arrow_arith/
arithmetic.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Defines basic arithmetic kernels for `PrimitiveArrays`.
19//!
20//! These kernels can leverage SIMD if available on your system.  Currently no runtime
21//! detection is provided, you should enable the specific SIMD intrinsics using
22//! `RUSTFLAGS="-C target-feature=+avx2"` for example.  See the documentation
23//! [here](https://doc.rust-lang.org/stable/core/arch/) for more information.
24
25use crate::arity::*;
26use arrow_array::types::*;
27use arrow_array::*;
28use arrow_buffer::i256;
29use arrow_buffer::ArrowNativeType;
30use arrow_schema::*;
31use std::cmp::min;
32use std::sync::Arc;
33
34/// Returns the precision and scale of the result of a multiplication of two decimal types,
35/// and the divisor for fixed point multiplication.
36fn get_fixed_point_info(
37    left: (u8, i8),
38    right: (u8, i8),
39    required_scale: i8,
40) -> Result<(u8, i8, i256), ArrowError> {
41    let product_scale = left.1 + right.1;
42    let precision = min(left.0 + right.0 + 1, DECIMAL128_MAX_PRECISION);
43
44    if required_scale > product_scale {
45        return Err(ArrowError::ComputeError(format!(
46            "Required scale {required_scale} is greater than product scale {product_scale}",
47        )));
48    }
49
50    let divisor = i256::from_i128(10).pow_wrapping((product_scale - required_scale) as u32);
51
52    Ok((precision, product_scale, divisor))
53}
54
55/// Perform `left * right` operation on two decimal arrays. If either left or right value is
56/// null then the result is also null.
57///
58/// This performs decimal multiplication which allows precision loss if an exact representation
59/// is not possible for the result, according to the required scale. In the case, the result
60/// will be rounded to the required scale.
61///
62/// If the required scale is greater than the product scale, an error is returned.
63///
64/// This doesn't detect overflow. Once overflowing, the result will wrap around.
65///
66/// It is implemented for compatibility with precision loss `multiply` function provided by
67/// other data processing engines. For multiplication with precision loss detection, use
68/// `multiply_dyn` or `multiply_dyn_checked` instead.
69pub fn multiply_fixed_point_dyn(
70    left: &dyn Array,
71    right: &dyn Array,
72    required_scale: i8,
73) -> Result<ArrayRef, ArrowError> {
74    match (left.data_type(), right.data_type()) {
75        (DataType::Decimal128(_, _), DataType::Decimal128(_, _)) => {
76            let left = left.as_any().downcast_ref::<Decimal128Array>().unwrap();
77            let right = right.as_any().downcast_ref::<Decimal128Array>().unwrap();
78
79            multiply_fixed_point(left, right, required_scale).map(|a| Arc::new(a) as ArrayRef)
80        }
81        (_, _) => Err(ArrowError::CastError(format!(
82            "Unsupported data type {}, {}",
83            left.data_type(),
84            right.data_type()
85        ))),
86    }
87}
88
89/// Perform `left * right` operation on two decimal arrays. If either left or right value is
90/// null then the result is also null.
91///
92/// This performs decimal multiplication which allows precision loss if an exact representation
93/// is not possible for the result, according to the required scale. In the case, the result
94/// will be rounded to the required scale.
95///
96/// If the required scale is greater than the product scale, an error is returned.
97///
98/// It is implemented for compatibility with precision loss `multiply` function provided by
99/// other data processing engines. For multiplication with precision loss detection, use
100/// `multiply` or `multiply_checked` instead.
101pub fn multiply_fixed_point_checked(
102    left: &PrimitiveArray<Decimal128Type>,
103    right: &PrimitiveArray<Decimal128Type>,
104    required_scale: i8,
105) -> Result<PrimitiveArray<Decimal128Type>, ArrowError> {
106    let (precision, product_scale, divisor) = get_fixed_point_info(
107        (left.precision(), left.scale()),
108        (right.precision(), right.scale()),
109        required_scale,
110    )?;
111
112    if required_scale == product_scale {
113        return try_binary::<_, _, _, Decimal128Type>(left, right, |a, b| a.mul_checked(b))?
