arrow_arith/
arithmetic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines basic arithmetic kernels for `PrimitiveArrays`.
//!
//! These kernels can leverage SIMD if available on your system.  Currently no runtime
//! detection is provided, you should enable the specific SIMD intrinsics using
//! `RUSTFLAGS="-C target-feature=+avx2"` for example.  See the documentation
//! [here](https://doc.rust-lang.org/stable/core/arch/) for more information.

use crate::arity::*;
use arrow_array::types::*;
use arrow_array::*;
use arrow_buffer::i256;
use arrow_buffer::ArrowNativeType;
use arrow_schema::*;
use std::cmp::min;
use std::sync::Arc;

/// Returns the precision and scale of the result of a multiplication of two decimal types,
/// and the divisor for fixed point multiplication.
fn get_fixed_point_info(
    left: (u8, i8),
    right: (u8, i8),
    required_scale: i8,
) -> Result<(u8, i8, i256), ArrowError> {
    let product_scale = left.1 + right.1;
    let precision = min(left.0 + right.0 + 1, DECIMAL128_MAX_PRECISION);

    if required_scale > product_scale {
        return Err(ArrowError::ComputeError(format!(
            "Required scale {} is greater than product scale {}",
            required_scale, product_scale
        )));
    }

    let divisor = i256::from_i128(10).pow_wrapping((product_scale - required_scale) as u32);

    Ok((precision, product_scale, divisor))
}

/// Perform `left * right` operation on two decimal arrays. If either left or right value is
/// null then the result is also null.
///
/// This performs decimal multiplication which allows precision loss if an exact representation
/// is not possible for the result, according to the required scale. In the case, the result
/// will be rounded to the required scale.
///
/// If the required scale is greater than the product scale, an error is returned.
///
/// This doesn't detect overflow. Once overflowing, the result will wrap around.
///
/// It is implemented for compatibility with precision loss `multiply` function provided by
/// other data processing engines. For multiplication with precision loss detection, use
/// `multiply_dyn` or `multiply_dyn_checked` instead.
pub fn multiply_fixed_point_dyn(
    left: &dyn Array,
    right: &dyn Array,
    required_scale: i8,
) -> Result<ArrayRef, ArrowError> {
    match (left.data_type(), right.data_type()) {
        (DataType::Decimal128(_, _), DataType::Decimal128(_, _)) => {
            let left = left.as_any().downcast_ref::<Decimal128Array>().unwrap();
            let right = right.as_any().downcast_ref::<Decimal128Array>().unwrap();

            multiply_fixed_point(left, right, required_scale).map(|a| Arc::new(a) as ArrayRef)
        }
        (_, _) => Err(ArrowError::CastError(format!(
            "Unsupported data type {}, {}",
            left.data_type(),
            right.data_type()
        ))),
    }
}

/// Perform `left * right` operation on two decimal arrays. If either left or right value is
/// null then the result is also null.
///
/// This performs decimal multiplication which allows precision loss if an exact representation
/// is not possible for the result, according to the required scale. In the case, the result
/// will be rounded to the required scale.
///
/// If the required scale is greater than the product scale, an error is returned.
///
/// It is implemented for compatibility with precision loss `multiply` function provided by
/// other data processing engines. For multiplication with precision loss detection, use
/// `multiply` or `multiply_checked` instead.
pub fn multiply_fixed_point_checked(
    left: &PrimitiveArray<Decimal128Type>,
    right: &PrimitiveArray<Decimal128Type>,
    required_scale: i8,
) -> Result<PrimitiveArray<Decimal128Type>, ArrowError> {
    let (precision, product_scale, divisor) = get_fixed_point_info(
        (left.precision(), left.scale()),
        (right.precision(), right.scale()),
        required_scale,
    )?;

    if required_scale == product_scale {
        return try_binary::<_, _, _, Decimal128Type>(left, right, |a, b| a.mul_checked(b))?
            .with_precision_and_scale(precision, required_scale);
    }

    try_binary::<_, _, _, Decimal128Type>(left, right, |a, b| {
        let a = i256::from_i128(a);
        let b = i256::from_i128(b);

        let mut mul = a.wrapping_mul(b);
        mul = divide_and_round::<Decimal256Type>(mul, divisor);
        mul.to_i128().ok_or_else(|| {
            ArrowError::ArithmeticOverflow(format!("Overflow happened on: {:?} * {:?}", a, b))
        })
    })
    .and_then(|a| a.with_precision_and_scale(precision, required_scale))
}

