arrow_array/array/
byte_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::array::{get_offsets, print_long_array};
use crate::builder::GenericByteBuilder;
use crate::iterator::ArrayIter;
use crate::types::bytes::ByteArrayNativeType;
use crate::types::ByteArrayType;
use crate::{Array, ArrayAccessor, ArrayRef, OffsetSizeTrait, Scalar};
use arrow_buffer::{ArrowNativeType, Buffer, MutableBuffer};
use arrow_buffer::{NullBuffer, OffsetBuffer};
use arrow_data::{ArrayData, ArrayDataBuilder};
use arrow_schema::{ArrowError, DataType};
use std::any::Any;
use std::sync::Arc;

/// An array of [variable length byte arrays](https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-layout)
///
/// See [`StringArray`] and [`LargeStringArray`] for storing utf8 encoded string data
///
/// See [`BinaryArray`] and [`LargeBinaryArray`] for storing arbitrary bytes
///
/// # Example: From a Vec
///
/// ```
/// # use arrow_array::{Array, GenericByteArray, types::Utf8Type};
/// let arr: GenericByteArray<Utf8Type> = vec!["hello", "world", ""].into();
/// assert_eq!(arr.value_data(), b"helloworld");
/// assert_eq!(arr.value_offsets(), &[0, 5, 10, 10]);
/// let values: Vec<_> = arr.iter().collect();
/// assert_eq!(values, &[Some("hello"), Some("world"), Some("")]);
/// ```
///
/// # Example: From an optional Vec
///
/// ```
/// # use arrow_array::{Array, GenericByteArray, types::Utf8Type};
/// let arr: GenericByteArray<Utf8Type> = vec![Some("hello"), Some("world"), Some(""), None].into();
/// assert_eq!(arr.value_data(), b"helloworld");
/// assert_eq!(arr.value_offsets(), &[0, 5, 10, 10, 10]);
/// let values: Vec<_> = arr.iter().collect();
/// assert_eq!(values, &[Some("hello"), Some("world"), Some(""), None]);
/// ```
///
/// # Example: From an iterator of option
///
/// ```
/// # use arrow_array::{Array, GenericByteArray, types::Utf8Type};
/// let arr: GenericByteArray<Utf8Type> = (0..5).map(|x| (x % 2 == 0).then(|| x.to_string())).collect();
/// let values: Vec<_> = arr.iter().collect();
/// assert_eq!(values, &[Some("0"), None, Some("2"), None, Some("4")]);
/// ```
///
/// # Example: Using Builder
///
/// ```
/// # use arrow_array::Array;
/// # use arrow_array::builder::GenericByteBuilder;
/// # use arrow_array::types::Utf8Type;
/// let mut builder = GenericByteBuilder::<Utf8Type>::new();
/// builder.append_value("hello");
/// builder.append_null();
/// builder.append_value("world");
/// let array = builder.finish();
/// let values: Vec<_> = array.iter().collect();
/// assert_eq!(values, &[Some("hello"), None, Some("world")]);
/// ```
///
/// [`StringArray`]: crate::StringArray
/// [`LargeStringArray`]: crate::LargeStringArray
/// [`BinaryArray`]: crate::BinaryArray
/// [`LargeBinaryArray`]: crate::LargeBinaryArray
pub struct GenericByteArray<T: ByteArrayType> {
    data_type: DataType,
    value_offsets: OffsetBuffer<T::Offset>,
    value_data: Buffer,
    nulls: Option<NullBuffer>,
}

impl<T: ByteArrayType> Clone for GenericByteArray<T> {
    fn clone(&self) -> Self {
        Self {
            data_type: T::DATA_TYPE,
            value_offsets: self.value_offsets.clone(),
            value_data: self.value_data.clone(),
            nulls: self.nulls.clone(),
        }
    }
}

impl<T: ByteArrayType> GenericByteArray<T> {
    /// Data type of the array.
    pub const DATA_TYPE: DataType = T::DATA_TYPE;

    /// Create a new [`GenericByteArray`] from the provided parts, panicking on failure
    ///
    /// # Panics
    ///
    /// Panics if [`GenericByteArray::try_new`] returns an error
    pub fn new(
        offsets: OffsetBuffer<T::Offset>,
        values: Buffer,
        nulls: Option<NullBuffer>,
    ) -> Self {
        Self::try_new(offsets, values, nulls).unwrap()
    }

