arrow/
tensor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Arrow Tensor Type, defined in
//! [`format/Tensor.fbs`](https://github.com/apache/arrow/blob/master/format/Tensor.fbs).

use std::marker::PhantomData;
use std::mem;

use crate::buffer::Buffer;
use crate::datatypes::*;

use crate::error::{ArrowError, Result};

/// Computes the strides required assuming a row major memory layout
fn compute_row_major_strides<T: ArrowPrimitiveType>(shape: &[usize]) -> Result<Vec<usize>> {
    let mut remaining_bytes = mem::size_of::<T::Native>();

    for i in shape {
        if let Some(val) = remaining_bytes.checked_mul(*i) {
            remaining_bytes = val;
        } else {
            return Err(ArrowError::ComputeError(
                "overflow occurred when computing row major strides.".to_string(),
            ));
        }
    }

    let mut strides = Vec::<usize>::new();
    for i in shape {
        remaining_bytes /= *i;
        strides.push(remaining_bytes);
    }

    Ok(strides)
}

/// Computes the strides required assuming a column major memory layout
fn compute_column_major_strides<T: ArrowPrimitiveType>(shape: &[usize]) -> Result<Vec<usize>> {
    let mut remaining_bytes = mem::size_of::<T::Native>();
    let mut strides = Vec::<usize>::new();

    for i in shape {
        strides.push(remaining_bytes);

        if let Some(val) = remaining_bytes.checked_mul(*i) {
            remaining_bytes = val;
        } else {
            return Err(ArrowError::ComputeError(
                "overflow occurred when computing column major strides.".to_string(),
            ));
        }
    }

    Ok(strides)
}

/// Tensor of primitive types
#[derive(Debug)]
pub struct Tensor<'a, T: ArrowPrimitiveType> {
    data_type: DataType,
    buffer: Buffer,
    shape: Option<Vec<usize>>,
    strides: Option<Vec<usize>>,
    names: Option<Vec<&'a str>>,
    _marker: PhantomData<T>,
}

/// [Tensor] of type [BooleanType]
pub type BooleanTensor<'a> = Tensor<'a, BooleanType>;
/// [Tensor] of type [Int8Type]
pub type Date32Tensor<'a> = Tensor<'a, Date32Type>;
/// [Tensor] of type [Int16Type]
pub type Date64Tensor<'a> = Tensor<'a, Date64Type>;
/// [Tensor] of type [Decimal128Type]
pub type Decimal128Tensor<'a> = Tensor<'a, Decimal128Type>;
/// [Tensor] of type [Decimal256Type]
pub type Decimal256Tensor<'a> = Tensor<'a, Decimal256Type>;
/// [Tensor] of type [DurationMicrosecondType]
pub type DurationMicrosecondTensor<'a> = Tensor<'a, DurationMicrosecondType>;
/// [Tensor] of type [DurationMillisecondType]
pub type DurationMillisecondTensor<'a> = Tensor<'a, DurationMillisecondType>;
/// [Tensor] of type [DurationNanosecondType]
pub type DurationNanosecondTensor<'a> = Tensor<'a, DurationNanosecondType>;
/// [Tensor] of type [DurationSecondType]
pub type DurationSecondTensor<'a> = Tensor<'a, DurationSecondType>;
/// [Tensor] of type [Float16Type]
pub type Float16Tensor<'a> = Tensor<'a, Float16Type>;
/// [Tensor] of type [Float32Type]
pub type Float32Tensor<'a> = Tensor<'a, Float32Type>;
/// [Tensor] of type [Float64Type]
pub type Float64Tensor<'a> = Tensor<'a, Float64Type>;
/// [Tensor] of type [Int8Type]
pub type Int8Tensor<'a> = Tensor<'a, Int8Type>;
/// [Tensor] of type [Int16Type]
pub type Int16Tensor<'a> = Tensor<'a, Int16Type>;
/// [Tensor] of type [Int32Type]
pub type Int32Tensor<'a> = Tensor<'a, Int32Type>;
/// [Tensor] of type [Int64Type]
pub type Int64Tensor<'a> = Tensor<'a, Int64Type>;
/// [Tensor] of type [IntervalDayTimeType]
pub type IntervalDayTimeTensor<'a> = Tensor<'a, IntervalDayTimeType>;
/// [Tensor] of type [IntervalMonthDayNanoType]
pub type IntervalMonthDayNanoTensor<'a> = Tensor<'a, IntervalMonthDayNanoType>;
/// [Tensor] of type [IntervalYearMonthType]
pub type IntervalYearMonthTensor<'a> = Tensor<'a, IntervalYearMonthType>;
/// [Tensor] of type [Time32MillisecondType]
pub type Time32MillisecondTensor<'a> = Tensor<'a, Time32MillisecondType>;
/// [Tensor] of type [Time32SecondType]
pub type Time32SecondTensor<'a> = Tensor<'a, Time32SecondType>;
/// [Tensor] of type [Time64MicrosecondType]
pub type Time64MicrosecondTensor<'a> = Tensor<'a, Time64MicrosecondType>;
/// [Tensor] of type [Time64NanosecondType]
pub type Time64NanosecondTensor<'a> = Tensor<'a, Time64NanosecondType>;
/// [Tensor] of type [TimestampMicrosecondType]
pub type TimestampMicrosecondTensor<'a> = Tensor<'a, TimestampMicrosecondType>;
/// [Tensor] of type [TimestampMillisecondType]
pub type TimestampMillisecondTensor<'a> = Tensor<'a, TimestampMillisecondType>;
/// [Tensor] of type [TimestampNanosecondType]
pub type TimestampNanosecondTensor<'a> = Tensor<'a, TimestampNanosecondType>;
/// [Tensor] of type [TimestampSecondType]
pub type TimestampSecondTensor<'a> = Tensor<'a, TimestampSecondType>;
/// [Tensor] of type [UInt8Type]
pub type UInt8Tensor<'a> = Tensor<'a, UInt8Type>;
/// [Tensor] of type [UInt16Type]
pub type UInt16Tensor<'a> = Tensor<'a, UInt16Type>;
/// [Tensor] of type [UInt32Type]
pub type UInt32Tensor<'a> = Tensor<'a, UInt32Type>;
/// [Tensor] of type [UInt64Type]
pub type UInt64Tensor<'a> = Tensor<'a, UInt64Type>;

