arrow_array/array/byte_view_array.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use crate::array::print_long_array;
19use crate::builder::{ArrayBuilder, GenericByteViewBuilder};
20use crate::iterator::ArrayIter;
21use crate::types::bytes::ByteArrayNativeType;
22use crate::types::{BinaryViewType, ByteViewType, StringViewType};
23use crate::{Array, ArrayAccessor, ArrayRef, GenericByteArray, OffsetSizeTrait, Scalar};
24use arrow_buffer::{ArrowNativeType, Buffer, NullBuffer, ScalarBuffer};
25use arrow_data::{ArrayData, ArrayDataBuilder, ByteView};
26use arrow_schema::{ArrowError, DataType};
27use core::str;
28use num::ToPrimitive;
29use std::any::Any;
30use std::fmt::Debug;
31use std::marker::PhantomData;
32use std::sync::Arc;
33
34use super::ByteArrayType;
35
36/// [Variable-size Binary View Layout]: An array of variable length bytes views.
37///
38/// This array type is used to store variable length byte data (e.g. Strings, Binary)
39/// and has efficient operations such as `take`, `filter`, and comparison.
40///
41/// [Variable-size Binary View Layout]: https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
42///
43/// This is different from [`GenericByteArray`], which also stores variable
44/// length byte data, as it represents strings with an offset and length. `take`
45/// and `filter` like operations are implemented by manipulating the "views"
46/// (`u128`) without modifying the bytes. Each view also stores an inlined
47/// prefix which speed up comparisons.
48///
49/// # See Also
50///
51/// * [`StringViewArray`] for storing utf8 encoded string data
52/// * [`BinaryViewArray`] for storing bytes
53/// * [`ByteView`] to interpret `u128`s layout of the views.
54///
55/// [`ByteView`]: arrow_data::ByteView
56///
57/// # Layout: "views" and buffers
58///
59/// A `GenericByteViewArray` stores variable length byte strings. An array of
60/// `N` elements is stored as `N` fixed length "views" and a variable number
61/// of variable length "buffers".
62///
63/// Each view is a `u128` value whose layout is different depending on the
64/// length of the string stored at that location:
65///
66/// ```text
67/// ┌──────┬────────────────────────┐
68/// │length│ string value │
69/// Strings (len <= 12) │ │ (padded with 0) │
70/// └──────┴────────────────────────┘
71/// 0 31 127
72///
73/// ┌───────┬───────┬───────┬───────┐
74/// │length │prefix │ buf │offset │
75/// Strings (len > 12) │ │ │ index │ │
76/// └───────┴───────┴───────┴───────┘
77/// 0 31 63 95 127
78/// ```
79///
80/// * Strings with length <= 12 are stored directly in the view. See
81/// [`Self::inline_value`] to access the inlined prefix from a short view.
82///
83/// * Strings with length > 12: The first four bytes are stored inline in the
84/// view and the entire string is stored in one of the buffers. See [`ByteView`]
85/// to access the fields of the these views.
86///
87/// As with other arrays, the optimized kernels in [`arrow_compute`] are likely
88/// the easiest and fastest way to work with this data. However, it is possible
89/// to access the views and buffers directly for more control.
90///
91/// For example
92///
93/// ```rust
94/// # use arrow_array::StringViewArray;
95/// # use arrow_array::Array;
96/// use arrow_data::ByteView;
97/// let array = StringViewArray::from(vec![
98/// "hello",
99/// "this string is longer than 12 bytes",
100/// "this string is also longer than 12 bytes"
101/// ]);
102///
103/// // ** Examine the first view (short string) **
104/// assert!(array.is_valid(0)); // Check for nulls
105/// let short_view: u128 = array.views()[0]; // "hello"
106/// // get length of the string
107/// let len = short_view as u32;
108/// assert_eq!(len, 5); // strings less than 12 bytes are stored in the view
109/// // SAFETY: `view` is a valid view
110/// let value = unsafe {
111/// StringViewArray::inline_value(&short_view, len as usize)
112/// };
113/// assert_eq!(value, b"hello");
114///
115/// // ** Examine the third view (long string) **
116/// assert!(array.is_valid(12)); // Check for nulls
117/// let long_view: u128 = array.views()[2]; // "this string is also longer than 12 bytes"
118/// let len = long_view as u32;
119/// assert_eq!(len, 40); // strings longer than 12 bytes are stored in the buffer
120/// let view = ByteView::from(long_view); // use ByteView to access the fields
121/// assert_eq!(view.length, 40);
122/// assert_eq!(view.buffer_index, 0);
123/// assert_eq!(view.offset, 35); // data starts after the first long string
124/// // Views for long strings store a 4 byte prefix
125/// let prefix = view.prefix.to_le_bytes();
126/// assert_eq!(&prefix, b"this");
127/// let value = array.value(2); // get the string value (see `value` implementation for how to access the bytes directly)
128/// assert_eq!(value, "this string is also longer than 12 bytes");
129/// ```
130///
131/// [`arrow_compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
132///
133/// Unlike [`GenericByteArray`], there are no constraints on the offsets other
134/// than they must point into a valid buffer. However, they can be out of order,
135/// non continuous and overlapping.