114            .with_precision_and_scale(precision, required_scale);
115    }
116
117    try_binary::<_, _, _, Decimal128Type>(left, right, |a, b| {
118        let a = i256::from_i128(a);
119        let b = i256::from_i128(b);
120
121        let mut mul = a.wrapping_mul(b);
122        mul = divide_and_round::<Decimal256Type>(mul, divisor);
123        mul.to_i128().ok_or_else(|| {
124            ArrowError::ArithmeticOverflow(format!("Overflow happened on: {a:?} * {b:?}"))
125        })
126    })
127    .and_then(|a| a.with_precision_and_scale(precision, required_scale))
128}
129
130/// Perform `left * right` operation on two decimal arrays. If either left or right value is
131/// null then the result is also null.
132///
133/// This performs decimal multiplication which allows precision loss if an exact representation
134/// is not possible for the result, according to the required scale. In the case, the result
135/// will be rounded to the required scale.
136///
137/// If the required scale is greater than the product scale, an error is returned.
138///
139/// This doesn't detect overflow. Once overflowing, the result will wrap around.
140/// For an overflow-checking variant, use `multiply_fixed_point_checked` instead.
141///
142/// It is implemented for compatibility with precision loss `multiply` function provided by
143/// other data processing engines. For multiplication with precision loss detection, use
144/// `multiply` or `multiply_checked` instead.
145pub fn multiply_fixed_point(
146    left: &PrimitiveArray<Decimal128Type>,
147    right: &PrimitiveArray<Decimal128Type>,
148    required_scale: i8,
149) -> Result<PrimitiveArray<Decimal128Type>, ArrowError> {
150    let (precision, product_scale, divisor) = get_fixed_point_info(
151        (left.precision(), left.scale()),
152        (right.precision(), right.scale()),
153        required_scale,
154    )?;
155
156    if required_scale == product_scale {
157        return binary(left, right, |a, b| a.mul_wrapping(b))?
158            .with_precision_and_scale(precision, required_scale);
159    }
160
161    binary::<_, _, _, Decimal128Type>(left, right, |a, b| {
162        let a = i256::from_i128(a);
163        let b = i256::from_i128(b);
164
165        let mut mul = a.wrapping_mul(b);
166        mul = divide_and_round::<Decimal256Type>(mul, divisor);
167        mul.as_i128()
168    })
169    .and_then(|a| a.with_precision_and_scale(precision, required_scale))
170}
171
172/// Divide a decimal native value by given divisor and round the result.
173fn divide_and_round<I>(input: I::Native, div: I::Native) -> I::Native
174where
175    I: DecimalType,
176    I::Native: ArrowNativeTypeOp,
177{
178    let d = input.div_wrapping(div);
179    let r = input.mod_wrapping(div);
180
181    let half = div.div_wrapping(I::Native::from_usize(2).unwrap());
182    let half_neg = half.neg_wrapping();
183
184    // Round result
185    match input >= I::Native::ZERO {
186        true if r >= half => d.add_wrapping(I::Native::ONE),
187        false if r <= half_neg => d.sub_wrapping(I::Native::ONE),
188        _ => d,
189    }
190}
191
192#[cfg(test)]
193mod tests {
194    use super::*;
195    use crate::numeric::mul;
196
197    #[test]
198    fn test_decimal_multiply_allow_precision_loss() {
199        // Overflow happening as i128 cannot hold multiplying result.
200        // [123456789]
201        let a = Decimal128Array::from(vec![123456789000000000000000000])
202            .with_precision_and_scale(38, 18)
203            .unwrap();
204
205        // [10]
206        let b = Decimal128Array::from(vec![10000000000000000000])
207            .with_precision_and_scale(38, 18)
208            .unwrap();
209
210        let err = mul(&a, &b).unwrap_err();
211        assert!(err
212            .to_string()
213            .contains("Overflow happened on: 123456789000000000000000000 * 10000000000000000000"));
214
215        // Allow precision loss.