    /// Create a new [`GenericByteArray`] from the provided parts, returning an error on failure
    ///
    /// # Errors
    ///
    /// * `offsets.len() - 1 != nulls.len()`
    /// * Any consecutive pair of `offsets` does not denote a valid slice of `values`
    pub fn try_new(
        offsets: OffsetBuffer<T::Offset>,
        values: Buffer,
        nulls: Option<NullBuffer>,
    ) -> Result<Self, ArrowError> {
        let len = offsets.len() - 1;

        // Verify that each pair of offsets is a valid slices of values
        T::validate(&offsets, &values)?;

        if let Some(n) = nulls.as_ref() {
            if n.len() != len {
                return Err(ArrowError::InvalidArgumentError(format!(
                    "Incorrect length of null buffer for {}{}Array, expected {len} got {}",
                    T::Offset::PREFIX,
                    T::PREFIX,
                    n.len(),
                )));
            }
        }

        Ok(Self {
            data_type: T::DATA_TYPE,
            value_offsets: offsets,
            value_data: values,
            nulls,
        })
    }

    /// Create a new [`GenericByteArray`] from the provided parts, without validation
    ///
    /// # Safety
    ///
    /// Safe if [`Self::try_new`] would not error
    pub unsafe fn new_unchecked(
        offsets: OffsetBuffer<T::Offset>,
        values: Buffer,
        nulls: Option<NullBuffer>,
    ) -> Self {
        Self {
            data_type: T::DATA_TYPE,
            value_offsets: offsets,
            value_data: values,
            nulls,
        }
    }

    /// Create a new [`GenericByteArray`] of length `len` where all values are null
    pub fn new_null(len: usize) -> Self {
        Self {
            data_type: T::DATA_TYPE,
            value_offsets: OffsetBuffer::new_zeroed(len),
            value_data: MutableBuffer::new(0).into(),
            nulls: Some(NullBuffer::new_null(len)),
        }
    }

    /// Create a new [`Scalar`] from `v`
    pub fn new_scalar(value: impl AsRef<T::Native>) -> Scalar<Self> {
        Scalar::new(Self::from_iter_values(std::iter::once(value)))
    }

    /// Creates a [`GenericByteArray`] based on an iterator of values without nulls
    pub fn from_iter_values<Ptr, I>(iter: I) -> Self
    where
        Ptr: AsRef<T::Native>,
        I: IntoIterator<Item = Ptr>,
    {
        let iter = iter.into_iter();
        let (_, data_len) = iter.size_hint();
        let data_len = data_len.expect("Iterator must be sized"); // panic if no upper bound.

        let mut offsets = MutableBuffer::new((data_len + 1) * std::mem::size_of::<T::Offset>());
        offsets.push(T::Offset::usize_as(0));

        let mut values = MutableBuffer::new(0);
        for s in iter {
            let s: &[u8] = s.as_ref().as_ref();
            values.extend_from_slice(s);
            offsets.push(T::Offset::usize_as(values.len()));
        }

        T::Offset::from_usize(values.len()).expect("offset overflow");
        let offsets = Buffer::from(offsets);

        // Safety: valid by construction
        let value_offsets = unsafe { OffsetBuffer::new_unchecked(offsets.into()) };

        Self {
            data_type: T::DATA_TYPE,
            value_data: values.into(),
            value_offsets,
            nulls: None,
        }
    }

    /// Deconstruct this array into its constituent parts
    pub fn into_parts(self) -> (OffsetBuffer<T::Offset>, Buffer, Option<NullBuffer>) {
        (self.value_offsets, self.value_data, self.nulls)
    }

    /// Returns the length for value at index `i`.
    /// # Panics
    /// Panics if index `i` is out of bounds.
    #[inline]
    pub fn value_length(&self, i: usize) -> T::Offset {
        let offsets = self.value_offsets();
        offsets[i + 1] - offsets[i]
    }

    /// Returns a reference to the offsets of this array
    ///
    /// Unlike [`Self::value_offsets`] this returns the [`OffsetBuffer`]
    /// allowing for zero-copy cloning
    #[inline]
    pub fn offsets(&self) -> &OffsetBuffer<T::Offset> {
        &self.value_offsets
    }

