High-level ArrayStream Implementation#
- class Array(obj, schema=None, device=None)#
High-level in-memory Array representation
The Array is nanoarrow’s high-level in-memory array representation whose scope maps to that of a fully-consumed ArrowArrayStream in the Arrow C Data interface.
The
Array
class is nanoarrow’s high-level in-memory array representation, encompasing the role of PyArrow’sArray
,ChunkedArray
,RecordBatch
, andTable
. This scope maps to that of a fully-consumedArrowArrayStream
as represented by the Arrow C Stream interface.Note that an
Array
is not necessarily contiguous in memory (i.e., it may consist of zero or more ``ArrowArray``s).Parameters#
- objarray or array stream-like
An array-like or array stream-like object as sanitized by
c_array_stream()
.- schemaschema-like, optional
An optional schema, passed to
c_array_stream()
.- deviceDevice, optional
The device associated with the buffers held by this Array. Defaults to the CPU device.
Examples#
>>> import nanoarrow as na >>> na.Array([1, 2, 3], na.int32()) nanoarrow.Array<int32>[3] 1 2 3
- buffer(i: int) CBufferView #
Access a single buffer of a contiguous array
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> array.buffer(1) nanoarrow.c_buffer.CBufferView(int32[12 b] 1 2 3)
- property buffers: Tuple[CBufferView, ...]#
Access buffers of a contiguous array.
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> for buffer in array.buffers: ... print(buffer) nanoarrow.c_buffer.CBufferView(bool[0 b] ) nanoarrow.c_buffer.CBufferView(int32[12 b] 1 2 3)
- child(i: int)#
Borrow a child Array from its parent.
Parameters#
- iint
The index of the child to return.
Examples#
>>> import nanoarrow as na >>> import pyarrow as pa >>> batch = pa.record_batch( ... [pa.array([1, 2, 3]), pa.array(["a", "b", "c"])], ... names=["col1", "col2"] ... ) >>> array = na.Array(batch) >>> array.child(1) nanoarrow.Array<'col2': string>[3] 'a' 'b' 'c'
- chunk(i: int)#
Extract a single contiguous Array from the underlying representation.
Parameters#
- iint
The index of the chunk to extract.
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> array.chunk(0) nanoarrow.Array<int32>[3] 1 2 3
- property device: Device#
Get the device on which the buffers for this array are allocated
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> array.device <nanoarrow.device.Device> - device_type: CPU <1> - device_id: -1
- static from_chunks(obj: Iterable, schema=None, validate: bool = True)#
Create an Array with explicit chunks
Creates an
Array
with explicit chunking from an iterable of objects that can be converted to ac_array()
.Parameters#
- objiterable of array-like
An iterable of objects that can be passed to
c_array()
.- schemaschema-like, optional
An optional schema. If present, will be passed to
c_array()
for each item in obj; if not present it will be inferred from the first chunk.- validatebool
Use
False
to opt out of validation steps performed when constructing this array.
Examples#
>>> import nanoarrow as na >>> na.Array.from_chunks([[1, 2, 3], [4, 5, 6]], na.int32()) nanoarrow.Array<int32>[6] 1 2 3 4 5 6
- inspect()#
Print the details of the array (type, length, offset, buffers, and children arrays).
- iter_children() Iterable #
Iterate over children of this Array
Examples#
>>> import nanoarrow as na >>> import pyarrow as pa >>> batch = pa.record_batch( ... [pa.array([1, 2, 3]), pa.array(["a", "b", "c"])], ... names=["col1", "col2"] ... ) >>> array = na.Array(batch) >>> for child in array.iter_children(): ... print(child) nanoarrow.Array<'col1': int64>[3] 1 2 3 nanoarrow.Array<'col2': string>[3] 'a' 'b' 'c'
- iter_chunk_views() Iterable[CArrayView] #
Iterate over prepared views of each chunk
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> for view in array.iter_chunk_views(): ... offset, length = view.offset, len(view) ... validity, data = view.buffers ... print(offset, length) ... print(validity) ... print(data) 0 3 nanoarrow.c_buffer.CBufferView(bool[0 b] ) nanoarrow.c_buffer.CBufferView(int32[12 b] 1 2 3)
- iter_chunks() Iterable #
Iterate over Arrays in the underlying representation whose buffers are contiguous in memory.
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> for chunk in array.iter_chunks(): ... print(chunk) nanoarrow.Array<int32>[3] 1 2 3
- iter_py() Iterable #
Iterate over the default Python representation of each element.
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> for item in array.iter_py(): ... print(item) 1 2 3
- iter_scalar() Iterable[Scalar] #
Iterate over items as Scalars
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> for item in array.iter_scalar(): ... print(item) Scalar<int32> 1 Scalar<int32> 2 Scalar<int32> 3
- iter_tuples() Iterable[Tuple] #
Iterate over rows of a struct array as tuples.
Examples#
>>> import nanoarrow as na >>> import pyarrow as pa >>> batch = pa.record_batch( ... [pa.array([1, 2, 3]), pa.array(["a", "b", "c"])], ... names=["col1", "col2"] ... ) >>> array = na.Array(batch) >>> for item in array.iter_tuples(): ... print(item) (1, 'a') (2, 'b') (3, 'c')
- property n_buffers: int#
Get the number of buffers in each chunk of this Array
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> array.n_buffers 2
- property n_children: int#
Get the number of children for an Array of this type.
Examples#
>>> import nanoarrow as na >>> import pyarrow as pa >>> batch = pa.record_batch( ... [pa.array([1, 2, 3]), pa.array(["a", "b", "c"])], ... names=["col1", "col2"] ... ) >>> array = na.Array(batch) >>> array.n_children 2
- property n_chunks: int#
Get the number of chunks in the underlying representation of this Array.
Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> array.n_chunks 1
- class Scalar#
Generic wrapper around an
Array
elementThis class exists to provide a generic implementation of array-like indexing for the
Array
. These objects can currently only be created by extracting an element from anArray
.Note that it is rarely efficient to iterate over Scalar objects: use the iterators in
nanoarrow.iterator
to more effectively iterate over anArray
.Examples#
>>> import nanoarrow as na >>> array = na.Array([1, 2, 3], na.int32()) >>> array[0] Scalar<int32> 1 >>> array[0].as_py() 1 >>> array[0].schema <Schema> int32
- as_py()#
Get the Python object representation of this scalar