136///
137/// For example, in the following diagram, the strings "FishWasInTownToday" and
138/// "CrumpleFacedFish" are both longer than 12 bytes and thus are stored in a
139/// separate buffer while the string "LavaMonster" is stored inlined in the
140/// view. In this case, the same bytes for "Fish" are used to store both strings.
141///
142/// [`ByteView`]: arrow_data::ByteView
143///
144/// ```text
145/// ┌───┐
146/// ┌──────┬──────┬──────┬──────┐ offset │...│
147/// "FishWasInTownTodayYay" │ 21 │ Fish │ 0 │ 115 │─ ─ 103 │Mr.│
148/// └──────┴──────┴──────┴──────┘ │ ┌ ─ ─ ─ ─ ▶ │Cru│
149/// ┌──────┬──────┬──────┬──────┐ │mpl│
150/// "CrumpleFacedFish" │ 16 │ Crum │ 0 │ 103 │─ ─│─ ─ ─ ┘ │eFa│
151/// └──────┴──────┴──────┴──────┘ │ced│
152/// ┌──────┬────────────────────┐ └ ─ ─ ─ ─ ─ ─ ─ ─ ▶│Fis│
153/// "LavaMonster" │ 11 │ LavaMonster │ │hWa│
154/// └──────┴────────────────────┘ offset │sIn│
155/// 115 │Tow│
156/// │nTo│
157/// │day│
158/// u128 "views" │Yay│
159/// buffer 0 │...│
160/// └───┘
161/// ```
162pub struct GenericByteViewArray<T: ByteViewType + ?Sized> {
163 data_type: DataType,
164 views: ScalarBuffer<u128>,
165 buffers: Vec<Buffer>,
166 phantom: PhantomData<T>,
167 nulls: Option<NullBuffer>,
168}
169
170impl<T: ByteViewType + ?Sized> Clone for GenericByteViewArray<T> {
171 fn clone(&self) -> Self {
172 Self {
173 data_type: T::DATA_TYPE,
174 views: self.views.clone(),
175 buffers: self.buffers.clone(),
176 nulls: self.nulls.clone(),
177 phantom: Default::default(),
178 }
179 }
180}
181
182impl<T: ByteViewType + ?Sized> GenericByteViewArray<T> {
183 /// Create a new [`GenericByteViewArray`] from the provided parts, panicking on failure
184 ///
185 /// # Panics
186 ///
187 /// Panics if [`GenericByteViewArray::try_new`] returns an error
188 pub fn new(views: ScalarBuffer<u128>, buffers: Vec<Buffer>, nulls: Option<NullBuffer>) -> Self {
189 Self::try_new(views, buffers, nulls).unwrap()
190 }
191
192 /// Create a new [`GenericByteViewArray`] from the provided parts, returning an error on failure
193 ///
194 /// # Errors
195 ///
196 /// * `views.len() != nulls.len()`
197 /// * [ByteViewType::validate] fails
198 pub fn try_new(
199 views: ScalarBuffer<u128>,
200 buffers: Vec<Buffer>,
201 nulls: Option<NullBuffer>,
202 ) -> Result<Self, ArrowError> {
203 T::validate(&views, &buffers)?;
204
205 if let Some(n) = nulls.as_ref() {
206 if n.len() != views.len() {
207 return Err(ArrowError::InvalidArgumentError(format!(
208 "Incorrect length of null buffer for {}ViewArray, expected {} got {}",
209 T::PREFIX,
210 views.len(),
211 n.len(),
212 )));
213 }
214 }
215
216 Ok(Self {
217 data_type: T::DATA_TYPE,
218 views,
219 buffers,
220 nulls,
221 phantom: Default::default(),
222 })
223 }
224
225 /// Create a new [`GenericByteViewArray`] from the provided parts, without validation
226 ///
227 /// # Safety
228 ///
229 /// Safe if [`Self::try_new`] would not error
230 pub unsafe fn new_unchecked(
231 views: ScalarBuffer<u128>,
232 buffers: Vec<Buffer>,
233 nulls: Option<NullBuffer>,
234 ) -> Self {
235 if cfg!(feature = "force_validate") {
236 return Self::new(views, buffers, nulls);
237 }
238
239 Self {
240 data_type: T::DATA_TYPE,
241 phantom: Default::default(),
242 views,
243 buffers,
244 nulls,
245 }
246 }
247
248 /// Create a new [`GenericByteViewArray`] of length `len` where all values are null
249 pub fn new_null(len: usize) -> Self {
250 Self {
251 data_type: T::DATA_TYPE,
252 views: vec![0; len].into(),
253 buffers: vec![],
254 nulls: Some(NullBuffer::new_null(len)),
255 phantom: Default::default(),
256 }
257 }
258
259 /// Create a new [`Scalar`] from `value`
260 pub fn new_scalar(value: impl AsRef<T::Native>) -> Scalar<Self> {
261 Scalar::new(Self::from_iter_values(std::iter::once(value)))
262 }
263
264 /// Creates a [`GenericByteViewArray`] based on an iterator of values without nulls
265 pub fn from_iter_values<Ptr, I>(iter: I) -> Self
266 where
267 Ptr: AsRef<T::Native>,
268 I: IntoIterator<Item = Ptr>,
269 {
270 let iter = iter.into_iter();
271 let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
272 for v in iter {
273 builder.append_value(v);
274 }
275 builder.finish()
276 }
277
278 /// Deconstruct this array into its constituent parts
279 pub fn into_parts(self) -> (ScalarBuffer<u128>, Vec<Buffer>, Option<NullBuffer>) {
280 (self.views, self.buffers, self.nulls)
281 }
282
283 /// Returns the views buffer
284 #[inline]
285 pub fn views(&self) -> &ScalarBuffer<u128> {
286 &self.views
287 }
288
289 /// Returns the buffers storing string data
290 #[inline]
291 pub fn data_buffers(&self) -> &[Buffer] {
292 &self.buffers
293 }
294
295 /// Returns the element at index `i`
296 /// # Panics
297 /// Panics if index `i` is out of bounds.