    /// Returns the values of this array
    ///
    /// Unlike [`Self::value_data`] this returns the [`Buffer`]
    /// allowing for zero-copy cloning
    #[inline]
    pub fn values(&self) -> &Buffer {
        &self.value_data
    }

    /// Returns the raw value data
    pub fn value_data(&self) -> &[u8] {
        self.value_data.as_slice()
    }

    /// Returns true if all data within this array is ASCII
    pub fn is_ascii(&self) -> bool {
        let offsets = self.value_offsets();
        let start = offsets.first().unwrap();
        let end = offsets.last().unwrap();
        self.value_data()[start.as_usize()..end.as_usize()].is_ascii()
    }

    /// Returns the offset values in the offsets buffer
    #[inline]
    pub fn value_offsets(&self) -> &[T::Offset] {
        &self.value_offsets
    }

    /// Returns the element at index `i`
    /// # Safety
    /// Caller is responsible for ensuring that the index is within the bounds of the array
    pub unsafe fn value_unchecked(&self, i: usize) -> &T::Native {
        let end = *self.value_offsets().get_unchecked(i + 1);
        let start = *self.value_offsets().get_unchecked(i);

        // Soundness
        // pointer alignment & location is ensured by RawPtrBox
        // buffer bounds/offset is ensured by the value_offset invariants

        // Safety of `to_isize().unwrap()`
        // `start` and `end` are &OffsetSize, which is a generic type that implements the
        // OffsetSizeTrait. Currently, only i32 and i64 implement OffsetSizeTrait,
        // both of which should cleanly cast to isize on an architecture that supports
        // 32/64-bit offsets
        let b = std::slice::from_raw_parts(
            self.value_data.as_ptr().offset(start.to_isize().unwrap()),
            (end - start).to_usize().unwrap(),
        );

        // SAFETY:
        // ArrayData is valid
        T::Native::from_bytes_unchecked(b)
    }

    /// Returns the element at index `i`
    /// # Panics
    /// Panics if index `i` is out of bounds.
    pub fn value(&self, i: usize) -> &T::Native {
        assert!(
            i < self.len(),
            "Trying to access an element at index {} from a {}{}Array of length {}",
            i,
            T::Offset::PREFIX,
            T::PREFIX,
            self.len()
        );
        // SAFETY:
        // Verified length above
        unsafe { self.value_unchecked(i) }
    }

    /// constructs a new iterator
    pub fn iter(&self) -> ArrayIter<&Self> {
        ArrayIter::new(self)
    }

    /// Returns a zero-copy slice of this array with the indicated offset and length.
    pub fn slice(&self, offset: usize, length: usize) -> Self {
        Self {
            data_type: T::DATA_TYPE,
            value_offsets: self.value_offsets.slice(offset, length),
            value_data: self.value_data.clone(),
            nulls: self.nulls.as_ref().map(|n| n.slice(offset, length)),
        }
    }

    /// Returns `GenericByteBuilder` of this byte array for mutating its values if the underlying
    /// offset and data buffers are not shared by others.
    pub fn into_builder(self) -> Result<GenericByteBuilder<T>, Self> {
        let len = self.len();
        let value_len = T::Offset::as_usize(self.value_offsets()[len] - self.value_offsets()[0]);

        let data = self.into_data();
        let null_bit_buffer = data.nulls().map(|b| b.inner().sliced());

        let element_len = std::mem::size_of::<T::Offset>();
        let offset_buffer = data.buffers()[0]
            .slice_with_length(data.offset() * element_len, (len + 1) * element_len);

        let element_len = std::mem::size_of::<u8>();
        let value_buffer = data.buffers()[1]
            .slice_with_length(data.offset() * element_len, value_len * element_len);

        drop(data);

        let try_mutable_null_buffer = match null_bit_buffer {
            None => Ok(None),
            Some(null_buffer) => {
                // Null buffer exists, tries to make it mutable
                null_buffer.into_mutable().map(Some)
            }
        };

        let try_mutable_buffers = match try_mutable_null_buffer {
            Ok(mutable_null_buffer) => {
                // Got mutable null buffer, tries to get mutable value buffer
                let try_mutable_offset_buffer = offset_buffer.into_mutable();
                let try_mutable_value_buffer = value_buffer.into_mutable();