/// Perform `left * right` operation on two decimal arrays. If either left or right value is
/// null then the result is also null.
///
/// This performs decimal multiplication which allows precision loss if an exact representation
/// is not possible for the result, according to the required scale. In the case, the result
/// will be rounded to the required scale.
///
/// If the required scale is greater than the product scale, an error is returned.
///
/// This doesn't detect overflow. Once overflowing, the result will wrap around.
/// For an overflow-checking variant, use `multiply_fixed_point_checked` instead.
///
/// It is implemented for compatibility with precision loss `multiply` function provided by
/// other data processing engines. For multiplication with precision loss detection, use
/// `multiply` or `multiply_checked` instead.
pub fn multiply_fixed_point(
    left: &PrimitiveArray<Decimal128Type>,
    right: &PrimitiveArray<Decimal128Type>,
    required_scale: i8,
) -> Result<PrimitiveArray<Decimal128Type>, ArrowError> {
    let (precision, product_scale, divisor) = get_fixed_point_info(
        (left.precision(), left.scale()),
        (right.precision(), right.scale()),
        required_scale,
    )?;

    if required_scale == product_scale {
        return binary(left, right, |a, b| a.mul_wrapping(b))?
            .with_precision_and_scale(precision, required_scale);
    }

    binary::<_, _, _, Decimal128Type>(left, right, |a, b| {
        let a = i256::from_i128(a);
        let b = i256::from_i128(b);

        let mut mul = a.wrapping_mul(b);
        mul = divide_and_round::<Decimal256Type>(mul, divisor);
        mul.as_i128()
    })
    .and_then(|a| a.with_precision_and_scale(precision, required_scale))
}

/// Divide a decimal native value by given divisor and round the result.
fn divide_and_round<I>(input: I::Native, div: I::Native) -> I::Native
where
    I: DecimalType,
    I::Native: ArrowNativeTypeOp,
{
    let d = input.div_wrapping(div);
    let r = input.mod_wrapping(div);

    let half = div.div_wrapping(I::Native::from_usize(2).unwrap());
    let half_neg = half.neg_wrapping();

    // Round result
    match input >= I::Native::ZERO {
        true if r >= half => d.add_wrapping(I::Native::ONE),
        false if r <= half_neg => d.sub_wrapping(I::Native::ONE),
        _ => d,
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::numeric::mul;

    #[test]
    fn test_decimal_multiply_allow_precision_loss() {
        // Overflow happening as i128 cannot hold multiplying result.
        // [123456789]
        let a = Decimal128Array::from(vec![123456789000000000000000000])
            .with_precision_and_scale(38, 18)
            .unwrap();

        // [10]
        let b = Decimal128Array::from(vec![10000000000000000000])
            .with_precision_and_scale(38, 18)
            .unwrap();

        let err = mul(&a, &b).unwrap_err();
        assert!(err
            .to_string()
            .contains("Overflow happened on: 123456789000000000000000000 * 10000000000000000000"));

        // Allow precision loss.
        let result = multiply_fixed_point_checked(&a, &b, 28).unwrap();
        // [1234567890]
        let expected = Decimal128Array::from(vec![12345678900000000000000000000000000000])
            .with_precision_and_scale(38, 28)
            .unwrap();

        assert_eq!(&expected, &result);
        assert_eq!(
            result.value_as_string(0),
            "1234567890.0000000000000000000000000000"
        );

        // Rounding case
        // [0.000000000000000001, 123456789.555555555555555555, 1.555555555555555555]
        let a = Decimal128Array::from(vec![1, 123456789555555555555555555, 1555555555555555555])
            .with_precision_and_scale(38, 18)
            .unwrap();