298 pub fn value(&self, i: usize) -> &T::Native {
299 assert!(
300 i < self.len(),
301 "Trying to access an element at index {} from a {}ViewArray of length {}",
302 i,
303 T::PREFIX,
304 self.len()
305 );
306
307 unsafe { self.value_unchecked(i) }
308 }
309
310 /// Returns the element at index `i` without bounds checking
311 ///
312 /// # Safety
313 ///
314 /// Caller is responsible for ensuring that the index is within the bounds
315 /// of the array
316 pub unsafe fn value_unchecked(&self, idx: usize) -> &T::Native {
317 let v = self.views.get_unchecked(idx);
318 let len = *v as u32;
319 let b = if len <= 12 {
320 Self::inline_value(v, len as usize)
321 } else {
322 let view = ByteView::from(*v);
323 let data = self.buffers.get_unchecked(view.buffer_index as usize);
324 let offset = view.offset as usize;
325 data.get_unchecked(offset..offset + len as usize)
326 };
327 T::Native::from_bytes_unchecked(b)
328 }
329
330 /// Returns the first `len` bytes the inline value of the view.
331 ///
332 /// # Safety
333 /// - The `view` must be a valid element from `Self::views()` that adheres to the view layout.
334 /// - The `len` must be the length of the inlined value. It should never be larger than 12.
335 #[inline(always)]
336 pub unsafe fn inline_value(view: &u128, len: usize) -> &[u8] {
337 debug_assert!(len <= 12);
338 std::slice::from_raw_parts((view as *const u128 as *const u8).wrapping_add(4), len)
339 }
340
341 /// Constructs a new iterator for iterating over the values of this array
342 pub fn iter(&self) -> ArrayIter<&Self> {
343 ArrayIter::new(self)
344 }
345
346 /// Returns an iterator over the bytes of this array, including null values
347 pub fn bytes_iter(&self) -> impl Iterator<Item = &[u8]> {
348 self.views.iter().map(move |v| {
349 let len = *v as u32;
350 if len <= 12 {
351 unsafe { Self::inline_value(v, len as usize) }
352 } else {
353 let view = ByteView::from(*v);
354 let data = &self.buffers[view.buffer_index as usize];
355 let offset = view.offset as usize;
356 unsafe { data.get_unchecked(offset..offset + len as usize) }
357 }
358 })
359 }
360
361 /// Returns an iterator over the first `prefix_len` bytes of each array
362 /// element, including null values.
363 ///
364 /// If `prefix_len` is larger than the element's length, the iterator will
365 /// return an empty slice (`&[]`).
366 pub fn prefix_bytes_iter(&self, prefix_len: usize) -> impl Iterator<Item = &[u8]> {
367 self.views().into_iter().map(move |v| {
368 let len = (*v as u32) as usize;
369
370 if len < prefix_len {
371 return &[] as &[u8];
372 }
373
374 if prefix_len <= 4 || len <= 12 {
375 unsafe { StringViewArray::inline_value(v, prefix_len) }
376 } else {
377 let view = ByteView::from(*v);
378 let data = unsafe {
379 self.data_buffers()
380 .get_unchecked(view.buffer_index as usize)
381 };
382 let offset = view.offset as usize;
383 unsafe { data.get_unchecked(offset..offset + prefix_len) }
384 }
385 })
386 }
387
388 /// Returns an iterator over the last `suffix_len` bytes of each array
389 /// element, including null values.
390 ///
391 /// Note that for [`StringViewArray`] the last bytes may start in the middle
392 /// of a UTF-8 codepoint, and thus may not be a valid `&str`.
