test_memory_size_primitive_nullable() {
        let arr: PrimitiveArray<Int64Type> = (0..128)
            .map(|i| if i % 20 == 0 { Some(i) } else { None })
            .collect();
        let empty_with_bitmap = PrimitiveArray::<Int64Type>::from(
            ArrayData::builder(arr.data_type().clone())
                .add_buffer(MutableBuffer::new(0).into())
                .null_bit_buffer(Some(MutableBuffer::new_null(0).into()))
                .build()
                .unwrap(),
        );

        // expected size is the size of the PrimitiveArray struct,
        // which includes the optional validity buffer
        // plus one buffer on the heap
        assert_eq!(
            std::mem::size_of::<PrimitiveArray<Int64Type>>(),
            empty_with_bitmap.get_array_memory_size()
        );

        // subtract empty array to avoid magic numbers for the size of additional fields
        // the size of the validity bitmap is rounded up to 64 bytes
        assert_eq!(
            arr.get_array_memory_size() - empty_with_bitmap.get_array_memory_size(),
            128 * std::mem::size_of::<i64>() + 64
        );
    }

    #[test]
    fn test_memory_size_dictionary() {
        let values = PrimitiveArray::<Int64Type>::from_iter_values(0..16);
        let keys = PrimitiveArray::<Int16Type>::from_iter_values(
            (0..256).map(|i| (i % values.len()) as i16),
        );

        let dict_data_type = DataType::Dictionary(
            Box::new(keys.data_type().clone()),
            Box::new(values.data_type().clone()),
        );
        let dict_data = keys
            .into_data()
            .into_builder()
            .data_type(dict_data_type)
            .child_data(vec![values.into_data()])
            .build()
            .unwrap();

        let empty_data = ArrayData::new_empty(&DataType::Dictionary(
            Box::new(DataType::Int16),
            Box::new(DataType::Int64),
        ));

        let arr = DictionaryArray::<Int16Type>::from(dict_data);
        let empty = DictionaryArray::<Int16Type>::from(empty_data);

        let expected_keys_size = 256 * std::mem::size_of::<i16>();
        assert_eq!(
            arr.keys().get_array_memory_size() - empty.keys().get_array_memory_size(),
            expected_keys_size
        );

        let expected_values_size = 16 * std::mem::size_of::<i64>();
        assert_eq!(
            arr.values().get_array_memory_size() - empty.values().get_array_memory_size(),
            expected_values_size
        );

        let expected_size = expected_keys_size + expected_values_size;
        assert_eq!(
            arr.get_array_memory_size() - empty.get_array_memory_size(),
            expected_size
        );
    }

    /// Test function that takes an &dyn Array
    fn compute_my_thing(arr: &dyn Array) -> bool {
        !arr.is_empty()
    }

    #[test]
    fn test_array_ref_as_array() {
        let arr: Int32Array = vec![1, 2, 3].into_iter().map(Some).collect();

        // works well!
        assert!(compute_my_thing(&arr));

        // Should also work when wrapped as an ArrayRef
        let arr: ArrayRef = Arc::new(arr);
        assert!(compute_my_thing(&arr));
        assert!(compute_my_thing(arr.as_ref()));
    }

    #[test]
    fn test_downcast_array() {
        let array: Int32Array = vec![1, 2, 3].into_iter().map(Some).collect();

        let boxed: ArrayRef = Arc::new(array);
        let array: Int32Array = downcast_array(&boxed);

        let expected: Int32Array = vec![1, 2, 3].into_iter().map(Some).collect();
        assert_eq!(array, expected);
    }
}