arrow_arith/arithmetic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines basic arithmetic kernels for `PrimitiveArrays`.
//!
//! These kernels can leverage SIMD if available on your system. Currently no runtime
//! detection is provided, you should enable the specific SIMD intrinsics using
//! `RUSTFLAGS="-C target-feature=+avx2"` for example. See the documentation
//! [here](https://doc.rust-lang.org/stable/core/arch/) for more information.
use crate::arity::*;
use arrow_array::types::*;
use arrow_array::*;
use arrow_buffer::i256;
use arrow_buffer::ArrowNativeType;
use arrow_schema::*;
use std::cmp::min;
use std::sync::Arc;
/// Returns the precision and scale of the result of a multiplication of two decimal types,
/// and the divisor for fixed point multiplication.
fn get_fixed_point_info(
left: (u8, i8),
right: (u8, i8),
required_scale: i8,
) -> Result<(u8, i8, i256), ArrowError> {
let product_scale = left.1 + right.1;
let precision = min(left.0 + right.0 + 1, DECIMAL128_MAX_PRECISION);
if required_scale > product_scale {
return Err(ArrowError::ComputeError(format!(
"Required scale {} is greater than product scale {}",
required_scale, product_scale
)));
}
let divisor = i256::from_i128(10).pow_wrapping((product_scale - required_scale) as u32);
Ok((precision, product_scale, divisor))
}
/// Perform `left * right` operation on two decimal arrays. If either left or right value is
/// null then the result is also null.
///
/// This performs decimal multiplication which allows precision loss if an exact representation
/// is not possible for the result, according to the required scale. In the case, the result
/// will be rounded to the required scale.
///
/// If the required scale is greater than the product scale, an error is returned.
///
/// This doesn't detect overflow. Once overflowing, the result will wrap around.
///
/// It is implemented for compatibility with precision loss `multiply` function provided by
/// other data processing engines. For multiplication with precision loss detection, use
/// `multiply_dyn` or `multiply_dyn_checked` instead.
pub fn multiply_fixed_point_dyn(
left: &dyn Array,
right: &dyn Array,
required_scale: i8,
) -> Result<ArrayRef, ArrowError> {
match (left.data_type(), right.data_type()) {
(DataType::Decimal128(_, _), DataType::Decimal128(_, _)) => {
let left = left.as_any().downcast_ref::<Decimal128Array>().unwrap();
let right = right.as_any().downcast_ref::<Decimal128Array>().unwrap();
multiply_fixed_point(left, right, required_scale).map(|a| Arc::new(a) as ArrayRef)
}
(_, _) => Err(ArrowError::CastError(format!(
"Unsupported data type {}, {}",
left.data_type(),
right.data_type()
))),
}
}
/// Perform `left * right` operation on two decimal arrays. If either left or right value is
/// null then the result is also null.
///
/// This performs decimal multiplication which allows precision loss if an exact representation
/// is not possible for the result, according to the required scale. In the case, the result
/// will be rounded to the required scale.
///
/// If the required scale is greater than the product scale, an error is returned.
///
/// It is implemented for compatibility with precision loss `multiply` function provided by
/// other data processing engines. For multiplication with precision loss detection, use
/// `multiply` or `multiply_checked` instead.
pub fn multiply_fixed_point_checked(
left: &PrimitiveArray<Decimal128Type>,
right: &PrimitiveArray<Decimal128Type>,
required_scale: i8,
) -> Result<PrimitiveArray<Decimal128Type>, ArrowError> {
let (precision, product_scale, divisor) = get_fixed_point_info(
(left.precision(), left.scale()),
(right.precision(), right.scale()),
required_scale,
)?;
if required_scale == product_scale {
return try_binary::<_, _, _, Decimal128Type>(left, right, |a, b| a.mul_checked(b))?
.with_precision_and_scale(precision, required_scale);
}
try_binary::<_, _, _, Decimal128Type>(left, right, |a, b| {
let a = i256::from_i128(a);
let b = i256::from_i128(b);
let mut mul = a.wrapping_mul(b);
mul = divide_and_round::<Decimal256Type>(mul, divisor);
mul.to_i128().ok_or_else(|| {
ArrowError::ArithmeticOverflow(format!("Overflow happened on: {:?} * {:?}", a, b))
})
})
.and_then(|a| a.with_precision_and_scale(precision, required_scale))
}
/// Perform `left * right` operation on two decimal arrays. If either left or right value is
/// null then the result is also null.
///
/// This performs decimal multiplication which allows precision loss if an exact representation
/// is not possible for the result, according to the required scale. In the case, the result
/// will be rounded to the required scale.
///
/// If the required scale is greater than the product scale, an error is returned.
///
/// This doesn't detect overflow. Once overflowing, the result will wrap around.
/// For an overflow-checking variant, use `multiply_fixed_point_checked` instead.
///
/// It is implemented for compatibility with precision loss `multiply` function provided by
/// other data processing engines. For multiplication with precision loss detection, use
/// `multiply` or `multiply_checked` instead.
pub fn multiply_fixed_point(
left: &PrimitiveArray<Decimal128Type>,
right: &PrimitiveArray<Decimal128Type>,
required_scale: i8,
) -> Result<PrimitiveArray<Decimal128Type>, ArrowError> {
let (precision, product_scale, divisor) = get_fixed_point_info(
(left.precision(), left.scale()),
(right.precision(), right.scale()),
required_scale,
)?;
if required_scale == product_scale {
return binary(left, right, |a, b| a.mul_wrapping(b))?