393 ///
394 /// If `suffix_len` is larger than the element's length, the iterator will
395 /// return an empty slice (`&[]`).
396 pub fn suffix_bytes_iter(&self, suffix_len: usize) -> impl Iterator<Item = &[u8]> {
397 self.views().into_iter().map(move |v| {
398 let len = (*v as u32) as usize;
399
400 if len < suffix_len {
401 return &[] as &[u8];
402 }
403
404 if len <= 12 {
405 unsafe { &StringViewArray::inline_value(v, len)[len - suffix_len..] }
406 } else {
407 let view = ByteView::from(*v);
408 let data = unsafe {
409 self.data_buffers()
410 .get_unchecked(view.buffer_index as usize)
411 };
412 let offset = view.offset as usize;
413 unsafe { data.get_unchecked(offset + len - suffix_len..offset + len) }
414 }
415 })
416 }
417
418 /// Returns a zero-copy slice of this array with the indicated offset and length.
419 pub fn slice(&self, offset: usize, length: usize) -> Self {
420 Self {
421 data_type: T::DATA_TYPE,
422 views: self.views.slice(offset, length),
423 buffers: self.buffers.clone(),
424 nulls: self.nulls.as_ref().map(|n| n.slice(offset, length)),
425 phantom: Default::default(),
426 }
427 }
428
429 /// Returns a "compacted" version of this array
430 ///
431 /// The original array will *not* be modified
432 ///
433 /// # Garbage Collection
434 ///
435 /// Before GC:
436 /// ```text
437 /// ┌──────┐
438 /// │......│
439 /// │......│
440 /// ┌────────────────────┐ ┌ ─ ─ ─ ▶ │Data1 │ Large buffer
441 /// │ View 1 │─ ─ ─ ─ │......│ with data that
442 /// ├────────────────────┤ │......│ is not referred
443 /// │ View 2 │─ ─ ─ ─ ─ ─ ─ ─▶ │Data2 │ to by View 1 or
444 /// └────────────────────┘ │......│ View 2
445 /// │......│
446 /// 2 views, refer to │......│
447 /// small portions of a └──────┘
448 /// large buffer
449 /// ```
450 ///
451 /// After GC:
452 ///
453 /// ```text
454 /// ┌────────────────────┐ ┌─────┐ After gc, only
455 /// │ View 1 │─ ─ ─ ─ ─ ─ ─ ─▶ │Data1│ data that is
456 /// ├────────────────────┤ ┌ ─ ─ ─ ▶ │Data2│ pointed to by
457 /// │ View 2 │─ ─ ─ ─ └─────┘ the views is
458 /// └────────────────────┘ left
459 ///
460 ///
461 /// 2 views
462 /// ```
463 /// This method will compact the data buffers by recreating the view array and only include the data
464 /// that is pointed to by the views.
465 ///
466 /// Note that it will copy the array regardless of whether the original array is compact.
467 /// Use with caution as this can be an expensive operation, only use it when you are sure that the view
468 /// array is significantly smaller than when it is originally created, e.g., after filtering or slicing.
469 ///
470 /// Note: this function does not attempt to canonicalize / deduplicate values. For this
471 /// feature see [`GenericByteViewBuilder::with_deduplicate_strings`].
472 pub fn gc(&self) -> Self {
473 let mut builder = GenericByteViewBuilder::<T>::with_capacity(self.len());
474
475 for v in self.iter() {
476 builder.append_option(v);
477 }
478
479 builder.finish()
480 }
481
482 /// Compare two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
483 ///
484 /// Comparing two ByteView types are non-trivial.
485 /// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
486 ///
487 /// ByteView types give us the following two advantages, and we need to be careful not to lose them:
488 /// (1) For string/byte smaller than 12 bytes, the entire data is inlined in the view.
489 /// Meaning that reading one array element requires only one memory access
490 /// (two memory access required for StringArray, one for offset buffer, the other for value buffer).
491 ///
492 /// (2) For string/byte larger than 12 bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
493 /// thanks to the inlined 4 bytes.
494 /// Consider equality check:
495 /// If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
496 ///
497 /// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
498 /// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
499 /// e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
500 ///
501 /// # Order check flow
502 /// (1) if both string are smaller than 12 bytes, we can directly compare the data inlined to the view.
503 /// (2) if any of the string is larger than 12 bytes, we need to compare the full string.
504 /// (2.1) if the inlined 4 bytes are different, we can return the result immediately.
505 /// (2.2) o.w., we need to compare the full string.