216        let result = multiply_fixed_point_checked(&a, &b, 28).unwrap();
217        // [1234567890]
218        let expected = Decimal128Array::from(vec![12345678900000000000000000000000000000])
219            .with_precision_and_scale(38, 28)
220            .unwrap();
221
222        assert_eq!(&expected, &result);
223        assert_eq!(
224            result.value_as_string(0),
225            "1234567890.0000000000000000000000000000"
226        );
227
228        // Rounding case
229        // [0.000000000000000001, 123456789.555555555555555555, 1.555555555555555555]
230        let a = Decimal128Array::from(vec![1, 123456789555555555555555555, 1555555555555555555])
231            .with_precision_and_scale(38, 18)
232            .unwrap();
233
234        // [1.555555555555555555, 11.222222222222222222, 0.000000000000000001]
235        let b = Decimal128Array::from(vec![1555555555555555555, 11222222222222222222, 1])
236            .with_precision_and_scale(38, 18)
237            .unwrap();
238
239        let result = multiply_fixed_point_checked(&a, &b, 28).unwrap();
240        // [
241        //    0.0000000000000000015555555556,
242        //    1385459527.2345679012071330528765432099,
243        //    0.0000000000000000015555555556
244        // ]
245        let expected = Decimal128Array::from(vec![
246            15555555556,
247            13854595272345679012071330528765432099,
248            15555555556,
249        ])
250        .with_precision_and_scale(38, 28)
251        .unwrap();
252
253        assert_eq!(&expected, &result);
254
255        // Rounded the value "1385459527.234567901207133052876543209876543210".
256        assert_eq!(
257            result.value_as_string(1),
258            "1385459527.2345679012071330528765432099"
259        );
260        assert_eq!(result.value_as_string(0), "0.0000000000000000015555555556");
261        assert_eq!(result.value_as_string(2), "0.0000000000000000015555555556");
262
263        let a = Decimal128Array::from(vec![1230])
264            .with_precision_and_scale(4, 2)
265            .unwrap();
266
267        let b = Decimal128Array::from(vec![1000])
268            .with_precision_and_scale(4, 2)
269            .unwrap();
270
271        // Required scale is same as the product of the input scales. Behavior is same as multiply.
272        let result = multiply_fixed_point_checked(&a, &b, 4).unwrap();
273        assert_eq!(result.precision(), 9);
274        assert_eq!(result.scale(), 4);
275
276        let expected = mul(&a, &b).unwrap();
277        assert_eq!(expected.as_ref(), &result);
278
279        // Required scale cannot be larger than the product of the input scales.
280        let result = multiply_fixed_point_checked(&a, &b, 5).unwrap_err();
281        assert!(result
282            .to_string()
283            .contains("Required scale 5 is greater than product scale 4"));
284    }
285
286    #[test]
287    fn test_decimal_multiply_allow_precision_loss_overflow() {
288        // [99999999999123456789]
289        let a = Decimal128Array::from(vec![99999999999123456789000000000000000000])
290            .with_precision_and_scale(38, 18)
291            .unwrap();
292
293        // [9999999999910]
294        let b = Decimal128Array::from(vec![9999999999910000000000000000000])
295            .with_precision_and_scale(38, 18)
296            .unwrap();
297
298        let err = multiply_fixed_point_checked(&a, &b, 28).unwrap_err();
299        assert!(err.to_string().contains(
300            "Overflow happened on: 99999999999123456789000000000000000000 * 9999999999910000000000000000000"
301        ));
302
303        let result = multiply_fixed_point(&a, &b, 28).unwrap();
304        let expected = Decimal128Array::from(vec![62946009661555981610246871926660136960])
305            .with_precision_and_scale(38, 28)
306            .unwrap();
307
308        assert_eq!(&expected, &result);
309    }
310
311    #[test]
312    fn test_decimal_multiply_fixed_point() {
313        // [123456789]
314        let a = Decimal128Array::from(vec![123456789000000000000000000])
315            .with_precision_and_scale(38, 18)
316            .unwrap();
317
318        // [10]
319        let b = Decimal128Array::from(vec![10000000000000000000])
320            .with_precision_and_scale(38, 18)
321            .unwrap();
322
323        // `multiply` overflows on this case.
324        let err = mul(&a, &b).unwrap_err();
325        assert_eq!(err.to_string(), "Arithmetic overflow: Overflow happened on: 123456789000000000000000000 * 10000000000000000000");
326
327        // Avoid overflow by reducing the scale.
328        let result = multiply_fixed_point(&a, &b, 28).unwrap();
329        // [1234567890]
330        let expected = Decimal128Array::from(vec![12345678900000000000000000000000000000])
331            .with_precision_and_scale(38, 28)
332            .unwrap();
333
334        assert_eq!(&expected, &result);
335        assert_eq!(
336            result.value_as_string(0),
337            "1234567890.0000000000000000000000000000"
338        );
339    }
340}