                // try_mutable_offset_buffer.map(...).map_err(...) doesn't work as the compiler complains
                // mutable_null_buffer is moved into map closure.
                match (try_mutable_offset_buffer, try_mutable_value_buffer) {
                    (Ok(mutable_offset_buffer), Ok(mutable_value_buffer)) => unsafe {
                        Ok(GenericByteBuilder::<T>::new_from_buffer(
                            mutable_offset_buffer,
                            mutable_value_buffer,
                            mutable_null_buffer,
                        ))
                    },
                    (Ok(mutable_offset_buffer), Err(value_buffer)) => Err((
                        mutable_offset_buffer.into(),
                        value_buffer,
                        mutable_null_buffer.map(|b| b.into()),
                    )),
                    (Err(offset_buffer), Ok(mutable_value_buffer)) => Err((
                        offset_buffer,
                        mutable_value_buffer.into(),
                        mutable_null_buffer.map(|b| b.into()),
                    )),
                    (Err(offset_buffer), Err(value_buffer)) => Err((
                        offset_buffer,
                        value_buffer,
                        mutable_null_buffer.map(|b| b.into()),
                    )),
                }
            }
            Err(mutable_null_buffer) => {
                // Unable to get mutable null buffer
                Err((offset_buffer, value_buffer, Some(mutable_null_buffer)))
            }
        };

        match try_mutable_buffers {
            Ok(builder) => Ok(builder),
            Err((offset_buffer, value_buffer, null_bit_buffer)) => {
                let builder = ArrayData::builder(T::DATA_TYPE)
                    .len(len)
                    .add_buffer(offset_buffer)
                    .add_buffer(value_buffer)
                    .null_bit_buffer(null_bit_buffer);

                let array_data = unsafe { builder.build_unchecked() };
                let array = GenericByteArray::<T>::from(array_data);

                Err(array)
            }
        }
    }
}

impl<T: ByteArrayType> std::fmt::Debug for GenericByteArray<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}{}Array\n[\n", T::Offset::PREFIX, T::PREFIX)?;
        print_long_array(self, f, |array, index, f| {
            std::fmt::Debug::fmt(&array.value(index), f)
        })?;
        write!(f, "]")
    }
}

impl<T: ByteArrayType> Array for GenericByteArray<T> {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn to_data(&self) -> ArrayData {
        self.clone().into()
    }

    fn into_data(self) -> ArrayData {
        self.into()
    }

    fn data_type(&self) -> &DataType {
        &self.data_type
    }

    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
        Arc::new(self.slice(offset, length))
    }

    fn len(&self) -> usize {
        self.value_offsets.len() - 1
    }

    fn is_empty(&self) -> bool {
        self.value_offsets.len() <= 1
    }

    fn offset(&self) -> usize {
        0
    }

    fn nulls(&self) -> Option<&NullBuffer> {
        self.nulls.as_ref()
    }

    fn get_buffer_memory_size(&self) -> usize {
        let mut sum = self.value_offsets.inner().inner().capacity();
        sum += self.value_data.capacity();
        if let Some(x) = &self.nulls {
            sum += x.buffer().capacity()
        }
        sum
    }

    fn get_array_memory_size(&self) -> usize {
        std::mem::size_of::<Self>() + self.get_buffer_memory_size()
    }
}

impl<'a, T: ByteArrayType> ArrayAccessor for &'a GenericByteArray<T> {
    type Item = &'a T::Native;

    fn value(&self, index: usize) -> Self::Item {
        GenericByteArray::value(self, index)
    }

    unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
        GenericByteArray::value_unchecked(self, index)
    }
}

impl<T: ByteArrayType> From<ArrayData> for GenericByteArray<T> {
    fn from(data: ArrayData) -> Self {
        assert_eq!(
            data.data_type(),
            &Self::DATA_TYPE,
            "{}{}Array expects DataType::{}",
            T::Offset::PREFIX,
            T::PREFIX,
            Self::DATA_TYPE
        );
        assert_eq!(
            data.buffers().len(),
            2,
            "{}{}Array data should contain 2 buffers only (offsets and values)",
            T::Offset::PREFIX,
            T::PREFIX,
        );
        // SAFETY:
        // ArrayData is valid, and verified type above
        let value_offsets = unsafe { get_offsets(&data) };
        let value_data = data.buffers()[1].clone();
        Self {
            value_offsets,
            value_data,
            data_type: T::DATA_TYPE,
            nulls: data.nulls().cloned(),
        }
    }
}