506 ///
507 /// # Safety
508 /// The left/right_idx must within range of each array
509 pub unsafe fn compare_unchecked(
510 left: &GenericByteViewArray<T>,
511 left_idx: usize,
512 right: &GenericByteViewArray<T>,
513 right_idx: usize,
514 ) -> std::cmp::Ordering {
515 let l_view = left.views().get_unchecked(left_idx);
516 let l_len = *l_view as u32;
517
518 let r_view = right.views().get_unchecked(right_idx);
519 let r_len = *r_view as u32;
520
521 if l_len <= 12 && r_len <= 12 {
522 let l_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, l_len as usize) };
523 let r_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, r_len as usize) };
524 return l_data.cmp(r_data);
525 }
526
527 // one of the string is larger than 12 bytes,
528 // we then try to compare the inlined data first
529 let l_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, 4) };
530 let r_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, 4) };
531 if r_inlined_data != l_inlined_data {
532 return l_inlined_data.cmp(r_inlined_data);
533 }
534
535 // unfortunately, we need to compare the full data
536 let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
537 let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };
538
539 l_full_data.cmp(r_full_data)
540 }
541}
542
543impl<T: ByteViewType + ?Sized> Debug for GenericByteViewArray<T> {
544 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
545 write!(f, "{}ViewArray\n[\n", T::PREFIX)?;
546 print_long_array(self, f, |array, index, f| {
547 std::fmt::Debug::fmt(&array.value(index), f)
548 })?;
549 write!(f, "]")
550 }
551}
552
553impl<T: ByteViewType + ?Sized> Array for GenericByteViewArray<T> {
554 fn as_any(&self) -> &dyn Any {
555 self
556 }
557
558 fn to_data(&self) -> ArrayData {
559 self.clone().into()
560 }
561
562 fn into_data(self) -> ArrayData {
563 self.into()
564 }
565
566 fn data_type(&self) -> &DataType {
567 &self.data_type
568 }
569
570 fn slice(&self, offset: usize, length: usize) -> ArrayRef {
571 Arc::new(self.slice(offset, length))
572 }
573
574 fn len(&self) -> usize {
575 self.views.len()
576 }
577
578 fn is_empty(&self) -> bool {
579 self.views.is_empty()
580 }
581
582 fn shrink_to_fit(&mut self) {
583 self.views.shrink_to_fit();
584 self.buffers.iter_mut().for_each(|b| b.shrink_to_fit());
585 self.buffers.shrink_to_fit();
586 if let Some(nulls) = &mut self.nulls {
587 nulls.shrink_to_fit();
588 }
589 }
590
591 fn offset(&self) -> usize {
592 0
593 }
594
595 fn nulls(&self) -> Option<&NullBuffer> {
596 self.nulls.as_ref()
597 }
598
599 fn logical_null_count(&self) -> usize {
600 // More efficient that the default implementation
601 self.null_count()
602 }
603
604 fn get_buffer_memory_size(&self) -> usize {
605 let mut sum = self.buffers.iter().map(|b| b.capacity()).sum::<usize>();
606 sum += self.views.inner().capacity();
607 if let Some(x) = &self.nulls {
608 sum += x.buffer().capacity()
609 }
610 sum
611 }
612
613 fn get_array_memory_size(&self) -> usize {
614 std::mem::size_of::<Self>() + self.get_buffer_memory_size()
615 }
616}
617
618impl<'a, T: ByteViewType + ?Sized> ArrayAccessor for &'a GenericByteViewArray<T> {
619 type Item = &'a T::Native;
620
621 fn value(&self, index: usize) -> Self::Item {
622 GenericByteViewArray::value(self, index)
623 }
624
625 unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
626 GenericByteViewArray::value_unchecked(self, index)
627 }
628}
629
630impl<'a, T: ByteViewType + ?Sized> IntoIterator for &'a GenericByteViewArray<T> {
631 type Item = Option<&'a T::Native>;
632 type IntoIter = ArrayIter<Self>;
633
634 fn into_iter(self) -> Self::IntoIter {
635 ArrayIter::new(self)
636 }
637}
638
639impl<T: ByteViewType + ?Sized> From<ArrayData> for GenericByteViewArray<T> {
640 fn from(value: ArrayData) -> Self {
641 let views = value.buffers()[0].clone();
642 let views = ScalarBuffer::new(views, value.offset(), value.len());
643 let buffers = value.buffers()[1..].to_vec();
644 Self {
645 data_type: T::DATA_TYPE,
646 views,
647 buffers,
648 nulls: value.nulls().cloned(),
649 phantom: Default::default(),
650 }
651 }
652}
653
654/// Efficiently convert a [`GenericByteArray`] to a [`GenericByteViewArray`]
655///
656/// For example this method can convert a [`StringArray`] to a
657/// [`StringViewArray`].