.with_precision_and_scale(precision, required_scale);
}
binary::<_, _, _, Decimal128Type>(left, right, |a, b| {
let a = i256::from_i128(a);
let b = i256::from_i128(b);
let mut mul = a.wrapping_mul(b);
mul = divide_and_round::<Decimal256Type>(mul, divisor);
mul.as_i128()
})
.and_then(|a| a.with_precision_and_scale(precision, required_scale))
}
/// Divide a decimal native value by given divisor and round the result.
fn divide_and_round<I>(input: I::Native, div: I::Native) -> I::Native
where
I: DecimalType,
I::Native: ArrowNativeTypeOp,
{
let d = input.div_wrapping(div);
let r = input.mod_wrapping(div);
let half = div.div_wrapping(I::Native::from_usize(2).unwrap());
let half_neg = half.neg_wrapping();
// Round result
match input >= I::Native::ZERO {
true if r >= half => d.add_wrapping(I::Native::ONE),
false if r <= half_neg => d.sub_wrapping(I::Native::ONE),
_ => d,
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::numeric::mul;
#[test]
fn test_decimal_multiply_allow_precision_loss() {
// Overflow happening as i128 cannot hold multiplying result.
// [123456789]
let a = Decimal128Array::from(vec![123456789000000000000000000])
.with_precision_and_scale(38, 18)
.unwrap();
// [10]
let b = Decimal128Array::from(vec![10000000000000000000])
.with_precision_and_scale(38, 18)
.unwrap();
let err = mul(&a, &b).unwrap_err();
assert!(err
.to_string()
.contains("Overflow happened on: 123456789000000000000000000 * 10000000000000000000"));
// Allow precision loss.
let result = multiply_fixed_point_checked(&a, &b, 28).unwrap();
// [1234567890]
let expected = Decimal128Array::from(vec![12345678900000000000000000000000000000])
.with_precision_and_scale(38, 28)
.unwrap();
assert_eq!(&expected, &result);
assert_eq!(
result.value_as_string(0),
"1234567890.0000000000000000000000000000"
);
// Rounding case
// [0.000000000000000001, 123456789.555555555555555555, 1.555555555555555555]
let a = Decimal128Array::from(vec![1, 123456789555555555555555555, 1555555555555555555])
.with_precision_and_scale(38, 18)
.unwrap();
// [1.555555555555555555, 11.222222222222222222, 0.000000000000000001]
let b = Decimal128Array::from(vec![1555555555555555555, 11222222222222222222, 1])
.with_precision_and_scale(38, 18)
.unwrap();
let result = multiply_fixed_point_checked(&a, &b, 28).unwrap();
// [
// 0.0000000000000000015555555556,
// 1385459527.2345679012071330528765432099,
// 0.0000000000000000015555555556
// ]
let expected = Decimal128Array::from(vec![
15555555556,
13854595272345679012071330528765432099,
15555555556,
])
.with_precision_and_scale(38, 28)
.unwrap();
assert_eq!(&expected, &result);
// Rounded the value "1385459527.234567901207133052876543209876543210".
assert_eq!(
result.value_as_string(1),
"1385459527.2345679012071330528765432099"
);
assert_eq!(result.value_as_string(0), "0.0000000000000000015555555556");
assert_eq!(result.value_as_string(2), "0.0000000000000000015555555556");
let a = Decimal128Array::from(vec![1230])
.with_precision_and_scale(4, 2)
.unwrap();
let b = Decimal128Array::from(vec![1000])
.with_precision_and_scale(4, 2)
.unwrap();
// Required scale is same as the product of the input scales. Behavior is same as multiply.
let result = multiply_fixed_point_checked(&a, &b, 4).unwrap();
assert_eq!(result.precision(), 9);
assert_eq!(result.scale(), 4);
let expected = mul(&a, &b).unwrap();
assert_eq!(expected.as_ref(), &result);
// Required scale cannot be larger than the product of the input scales.
let result = multiply_fixed_point_checked(&a, &b, 5).unwrap_err();
assert!(result
.to_string()
.contains("Required scale 5 is greater than product scale 4"));
}
#[test]
fn test_decimal_multiply_allow_precision_loss_overflow() {
// [99999999999123456789]
let a = Decimal128Array::from(vec![99999999999123456789000000000000000000])
.with_precision_and_scale(38, 18)
.unwrap();
// [9999999999910]
let b = Decimal128Array::from(vec![9999999999910000000000000000000])
.with_precision_and_scale(38, 18)
.unwrap();
let err = multiply_fixed_point_checked(&a, &b, 28).unwrap_err();
assert!(err.to_string().contains(
"Overflow happened on: 99999999999123456789000000000000000000 * 9999999999910000000000000000000"
));
let result = multiply_fixed_point(&a, &b, 28).unwrap();
let expected = Decimal128Array::from(vec![62946009661555981610246871926660136960])
.with_precision_and_scale(38, 28)
.unwrap();
assert_eq!(&expected, &result);
}
#[test]
fn test_decimal_multiply_fixed_point() {
// [123456789]
let a = Decimal128Array::from(vec![123456789000000000000000000])
.with_precision_and_scale(38, 18)
.unwrap();
// [10]
let b = Decimal128Array::from(vec![10000000000000000000])
.with_precision_and_scale(38, 18)
.unwrap();
// `multiply` overflows on this case.
let err = mul(&a, &b).unwrap_err();
assert_eq!(err.to_string(), "Arithmetic overflow: Overflow happened on: 123456789000000000000000000 * 10000000000000000000");
// Avoid overflow by reducing the scale.
let result = multiply_fixed_point(&a, &b, 28).unwrap();
// [1234567890]
let expected = Decimal128Array::from(vec![12345678900000000000000000000000000000])
.with_precision_and_scale(38, 28)
.unwrap();
assert_eq!(&expected, &result);
assert_eq!(
result.value_as_string(0),
"1234567890.0000000000000000000000000000"
);
}
}