impl<'a, T: ArrowPrimitiveType> Tensor<'a, T> {
    /// Creates a new `Tensor`
    pub fn try_new(
        buffer: Buffer,
        shape: Option<Vec<usize>>,
        strides: Option<Vec<usize>>,
        names: Option<Vec<&'a str>>,
    ) -> Result<Self> {
        match shape {
            None => {
                if buffer.len() != mem::size_of::<T::Native>() {
                    return Err(ArrowError::InvalidArgumentError(
                        "underlying buffer should only contain a single tensor element".to_string(),
                    ));
                }

                if strides.is_some() {
                    return Err(ArrowError::InvalidArgumentError(
                        "expected None strides for tensor with no shape".to_string(),
                    ));
                }

                if names.is_some() {
                    return Err(ArrowError::InvalidArgumentError(
                        "expected None names for tensor with no shape".to_string(),
                    ));
                }
            }

            Some(ref s) => {
                if let Some(ref st) = strides {
                    if st.len() != s.len() {
                        return Err(ArrowError::InvalidArgumentError(
                            "shape and stride dimensions differ".to_string(),
                        ));
                    }
                }

                if let Some(ref n) = names {
                    if n.len() != s.len() {
                        return Err(ArrowError::InvalidArgumentError(
                            "number of dimensions and number of dimension names differ".to_string(),
                        ));
                    }
                }

                let total_elements: usize = s.iter().product();
                if total_elements != (buffer.len() / mem::size_of::<T::Native>()) {
                    return Err(ArrowError::InvalidArgumentError(
                        "number of elements in buffer does not match dimensions".to_string(),
                    ));
                }
            }
        };

        // Checking that the tensor strides used for construction are correct
        // otherwise a row major stride is calculated and used as value for the tensor
        let tensor_strides = {
            if let Some(st) = strides {
                if let Some(ref s) = shape {
                    if compute_row_major_strides::<T>(s)? == st
                        || compute_column_major_strides::<T>(s)? == st
                    {
                        Some(st)
                    } else {
                        return Err(ArrowError::InvalidArgumentError(
                            "the input stride does not match the selected shape".to_string(),
                        ));
                    }
                } else {
                    Some(st)
                }
            } else if let Some(ref s) = shape {
                Some(compute_row_major_strides::<T>(s)?)
            } else {
                None
            }
        };

        Ok(Self {
            data_type: T::DATA_TYPE,
            buffer,
            shape,
            strides: tensor_strides,
            names,
            _marker: PhantomData,
        })
    }