658///
659/// If the offsets are all less than u32::MAX, the new [`GenericByteViewArray`]
660/// is built without copying the underlying string data (views are created
661/// directly into the existing buffer)
662///
663/// [`StringArray`]: crate::StringArray
664impl<FROM, V> From<&GenericByteArray<FROM>> for GenericByteViewArray<V>
665where
666 FROM: ByteArrayType,
667 FROM::Offset: OffsetSizeTrait + ToPrimitive,
668 V: ByteViewType<Native = FROM::Native>,
669{
670 fn from(byte_array: &GenericByteArray<FROM>) -> Self {
671 let offsets = byte_array.offsets();
672
673 let can_reuse_buffer = match offsets.last() {
674 Some(offset) => offset.as_usize() < u32::MAX as usize,
675 None => true,
676 };
677
678 if can_reuse_buffer {
679 // build views directly pointing to the existing buffer
680 let len = byte_array.len();
681 let mut views_builder = GenericByteViewBuilder::<V>::with_capacity(len);
682 let str_values_buf = byte_array.values().clone();
683 let block = views_builder.append_block(str_values_buf);
684 for (i, w) in offsets.windows(2).enumerate() {
685 let offset = w[0].as_usize();
686 let end = w[1].as_usize();
687 let length = end - offset;
688
689 if byte_array.is_null(i) {
690 views_builder.append_null();
691 } else {
692 // Safety: the input was a valid array so it valid UTF8 (if string). And
693 // all offsets were valid
694 unsafe {
695 views_builder.append_view_unchecked(block, offset as u32, length as u32)
696 }
697 }
698 }
699 assert_eq!(views_builder.len(), len);
700 views_builder.finish()
701 } else {
702 // Otherwise, create a new buffer for large strings
703 // TODO: the original buffer could still be used
704 // by making multiple slices of u32::MAX length
705 GenericByteViewArray::<V>::from_iter(byte_array.iter())
706 }
707 }
708}
709
710impl<T: ByteViewType + ?Sized> From<GenericByteViewArray<T>> for ArrayData {
711 fn from(mut array: GenericByteViewArray<T>) -> Self {
712 let len = array.len();
713 array.buffers.insert(0, array.views.into_inner());
714 let builder = ArrayDataBuilder::new(T::DATA_TYPE)
715 .len(len)
716 .buffers(array.buffers)
717 .nulls(array.nulls);
718
719 unsafe { builder.build_unchecked() }
720 }
721}
722
723impl<'a, Ptr, T> FromIterator<&'a Option<Ptr>> for GenericByteViewArray<T>
724where
725 Ptr: AsRef<T::Native> + 'a,
726 T: ByteViewType + ?Sized,
727{
728 fn from_iter<I: IntoIterator<Item = &'a Option<Ptr>>>(iter: I) -> Self {
729 iter.into_iter()
730 .map(|o| o.as_ref().map(|p| p.as_ref()))
731 .collect()
732 }
733}
734
735impl<Ptr, T: ByteViewType + ?Sized> FromIterator<Option<Ptr>> for GenericByteViewArray<T>
736where
737 Ptr: AsRef<T::Native>,
738{
739 fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
740 let iter = iter.into_iter();
741 let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
742 builder.extend(iter);
743 builder.finish()
744 }
745}
746
747/// A [`GenericByteViewArray`] of `[u8]`
748///
749/// See [`GenericByteViewArray`] for format and layout details.
750///
751/// # Example
752/// ```
753/// use arrow_array::BinaryViewArray;
754/// let array = BinaryViewArray::from_iter_values(vec![b"hello" as &[u8], b"world", b"lulu", b"large payload over 12 bytes"]);
755/// assert_eq!(array.value(0), b"hello");
756/// assert_eq!(array.value(3), b"large payload over 12 bytes");
757/// ```
758pub type BinaryViewArray = GenericByteViewArray<BinaryViewType>;
759
760impl BinaryViewArray {
761 /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
762 /// If items not utf8 data, validate will fail and error returned.
763 pub fn to_string_view(self) -> Result<StringViewArray, ArrowError> {
764 StringViewType::validate(self.views(), self.data_buffers())?;
765 unsafe { Ok(self.to_string_view_unchecked()) }
766 }
767
768 /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
769 /// # Safety
770 /// Caller is responsible for ensuring that items in array are utf8 data.
771 pub unsafe fn to_string_view_unchecked(self) -> StringViewArray {
772 StringViewArray::new_unchecked(self.views, self.buffers, self.nulls)
773 }
774}
775
776impl From<Vec<&[u8]>> for BinaryViewArray {
777 fn from(v: Vec<&[u8]>) -> Self {
778 Self::from_iter_values(v)
779 }
780}
781
782impl From<Vec<Option<&[u8]>>> for BinaryViewArray {
783 fn from(v: Vec<Option<&[u8]>>) -> Self {
784 v.into_iter().collect()
785 }
786}
787
788/// A [`GenericByteViewArray`] that stores utf8 data
789///
790/// See [`GenericByteViewArray`] for format and layout details.
