datafusion-cli

The DataFusion CLI is a command-line interactive SQL utility for executing queries against any supported data files. It is a convenient way to try DataFusion’s SQL support with your own data.

Example

Create a CSV file to query.

$ echo "a,b" > data.csv
$ echo "1,2" >> data.csv

Query that single file (the CLI also supports parquet, compressed csv, avro, json and more)

$ datafusion-cli
DataFusion CLI v17.0.0
❯ select * from 'data.csv';
+---+---+
| a | b |
+---+---+
| 1 | 2 |
+---+---+
1 row in set. Query took 0.007 seconds.

You can also query directories of files with compatible schemas:

$ ls data_dir/
data.csv   data2.csv
$ datafusion-cli
DataFusion CLI v16.0.0
❯ select * from 'data_dir';
+---+---+
| a | b |
+---+---+
| 3 | 4 |
| 1 | 2 |
+---+---+
2 rows in set. Query took 0.007 seconds.

Installation

Install and run using Cargo

The easiest way to install DataFusion CLI a spin is via cargo install datafusion-cli.

Install and run using Homebrew (on MacOS)

DataFusion CLI can also be installed via Homebrew (on MacOS). Install it as any other pre-built software like this:

brew install datafusion
# ==> Downloading https://ghcr.io/v2/homebrew/core/datafusion/manifests/12.0.0
# ######################################################################## 100.0%
# ==> Downloading https://ghcr.io/v2/homebrew/core/datafusion/blobs/sha256:9ecc8a01be47ceb9a53b39976696afa87c0a8
# ==> Downloading from https://pkg-containers.githubusercontent.com/ghcr1/blobs/sha256:9ecc8a01be47ceb9a53b39976
# ######################################################################## 100.0%
# ==> Pouring datafusion--12.0.0.big_sur.bottle.tar.gz
# 🍺  /usr/local/Cellar/datafusion/12.0.0: 9 files, 17.4MB

datafusion-cli

Run using Docker

There is no officially published Docker image for the DataFusion CLI, so it is necessary to build from source instead.

Use the following commands to clone this repository and build a Docker image containing the CLI tool. Note that there is .dockerignore file in the root of the repository that may need to be deleted in order for this to work.

git clone https://github.com/apache/arrow-datafusion
cd arrow-datafusion
git checkout 12.0.0
docker build -f datafusion-cli/Dockerfile . --tag datafusion-cli
docker run -it -v $(your_data_location):/data datafusion-cli

Usage

See the current usage using datafusion-cli --help:

Apache Arrow <dev@arrow.apache.org>
Command Line Client for DataFusion query engine.

USAGE:
    datafusion-cli [OPTIONS]

OPTIONS:
    -c, --batch-size <BATCH_SIZE>    The batch size of each query, or use DataFusion default
    -f, --file <FILE>...             Execute commands from file(s), then exit
        --format <FORMAT>            [default: table] [possible values: csv, tsv, table, json,
                                     nd-json]
    -h, --help                       Print help information
    -p, --data-path <DATA_PATH>      Path to your data, default to current directory
    -q, --quiet                      Reduce printing other than the results and work quietly
    -r, --rc <RC>...                 Run the provided files on startup instead of ~/.datafusionrc
    -V, --version                    Print version information

Selecting files directly

Files can be queried directly by enclosing the file or directory name in single ' quotes as shown in the example.

It is also possible to create a table backed by files by explicitly via CREATE EXTERNAL TABLE as shown below.

Registering Parquet Data Sources

Parquet data sources can be registered by executing a CREATE EXTERNAL TABLE SQL statement. It is not necessary to provide schema information for Parquet files.

CREATE EXTERNAL TABLE taxi
STORED AS PARQUET
LOCATION '/mnt/nyctaxi/tripdata.parquet';

Registering CSV Data Sources

CSV data sources can be registered by executing a CREATE EXTERNAL TABLE SQL statement.

CREATE EXTERNAL TABLE test
STORED AS CSV
WITH HEADER ROW
LOCATION '/path/to/aggregate_test_100.csv';

It is also possible to provide schema information.

CREATE EXTERNAL TABLE test (
    c1  VARCHAR NOT NULL,
    c2  INT NOT NULL,
    c3  SMALLINT NOT NULL,
    c4  SMALLINT NOT NULL,
    c5  INT NOT NULL,
    c6  BIGINT NOT NULL,
    c7  SMALLINT NOT NULL,
    c8  INT NOT NULL,
    c9  BIGINT NOT NULL,
    c10 VARCHAR NOT NULL,
    c11 FLOAT NOT NULL,
    c12 DOUBLE NOT NULL,
    c13 VARCHAR NOT NULL
)
STORED AS CSV
LOCATION '/path/to/aggregate_test_100.csv';

Registering S3 Data Sources

AWS S3 data sources can be registered by executing a CREATE EXTERNAL TABLE SQL statement.

CREATE EXTERNAL TABLE test
STORED AS PARQUET
OPTIONS(
    'access_key_id' '******',
    'secret_access_key' '******',
    'region' 'us-east-2'
)
LOCATION 's3://bucket/path/file.parquet';

The supported OPTIONS are:

  • access_key_id

  • secret_access_key

  • session_token

  • region

It is also possible to simplify sql statements by environment variables.