    /// Creates a new Tensor using row major memory layout
    pub fn new_row_major(
        buffer: Buffer,
        shape: Option<Vec<usize>>,
        names: Option<Vec<&'a str>>,
    ) -> Result<Self> {
        if let Some(ref s) = shape {
            let strides = Some(compute_row_major_strides::<T>(s)?);

            Self::try_new(buffer, shape, strides, names)
        } else {
            Err(ArrowError::InvalidArgumentError(
                "shape required to create row major tensor".to_string(),
            ))
        }
    }

    /// Creates a new Tensor using column major memory layout
    pub fn new_column_major(
        buffer: Buffer,
        shape: Option<Vec<usize>>,
        names: Option<Vec<&'a str>>,
    ) -> Result<Self> {
        if let Some(ref s) = shape {
            let strides = Some(compute_column_major_strides::<T>(s)?);

            Self::try_new(buffer, shape, strides, names)
        } else {
            Err(ArrowError::InvalidArgumentError(
                "shape required to create column major tensor".to_string(),
            ))
        }
    }

    /// The data type of the `Tensor`
    pub fn data_type(&self) -> &DataType {
        &self.data_type
    }

    /// The sizes of the dimensions
    pub fn shape(&self) -> Option<&Vec<usize>> {
        self.shape.as_ref()
    }

    /// Returns a reference to the underlying `Buffer`
    pub fn data(&self) -> &Buffer {
        &self.buffer
    }

    /// The number of bytes between elements in each dimension
    pub fn strides(&self) -> Option<&Vec<usize>> {
        self.strides.as_ref()
    }

    /// The names of the dimensions
    pub fn names(&self) -> Option<&Vec<&'a str>> {
        self.names.as_ref()
    }

    /// The number of dimensions
    pub fn ndim(&self) -> usize {
        match &self.shape {
            None => 0,
            Some(v) => v.len(),
        }
    }

    /// The name of dimension i
    pub fn dim_name(&self, i: usize) -> Option<&'a str> {
        self.names.as_ref().map(|names| names[i])
    }

    /// The total number of elements in the `Tensor`
    pub fn size(&self) -> usize {
        match self.shape {
            None => 0,
            Some(ref s) => s.iter().product(),
        }
    }

    /// Indicates if the data is laid out contiguously in memory
    pub fn is_contiguous(&self) -> Result<bool> {
        Ok(self.is_row_major()? || self.is_column_major()?)
    }

    /// Indicates if the memory layout row major
    pub fn is_row_major(&self) -> Result<bool> {
        match self.shape {
            None => Ok(false),
            Some(ref s) => Ok(Some(compute_row_major_strides::<T>(s)?) == self.strides),
        }
    }

    /// Indicates if the memory layout column major
    pub fn is_column_major(&self) -> Result<bool> {
        match self.shape {
            None => Ok(false),
            Some(ref s) => Ok(Some(compute_column_major_strides::<T>(s)?) == self.strides),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::array::*;

    #[test]
    fn test_compute_row_major_strides() {
        assert_eq!(
            vec![48_usize, 8],
            compute_row_major_strides::<Int64Type>(&[4_usize, 6]).unwrap()
        );
        assert_eq!(
            vec![24_usize, 4],
            compute_row_major_strides::<Int32Type>(&[4_usize, 6]).unwrap()
        );
        assert_eq!(
            vec![6_usize, 1],
            compute_row_major_strides::<Int8Type>(&[4_usize, 6]).unwrap()
        );
    }

    #[test]
    fn test_compute_column_major_strides() {
        assert_eq!(
            vec![8_usize, 32],
            compute_column_major_strides::<Int64Type>(&[4_usize, 6]).unwrap()
        );
        assert_eq!(
            vec![4_usize, 16],
            compute_column_major_strides::<Int32Type>(&[4_usize, 6]).unwrap()
        );
        assert_eq!(
            vec![1_usize, 4],
            compute_column_major_strides::<Int8Type>(&[4_usize, 6]).unwrap()
        );
    }