791///
792/// # Example
793/// ```
794/// use arrow_array::StringViewArray;
795/// let array = StringViewArray::from_iter_values(vec!["hello", "world", "lulu", "large payload over 12 bytes"]);
796/// assert_eq!(array.value(0), "hello");
797/// assert_eq!(array.value(3), "large payload over 12 bytes");
798/// ```
799pub type StringViewArray = GenericByteViewArray<StringViewType>;
800
801impl StringViewArray {
802 /// Convert the [`StringViewArray`] to [`BinaryViewArray`]
803 pub fn to_binary_view(self) -> BinaryViewArray {
804 unsafe { BinaryViewArray::new_unchecked(self.views, self.buffers, self.nulls) }
805 }
806
807 /// Returns true if all data within this array is ASCII
808 pub fn is_ascii(&self) -> bool {
809 // Alternative (but incorrect): directly check the underlying buffers
810 // (1) Our string view might be sparse, i.e., a subset of the buffers,
811 // so even if the buffer is not ascii, we can still be ascii.
812 // (2) It is quite difficult to know the range of each buffer (unlike StringArray)
813 // This means that this operation is quite expensive, shall we cache the result?
814 // i.e. track `is_ascii` in the builder.
815 self.iter().all(|v| match v {
816 Some(v) => v.is_ascii(),
817 None => true,
818 })
819 }
820}
821
822impl From<Vec<&str>> for StringViewArray {
823 fn from(v: Vec<&str>) -> Self {
824 Self::from_iter_values(v)
825 }
826}
827
828impl From<Vec<Option<&str>>> for StringViewArray {
829 fn from(v: Vec<Option<&str>>) -> Self {
830 v.into_iter().collect()
831 }
832}
833
834impl From<Vec<String>> for StringViewArray {
835 fn from(v: Vec<String>) -> Self {
836 Self::from_iter_values(v)
837 }
838}
839
840impl From<Vec<Option<String>>> for StringViewArray {
841 fn from(v: Vec<Option<String>>) -> Self {
842 v.into_iter().collect()
843 }
844}
845
846#[cfg(test)]
847mod tests {
848 use crate::builder::{BinaryViewBuilder, StringViewBuilder};
849 use crate::{Array, BinaryViewArray, StringViewArray};
850 use arrow_buffer::{Buffer, ScalarBuffer};
851 use arrow_data::ByteView;
852
853 #[test]
854 fn try_new_string() {
855 let array = StringViewArray::from_iter_values(vec![
856 "hello",
857 "world",
858 "lulu",
859 "large payload over 12 bytes",
860 ]);
861 assert_eq!(array.value(0), "hello");
862 assert_eq!(array.value(3), "large payload over 12 bytes");
863 }
864
865 #[test]
866 fn try_new_binary() {
867 let array = BinaryViewArray::from_iter_values(vec![
868 b"hello".as_slice(),
869 b"world".as_slice(),
870 b"lulu".as_slice(),
871 b"large payload over 12 bytes".as_slice(),
872 ]);
873 assert_eq!(array.value(0), b"hello");
874 assert_eq!(array.value(3), b"large payload over 12 bytes");
875 }
876
877 #[test]
878 fn try_new_empty_string() {
879 // test empty array
880 let array = {
881 let mut builder = StringViewBuilder::new();
882 builder.finish()
883 };
884 assert!(array.is_empty());
885 }
886
887 #[test]
888 fn try_new_empty_binary() {
889 // test empty array
890 let array = {
891 let mut builder = BinaryViewBuilder::new();
892 builder.finish()
893 };
894 assert!(array.is_empty());
895 }
896
897 #[test]
898 fn test_append_string() {
899 // test builder append
900 let array = {
901 let mut builder = StringViewBuilder::new();
902 builder.append_value("hello");
903 builder.append_null();
904 builder.append_option(Some("large payload over 12 bytes"));
905 builder.finish()
906 };
907 assert_eq!(array.value(0), "hello");
908 assert!(array.is_null(1));
909 assert_eq!(array.value(2), "large payload over 12 bytes");
910 }
911
912 #[test]
913 fn test_append_binary() {
914 // test builder append
915 let array = {
916 let mut builder = BinaryViewBuilder::new();
917 builder.append_value(b"hello");
918 builder.append_null();
919 builder.append_option(Some(b"large payload over 12 bytes"));
920 builder.finish()
921 };
922 assert_eq!(array.value(0), b"hello");
923 assert!(array.is_null(1));
924 assert_eq!(array.value(2), b"large payload over 12 bytes");
925 }
926
927 #[test]
928 fn test_in_progress_recreation() {
929 let array = {
930 // make a builder with small block size.