impl<T: ByteArrayType> From<GenericByteArray<T>> for ArrayData {
    fn from(array: GenericByteArray<T>) -> Self {
        let len = array.len();

        let offsets = array.value_offsets.into_inner().into_inner();
        let builder = ArrayDataBuilder::new(array.data_type)
            .len(len)
            .buffers(vec![offsets, array.value_data])
            .nulls(array.nulls);

        unsafe { builder.build_unchecked() }
    }
}

impl<'a, T: ByteArrayType> IntoIterator for &'a GenericByteArray<T> {
    type Item = Option<&'a T::Native>;
    type IntoIter = ArrayIter<Self>;

    fn into_iter(self) -> Self::IntoIter {
        ArrayIter::new(self)
    }
}

impl<'a, Ptr, T: ByteArrayType> FromIterator<&'a Option<Ptr>> for GenericByteArray<T>
where
    Ptr: AsRef<T::Native> + 'a,
{
    fn from_iter<I: IntoIterator<Item = &'a Option<Ptr>>>(iter: I) -> Self {
        iter.into_iter()
            .map(|o| o.as_ref().map(|p| p.as_ref()))
            .collect()
    }
}

impl<Ptr, T: ByteArrayType> FromIterator<Option<Ptr>> for GenericByteArray<T>
where
    Ptr: AsRef<T::Native>,
{
    fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let mut builder = GenericByteBuilder::with_capacity(iter.size_hint().0, 1024);
        builder.extend(iter);
        builder.finish()
    }
}

#[cfg(test)]
mod tests {
    use crate::{BinaryArray, StringArray};
    use arrow_buffer::{Buffer, NullBuffer, OffsetBuffer};

    #[test]
    fn try_new() {
        let data = Buffer::from_slice_ref("helloworld");
        let offsets = OffsetBuffer::new(vec![0, 5, 10].into());
        StringArray::new(offsets.clone(), data.clone(), None);

        let nulls = NullBuffer::new_null(3);
        let err =
            StringArray::try_new(offsets.clone(), data.clone(), Some(nulls.clone())).unwrap_err();
        assert_eq!(err.to_string(), "Invalid argument error: Incorrect length of null buffer for StringArray, expected 2 got 3");

        let err = BinaryArray::try_new(offsets.clone(), data.clone(), Some(nulls)).unwrap_err();
        assert_eq!(err.to_string(), "Invalid argument error: Incorrect length of null buffer for BinaryArray, expected 2 got 3");

        let non_utf8_data = Buffer::from_slice_ref(b"he\xFFloworld");
        let err = StringArray::try_new(offsets.clone(), non_utf8_data.clone(), None).unwrap_err();
        assert_eq!(err.to_string(), "Invalid argument error: Encountered non UTF-8 data: invalid utf-8 sequence of 1 bytes from index 2");

        BinaryArray::new(offsets, non_utf8_data, None);

        let offsets = OffsetBuffer::new(vec![0, 5, 11].into());
        let err = StringArray::try_new(offsets.clone(), data.clone(), None).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid argument error: Offset of 11 exceeds length of values 10"
        );

        let err = BinaryArray::try_new(offsets.clone(), data, None).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid argument error: Maximum offset of 11 is larger than values of length 10"
        );

        let non_ascii_data = Buffer::from_slice_ref("heìloworld");
        StringArray::new(offsets.clone(), non_ascii_data.clone(), None);
        BinaryArray::new(offsets, non_ascii_data.clone(), None);

        let offsets = OffsetBuffer::new(vec![0, 3, 10].into());
        let err = StringArray::try_new(offsets.clone(), non_ascii_data.clone(), None).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Invalid argument error: Split UTF-8 codepoint at offset 3"
        );

        BinaryArray::new(offsets, non_ascii_data, None);
    }
}