        // [1.555555555555555555, 11.222222222222222222, 0.000000000000000001]
        let b = Decimal128Array::from(vec![1555555555555555555, 11222222222222222222, 1])
            .with_precision_and_scale(38, 18)
            .unwrap();

        let result = multiply_fixed_point_checked(&a, &b, 28).unwrap();
        // [
        //    0.0000000000000000015555555556,
        //    1385459527.2345679012071330528765432099,
        //    0.0000000000000000015555555556
        // ]
        let expected = Decimal128Array::from(vec![
            15555555556,
            13854595272345679012071330528765432099,
            15555555556,
        ])
        .with_precision_and_scale(38, 28)
        .unwrap();

        assert_eq!(&expected, &result);

        // Rounded the value "1385459527.234567901207133052876543209876543210".
        assert_eq!(
            result.value_as_string(1),
            "1385459527.2345679012071330528765432099"
        );
        assert_eq!(result.value_as_string(0), "0.0000000000000000015555555556");
        assert_eq!(result.value_as_string(2), "0.0000000000000000015555555556");

        let a = Decimal128Array::from(vec![1230])
            .with_precision_and_scale(4, 2)
            .unwrap();

        let b = Decimal128Array::from(vec![1000])
            .with_precision_and_scale(4, 2)
            .unwrap();

        // Required scale is same as the product of the input scales. Behavior is same as multiply.
        let result = multiply_fixed_point_checked(&a, &b, 4).unwrap();
        assert_eq!(result.precision(), 9);
        assert_eq!(result.scale(), 4);

        let expected = mul(&a, &b).unwrap();
        assert_eq!(expected.as_ref(), &result);

        // Required scale cannot be larger than the product of the input scales.
        let result = multiply_fixed_point_checked(&a, &b, 5).unwrap_err();
        assert!(result
            .to_string()
            .contains("Required scale 5 is greater than product scale 4"));
    }

    #[test]
    fn test_decimal_multiply_allow_precision_loss_overflow() {
        // [99999999999123456789]
        let a = Decimal128Array::from(vec![99999999999123456789000000000000000000])
            .with_precision_and_scale(38, 18)
            .unwrap();

        // [9999999999910]
        let b = Decimal128Array::from(vec![9999999999910000000000000000000])
            .with_precision_and_scale(38, 18)
            .unwrap();

        let err = multiply_fixed_point_checked(&a, &b, 28).unwrap_err();
        assert!(err.to_string().contains(
            "Overflow happened on: 99999999999123456789000000000000000000 * 9999999999910000000000000000000"
        ));

        let result = multiply_fixed_point(&a, &b, 28).unwrap();
        let expected = Decimal128Array::from(vec![62946009661555981610246871926660136960])
            .with_precision_and_scale(38, 28)
            .unwrap();

        assert_eq!(&expected, &result);
    }

    #[test]
    fn test_decimal_multiply_fixed_point() {
        // [123456789]
        let a = Decimal128Array::from(vec![123456789000000000000000000])
            .with_precision_and_scale(38, 18)
            .unwrap();

        // [10]
        let b = Decimal128Array::from(vec![10000000000000000000])
            .with_precision_and_scale(38, 18)
            .unwrap();

        // `multiply` overflows on this case.
        let err = mul(&a, &b).unwrap_err();
        assert_eq!(err.to_string(), "Arithmetic overflow: Overflow happened on: 123456789000000000000000000 * 10000000000000000000");

        // Avoid overflow by reducing the scale.
        let result = multiply_fixed_point(&a, &b, 28).unwrap();
        // [1234567890]
        let expected = Decimal128Array::from(vec![12345678900000000000000000000000000000])
            .with_precision_and_scale(38, 28)
            .unwrap();

        assert_eq!(&expected, &result);
        assert_eq!(
            result.value_as_string(0),
            "1234567890.0000000000000000000000000000"
        );
    }
}