931 let mut builder = StringViewBuilder::new().with_fixed_block_size(14);
932 builder.append_value("large payload over 12 bytes");
933 builder.append_option(Some("another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created"));
934 builder.finish()
935 };
936 assert_eq!(array.value(0), "large payload over 12 bytes");
937 assert_eq!(array.value(1), "another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created");
938 assert_eq!(2, array.buffers.len());
939 }
940
941 #[test]
942 #[should_panic(expected = "Invalid buffer index at 0: got index 3 but only has 1 buffers")]
943 fn new_with_invalid_view_data() {
944 let v = "large payload over 12 bytes";
945 let view = ByteView::new(13, &v.as_bytes()[0..4])
946 .with_buffer_index(3)
947 .with_offset(1);
948 let views = ScalarBuffer::from(vec![view.into()]);
949 let buffers = vec![Buffer::from_slice_ref(v)];
950 StringViewArray::new(views, buffers, None);
951 }
952
953 #[test]
954 #[should_panic(
955 expected = "Encountered non-UTF-8 data at index 0: invalid utf-8 sequence of 1 bytes from index 0"
956 )]
957 fn new_with_invalid_utf8_data() {
958 let v: Vec<u8> = vec![
959 // invalid UTF8
960 0xf0, 0x80, 0x80, 0x80, // more bytes to make it larger than 12
961 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
962 ];
963 let view = ByteView::new(v.len() as u32, &v[0..4]);
964 let views = ScalarBuffer::from(vec![view.into()]);
965 let buffers = vec![Buffer::from_slice_ref(v)];
966 StringViewArray::new(views, buffers, None);
967 }
968
969 #[test]
970 #[should_panic(expected = "View at index 0 contained non-zero padding for string of length 1")]
971 fn new_with_invalid_zero_padding() {
972 let mut data = [0; 12];
973 data[0] = b'H';
974 data[11] = 1; // no zero padding
975
976 let mut view_buffer = [0; 16];
977 view_buffer[0..4].copy_from_slice(&1u32.to_le_bytes());
978 view_buffer[4..].copy_from_slice(&data);
979
980 let view = ByteView::from(u128::from_le_bytes(view_buffer));
981 let views = ScalarBuffer::from(vec![view.into()]);
982 let buffers = vec![];
983 StringViewArray::new(views, buffers, None);
984 }
985
986 #[test]
987 #[should_panic(expected = "Mismatch between embedded prefix and data")]
988 fn test_mismatch_between_embedded_prefix_and_data() {
989 let input_str_1 = "Hello, Rustaceans!";
990 let input_str_2 = "Hallo, Rustaceans!";
991 let length = input_str_1.len() as u32;
992 assert!(input_str_1.len() > 12);
993
994 let mut view_buffer = [0; 16];
995 view_buffer[0..4].copy_from_slice(&length.to_le_bytes());
996 view_buffer[4..8].copy_from_slice(&input_str_1.as_bytes()[0..4]);
997 view_buffer[8..12].copy_from_slice(&0u32.to_le_bytes());
998 view_buffer[12..].copy_from_slice(&0u32.to_le_bytes());
999 let view = ByteView::from(u128::from_le_bytes(view_buffer));
1000 let views = ScalarBuffer::from(vec![view.into()]);
1001 let buffers = vec![Buffer::from_slice_ref(input_str_2.as_bytes())];
1002
1003 StringViewArray::new(views, buffers, None);
1004 }
1005
1006 #[test]
1007 fn test_gc() {
1008 let test_data = [
1009 Some("longer than 12 bytes"),
1010 Some("short"),
1011 Some("t"),
1012 Some("longer than 12 bytes"),
1013 None,
1014 Some("short"),
1015 ];
1016
1017 let array = {
1018 let mut builder = StringViewBuilder::new().with_fixed_block_size(8); // create multiple buffers
1019 test_data.into_iter().for_each(|v| builder.append_option(v));
1020 builder.finish()
1021 };
1022 assert!(array.buffers.len() > 1);
1023
1024 fn check_gc(to_test: &StringViewArray) {
1025 let gc = to_test.gc();
1026 assert_ne!(to_test.data_buffers().len(), gc.data_buffers().len());
1027
1028 to_test.iter().zip(gc.iter()).for_each(|(a, b)| {
1029 assert_eq!(a, b);
1030 });
1031 assert_eq!(to_test.len(), gc.len());
1032 }
1033
1034 check_gc(&array);
1035 check_gc(&array.slice(1, 3));
1036 check_gc(&array.slice(2, 1));
1037 check_gc(&array.slice(2, 2));
1038 check_gc(&array.slice(3, 1));
1039 }
1040
1041 #[test]
1042 fn test_eq() {
1043 let test_data = [
1044 Some("longer than 12 bytes"),
1045 None,
1046 Some("short"),
1047 Some("again, this is longer than 12 bytes"),
1048 ];
1049
1050 let array1 = {
1051 let mut builder = StringViewBuilder::new().with_fixed_block_size(8);
1052 test_data.into_iter().for_each(|v| builder.append_option(v));
1053 builder.finish()
1054 };
1055 let array2 = {
1056 // create a new array with the same data but different layout
1057 let mut builder = StringViewBuilder::new().with_fixed_block_size(100);
1058 test_data.into_iter().for_each(|v| builder.append_option(v));
1059 builder.finish()
1060 };
1061 assert_eq!(array1, array1.clone());
1062 assert_eq!(array2, array2.clone());
1063 assert_eq!(array1, array2);
1064 }
1065}