    #[test]
    fn test_zero_dim() {
        let buf = Buffer::from(&[1]);
        let tensor = UInt8Tensor::try_new(buf, None, None, None).unwrap();
        assert_eq!(0, tensor.size());
        assert_eq!(None, tensor.shape());
        assert_eq!(None, tensor.names());
        assert_eq!(0, tensor.ndim());
        assert!(!tensor.is_row_major().unwrap());
        assert!(!tensor.is_column_major().unwrap());
        assert!(!tensor.is_contiguous().unwrap());

        let buf = Buffer::from(&[1, 2, 2, 2]);
        let tensor = Int32Tensor::try_new(buf, None, None, None).unwrap();
        assert_eq!(0, tensor.size());
        assert_eq!(None, tensor.shape());
        assert_eq!(None, tensor.names());
        assert_eq!(0, tensor.ndim());
        assert!(!tensor.is_row_major().unwrap());
        assert!(!tensor.is_column_major().unwrap());
        assert!(!tensor.is_contiguous().unwrap());
    }

    #[test]
    fn test_tensor() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();
        let tensor = Int32Tensor::try_new(buf, Some(vec![2, 8]), None, None).unwrap();
        assert_eq!(16, tensor.size());
        assert_eq!(Some(vec![2_usize, 8]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![32_usize, 4]).as_ref(), tensor.strides());
        assert_eq!(2, tensor.ndim());
        assert_eq!(None, tensor.names());
    }

    #[test]
    fn test_new_row_major() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();
        let tensor = Int32Tensor::new_row_major(buf, Some(vec![2, 8]), None).unwrap();
        assert_eq!(16, tensor.size());
        assert_eq!(Some(vec![2_usize, 8]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![32_usize, 4]).as_ref(), tensor.strides());
        assert_eq!(None, tensor.names());
        assert_eq!(2, tensor.ndim());
        assert!(tensor.is_row_major().unwrap());
        assert!(!tensor.is_column_major().unwrap());
        assert!(tensor.is_contiguous().unwrap());
    }

    #[test]
    fn test_new_column_major() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();
        let tensor = Int32Tensor::new_column_major(buf, Some(vec![2, 8]), None).unwrap();
        assert_eq!(16, tensor.size());
        assert_eq!(Some(vec![2_usize, 8]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![4_usize, 8]).as_ref(), tensor.strides());
        assert_eq!(None, tensor.names());
        assert_eq!(2, tensor.ndim());
        assert!(!tensor.is_row_major().unwrap());
        assert!(tensor.is_column_major().unwrap());
        assert!(tensor.is_contiguous().unwrap());
    }

    #[test]
    fn test_with_names() {
        let mut builder = Int64BufferBuilder::new(8);
        for i in 0..8 {
            builder.append(i);
        }
        let buf = builder.finish();
        let names = vec!["Dim 1", "Dim 2"];
        let tensor = Int64Tensor::new_column_major(buf, Some(vec![2, 4]), Some(names)).unwrap();
        assert_eq!(8, tensor.size());
        assert_eq!(Some(vec![2_usize, 4]).as_ref(), tensor.shape());
        assert_eq!(Some(vec![8_usize, 16]).as_ref(), tensor.strides());
        assert_eq!("Dim 1", tensor.dim_name(0).unwrap());
        assert_eq!("Dim 2", tensor.dim_name(1).unwrap());
        assert_eq!(2, tensor.ndim());
        assert!(!tensor.is_row_major().unwrap());
        assert!(tensor.is_column_major().unwrap());
        assert!(tensor.is_contiguous().unwrap());
    }

    #[test]
    fn test_inconsistent_strides() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();

        let result = Int32Tensor::try_new(buf, Some(vec![2, 8]), Some(vec![2, 8, 1]), None);

        if result.is_ok() {
            panic!("shape and stride dimensions are different")
        }
    }

    #[test]
    fn test_inconsistent_names() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();

        let result = Int32Tensor::try_new(
            buf,
            Some(vec![2, 8]),
            Some(vec![4, 8]),
            Some(vec!["1", "2", "3"]),
        );

        if result.is_ok() {
            panic!("dimensions and names have different shape")
        }
    }

    #[test]
    fn test_incorrect_shape() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();

        let result = Int32Tensor::try_new(buf, Some(vec![2, 6]), None, None);

        if result.is_ok() {
            panic!("number of elements does not match for the shape")
        }
    }

    #[test]
    fn test_incorrect_stride() {
        let mut builder = Int32BufferBuilder::new(16);
        for i in 0..16 {
            builder.append(i);
        }
        let buf = builder.finish();

        let result = Int32Tensor::try_new(buf, Some(vec![2, 8]), Some(vec![30, 4]), None);

        if result.is_ok() {
            panic!("the input stride does not match the selected shape")
        }
    }
}