$ export AWS_DEFAULT_REGION=us-east-2
$ export AWS_SECRET_ACCESS_KEY=******
$ export AWS_ACCESS_KEY_ID=******

$ datafusion-cli
DataFusion CLI v21.0.0
❯ create external table test stored as parquet location 's3://bucket/path/file.parquet';
0 rows in set. Query took 0.374 seconds.
❯ select * from test;
+----------+----------+
| column_1 | column_2 |
+----------+----------+
| 1        | 2        |
+----------+----------+
1 row in set. Query took 0.171 seconds.

Details of the environment variables that can be used are:

Registering OSS Data Sources

Alibaba cloud OSS data sources can be registered by executing a CREATE EXTERNAL TABLE SQL statement.

CREATE EXTERNAL TABLE test
STORED AS PARQUET
OPTIONS(
    'access_key_id' '******',
    'secret_access_key' '******',
    'endpoint' 'https://bucket.oss-cn-hangzhou.aliyuncs.com'
)
LOCATION 'oss://bucket/path/file.parquet';

The supported OPTIONS are:

  • access_key_id

  • secret_access_key

  • endpoint

Note that the endpoint format of oss needs to be: https://{bucket}.{oss-region-endpoint}

Registering GCS Data Sources

Google Cloud Storage data sources can be registered by executing a CREATE EXTERNAL TABLE SQL statement.

CREATE EXTERNAL TABLE test
STORED AS PARQUET
OPTIONS(
    'service_account_path' '/tmp/gcs.json',
)
LOCATION 'gs://bucket/path/file.parquet';

The supported OPTIONS are:

  • service_account_path -> location of service account file

  • service_account_key -> JSON serialized service account key

  • application_credentials_path -> location of application credentials file

It is also possible to simplify sql statements by environment variables.

$ export GOOGLE_SERVICE_ACCOUNT=/tmp/gcs.json

$ datafusion-cli
DataFusion CLI v21.0.0
❯ create external table test stored as parquet location 'gs://bucket/path/file.parquet';
0 rows in set. Query took 0.374 seconds.
❯ select * from test;
+----------+----------+
| column_1 | column_2 |
+----------+----------+
| 1        | 2        |
+----------+----------+
1 row in set. Query took 0.171 seconds.

Details of the environment variables that can be used are:

  • GOOGLE_SERVICE_ACCOUNT: location of service account file

  • GOOGLE_SERVICE_ACCOUNT_PATH: (alias) location of service account file

  • SERVICE_ACCOUNT: (alias) location of service account file

  • GOOGLE_SERVICE_ACCOUNT_KEY: JSON serialized service account key

  • GOOGLE_BUCKET: bucket name

  • GOOGLE_BUCKET_NAME: (alias) bucket name

Commands

Available commands inside DataFusion CLI are:

  • Quit

> \q
  • Help

> \?
  • ListTables

> \d
  • DescribeTable

> \d table_name
  • QuietMode

> \quiet [true|false]
  • list function

> \h
  • Search and describe function

> \h function
  • Show configuration options

> show all;

+-------------------------------------------------+---------+
| name                                            | setting |
+-------------------------------------------------+---------+
| datafusion.execution.batch_size                 | 8192    |
| datafusion.execution.coalesce_batches           | true    |
| datafusion.execution.time_zone                  | UTC     |
| datafusion.explain.logical_plan_only            | false   |
| datafusion.explain.physical_plan_only           | false   |
| datafusion.optimizer.filter_null_join_keys      | false   |
| datafusion.optimizer.skip_failed_rules          | true    |
+-------------------------------------------------+---------+
  • Set configuration options

> SET datafusion.execution.batch_size to 1024;

Changing Configuration Options

All available configuration options can be seen using SHOW ALL as described above.

You can change the configuration options using environment variables. datafusion-cli looks in the corresponding environment variable with an upper case name and all . converted to _.

For example, to set datafusion.execution.batch_size to 1024 you would set the DATAFUSION_EXECUTION_BATCH_SIZE environment variable appropriately:

$ DATAFUSION_EXECUTION_BATCH_SIZE=1024 datafusion-cli
DataFusion CLI v12.0.0
❯ show all;
+-------------------------------------------------+---------+
| name                                            | setting |
+-------------------------------------------------+---------+
| datafusion.execution.batch_size                 | 1024    |
| datafusion.execution.coalesce_batches           | true    |
| datafusion.execution.time_zone                  | UTC     |
| datafusion.explain.logical_plan_only            | false   |
| datafusion.explain.physical_plan_only           | false   |
| datafusion.optimizer.filter_null_join_keys      | false   |
| datafusion.optimizer.skip_failed_rules          | true    |
+-------------------------------------------------+---------+
8 rows in set. Query took 0.002 seconds.

You can change the configuration options using SET statement as well

$ datafusion-cli
DataFusion CLI v13.0.0

❯ show datafusion.execution.batch_size;
+---------------------------------+---------+
| name                            | setting |
+---------------------------------+---------+
| datafusion.execution.batch_size | 8192    |
+---------------------------------+---------+
1 row in set. Query took 0.011 seconds.

❯ set datafusion.execution.batch_size to 1024;
0 rows in set. Query took 0.000 seconds.

❯ show datafusion.execution.batch_size;
+---------------------------------+---------+
| name                            | setting |
+---------------------------------+---------+
| datafusion.execution.batch_size | 1024    |
+---------------------------------+---------+
1 row in set. Query took 0.005 seconds.